Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery
"> Figure 1
<p>Study area and WV-3 fused true color image. RGB = band 5, 3, 2.</p> "> Figure 2
<p>Overall flowchart of the methodology employed in this study.</p> "> Figure 3
<p>The predicted map of the study area with the first-level land covers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data Resources
3. Methods
3.1. Data Processing
3.2. Developing Features Based on WV-3
3.3. Land Cover Classification Schemes
3.4. Training Set and Test Sets
3.5. Classification Algorithm and Corresponding Parameter Optimization Methods
3.5.1. k-fold CV Algorithm
3.5.2. Genetic Algorithm
3.5.3. PSO Algorithm
3.6. Accuracy Assessment
4. Results
4.1. Results of Parameter Optimization
4.2. Assessment of Classification Results
4.2.1. OA and Percentage Deviation
4.2.2. F1-Measure and Percentage Deviation of Each Land Cover
4.2.3. McNemar Test
4.3. Assessment of the Independent Test Set
5. Discussion
5.1. Effectiveness of The Used Features
5.2. Dependency of Test and Training Sets and Sampling Scheme
5.3. Influence of Parameter Optimization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saviour, M.N. Environmental impact of soil and sand mining: A review. Int. J. Sci. Environ. Technol. 2012, 1, 125–134. [Google Scholar]
- Mbaya, R.P. Land degradation due to mining: The gunda scenario. Int. J. Geogr. Geol. 2013, 2, 144–158. [Google Scholar]
- Qian, T.; Bagan, H.; Kinoshita, T.; Yamagata, Y. Spatial-temporal analyses of surface coal mining dominated land degradation in holingol, Inner Mongolia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1675–1687. [Google Scholar] [CrossRef]
- Sonter, L.J.; Herrera, D.; Barrett, D.J.; Galford, G.L.; Moran, C.J.; Soares-Filho, B.S. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 2017, 8, 1013. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to Assess the Rehabilitation Performance of Open Cut Coal Mines; Elsevier: Amsterdam, The Netherlands, 2019; p. 209. [Google Scholar]
- Chen, W.; Li, X.; He, H.; Wang, L. Assessing different feature sets’ effects on land cover classification in complex surface-mined landscapes by ZiYuan-3 satellite imagery. Remote Sens. 2018, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, X.; He, H.; Wang, L. A review of fine-scale land use and land cover classification in open-pit mining areas by remote sensing techniques. Remote Sens. 2018, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, W.; Cheng, X.; Wang, L. A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sens. 2016, 8, 514. [Google Scholar] [CrossRef] [Green Version]
- De L. Lobo, F.; Souza-Filho, P.W.M.; de Novo, E.M.L.m.; Carlos, F.M.; Barbosa, C.C.F. Mapping mining areas in the Brazilian Amazon using MSI/sentinel-2 imagery (2017). Remote Sens. 2018, 10, 1178. [Google Scholar] [CrossRef] [Green Version]
- Sellers, P.J.; Meeson, B.W.; Hall, F.G.; Asrar, G.; Murphy, R.E.; Schiffer, R.A.; Huemmrich, K.F. Remote sensing of the land surface for studies of global change: Models algorithms experiments. Remote Sens. Environ. 1995, 4257, 3–26. [Google Scholar] [CrossRef]
- Yu, L.; Xu, Y.; Xue, Y.; Li, X.; Cheng, Y.; Liu, X.; Porwal, A.; Holden, E.J.; Yang, J.; Gong, P. Monitoring surface mining belts using multiple remote sensing datasets: A global perspective. Ore Geol. Rev. 2018, 101, 675–687. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Pal, M. Combining rapideye satellite imagery and lidar for mapping of mining and mine reclamation. Photogramm. Eng. Remote Sens. 2014, 80, 179–189. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Conley, J.F.; Sharp, A.L. Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A.K. Detecting the boundaries of urban areas in India: A dataset for pixel-based image classification in google earth engine. Remote Sens. 2016, 8, 634. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Schalkoff, R.J. Artificial Neural Networks (International ed); McGraw-Hill Higher Education: New York, NY, USA, 1997. [Google Scholar]
- Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- De Boissieu, F.; Sevin, B.; Cudahy, T.; Mangeas, M.; Chevrel, S.; Ong, C.; Rodger, A.; Maurizot, P.; Laukamp, C.; Lau, I.; et al. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 377–385. [Google Scholar] [CrossRef]
- Ishida, H.; Oishi, Y.; Morita, K.; Moriwaki, K.; Nakajima, T.Y. Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions. Remote Sens. Environ. 2018, 205, 390–407. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R. Improving accuracy of long-term land-use change in coal mining areas using wavelets and support vector machines. Int. J. Remote Sens. 2018, 39, 84–100. [Google Scholar] [CrossRef]
- Morales-Alvarez, P.; Perez-Suay, A.; Molina, R.; Camps-Valls, G. Remote sensing image classification with large-scale gaussian processes. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Negri, R.G.; Da Silva, E.A.; Casaca, W. Inducing contextual classifications with kernel functions into support vector machines. IEEE Geosci. Remote Sens. Lett. 2018, 15, 962–966. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sens. Environ. 2018, 210, 48–64. [Google Scholar] [CrossRef]
- Maulik, U.; Chakraborty, D. Remote sensing image classification: A survey of support-vector-machine-based advanced techniques. IEEE Geosci. Remote Sens. Mag. 2017, 5, 33–52. [Google Scholar] [CrossRef]
- Liu, P.; Choo, K.K.R.; Wang, L.; Huang, F. SVM or deep learning? A comparative study on remote sensing image classification. Soft Comput. 2017, 21, 7053–7065. [Google Scholar] [CrossRef]
- Sukawattanavijit, C.; Chen, J.; Zhang, H. GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 284–288. [Google Scholar] [CrossRef]
- Zhuo, L.; Zheng, J.; Li, X.; Wang, F.; Ai, B.; Qian, J. A genetic algorithm based wrapper feature selection method for classification of hyperspectral images using support vector machine. In Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, Guangzhou, China, 28–29 June 2008; Volume 7147, p. 71471J. [Google Scholar]
- Wu, C.H.; Tzeng, G.H.; Goo, Y.J.; Fang, W.C. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst. Appl. 2007, 32, 397–408. [Google Scholar] [CrossRef]
- Zhai, S.; Jiang, T. A novel particle swarm optimization trained support vector machine for automatic sense-through-foliage target recognition system. Knowl. Based Syst. 2014, 65, 50–59. [Google Scholar] [CrossRef]
- Kruse, F.A.; Baugh, W.M.; Perry, S.L. Validation of digitalglobe Worldview-3 Earth imaging satellite shortwave infrared bands for mineral mapping. J. Appl. Remote Sens. 2015, 9, 096044. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. Investigating the capability of Worldview-3 superspectral data for direct hydrocarbon detection. Remote Sens. Environ. 2016, 173, 162–173. [Google Scholar] [CrossRef]
- Salehi, T.; Tangestani, H.M. Large-scale mapping of iron oxide and hydroxide minerals of zefreh porphyry copper deposit, using Worldview-3 VNIR data in the Northeastern Isfahan, Iran. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 156–169. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L.; Zhang, Z.; Wang, Y. Comparison of fusion imageries with spectral fidelity using SPOT5. In MIPPR 2009: Multispectral Image Acquisition and Processing; International Society for Optics and Photonics: Orlando, FL, USA, 2009; Volume 7494, p. 74941K. [Google Scholar]
- Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sens. Environ. 1991, 35, 257–277. [Google Scholar] [CrossRef]
- Huete, A. A soil–adjusted vegetation index (SAVI). Remote Sens. Environ. 1998, 25, 295–309. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Pearson, K., LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Bazi, Y.; Melgani, F. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3374–3385. [Google Scholar] [CrossRef]
- Ghoggali, N.; Melgani, F. Genetic SVM approach to semisupervised multitemporal classification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 212–216. [Google Scholar] [CrossRef]
- Bazi, Y.; Melgani, F. Semisupervised PSO-SVM regression for biophysical parameter estimation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1887–1895. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 2015, 12, 309–313. [Google Scholar] [CrossRef]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. Misc Functions of the Department of Statistics (e1071); R Package Version 1.6–4; TU Wien: Vienna, Austria, 2014; p. 1071. [Google Scholar]
- Beasley, D.; Bull, D.R.; Martin, R.R. An overview of genetic algorithms: Part 1, fundamentals. Univ. Comput. 1993, 15, 56–69. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Western Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Wang, L.; Geng, H.; Liu, P.; Lu, K.; Kolodziej, J.; Ranjan, R.; Zomaya, A.Y. Particle swarm optimization based dictionary learning for remote sensing big data. Knowledge-Based Syst. 2015, 79, 43–50. [Google Scholar] [CrossRef]
- Daskalaki, S.; Kopanas, I.; Avouris, N. Evaluation of classifiers for an uneven class distribution problem. Appl. Artif. Intell. 2006, 20, 381–417. [Google Scholar] [CrossRef]
- Schuster, C.; Förster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Wang, Y.; Chen, G.; Liu, S. Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China. Remote Sens. Environ. 2014, 152, 291–301. [Google Scholar] [CrossRef]
- Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Tamimi, E.; Ebadi, H.; Kiani, A. Evaluation of different metaheuristic optimization algorithms in feature selection and parameter determination in SVM classification. Arab. J. Geosci. 2017, 10, 478. [Google Scholar] [CrossRef]
- Wang, M.; Wan, Y.; Ye, Z.; Lai, X. Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm. Inf. Sci. 2017, 402, 50–68. [Google Scholar] [CrossRef]
- Li, X.; Tang, Z.; Chen, W.; Wang, L. Multimodal and Multi-Model Deep Fusion for Fine Classification of Regional Complex Landscape Areas Using ZiYuan-3 Imagery. Remote Sens. 2019, 11, 2716. [Google Scholar] [CrossRef] [Green Version]
Sensor Bands | Band Name | Wavelength Range (nm) | Sensor Resolution (m) |
---|---|---|---|
Panchromatic | 450–800 | 0.31 | |
Visible and near infrared (VNIR) | Coastal Blue | 400–450 | 1.24 |
Blue | 450–510 | ||
Green | 510–580 | ||
Yellow | 585–625 | ||
Red | 630–690 | ||
Red Edge | 705–745 | ||
NIR-1 | 77–895 | ||
NIR-2 | 860–1040 | ||
Short-wave infrared (SWIR) | SWIR-1 | 1195–1225 | Commercial delivery at 7.5 m resolution |
SWIR-2 | 1550–1590 | ||
SWIR-3 | 1640–1680 | ||
SWIR-4 | 1710–1750 | ||
SWIR-5 | 2145–2185 | ||
SWIR-6 | 2185–2225 | ||
SWIR-7 | 2235–2285 | ||
SWIR-8 | 2285–2365 |
Image Features | Feature Names | Number |
---|---|---|
Various spectral bands | VNIR_(1, 2, …, 8), SWIR_(1, 2, …, 8) | 16 |
Vegetation indices | Normalized difference vegetation index, Soil-adjusted vegetation index | 2 |
Carbonate Index | CI | 1 |
Principal component bands | P1, P2, P3 | 3 |
Filter images | Gaussian low-pass filter _VNIR_(1, 2, …, 8) | 8 |
Texture measures | (Cor, Con, Asm, Hom, Ent)_VNIR_(1, 2, …, 8) | 40 |
Total | 70 |
Fine Land Cover Types | Description |
---|---|
Opencast pit | Having mine pit lakes and spiral roads. |
Ore processing site | Characterized by linear mineral processing facilities and highly reflective rubble. |
Dumping ground | Located around stopes and may be gray in true color images. |
Paddy field | Having adequate water supply and used for cultivation of rice, lotus, and other aquatic crops. |
Vegetable and fruit greenhouse | Having white plastic film sides and roofs, and high surface albedo with regular rectangular shapes. |
Green dry land | On the land water resources for crops mainly from natural precipitation and with high coverage. |
Gray dry land | On the land water resources for crops mainly from natural precipitation and with low coverage. |
Fallow land | No crops growing at the present stage. |
Woodland | Includes timber stands, economic forests, and shelterbelts that have high chlorophyll content and are dark red in the false color image (R—NIR-1, G—Red, B—Green). |
Shrub forest | Having multiple stems and shorter height, generally less than 2 m tall, and is bright red in false color images. |
Forest under stress | Under the influence of surface mining development, around surface-mined land, having large amounts of deposited mineral dust, poor growth, and is grayish in true color images (R—Red, G—Green, B—Blue). |
Nursery and orchard | Having a rectangular shape like cropland dotted by vegetation cover and exposed soil and is black in true color images. |
Pond and stream | Including many fish ponds with regular rectangular shapes. |
Mine pit pond | Lakes created during and after mining, typically with irregular shapes. |
Dark road | Usually referring to asphalt highways. |
Bright road | Usually referring to cement roads. |
Light gray road | Usually referring to dirt roads. |
Bright roof | Usually referring to urban and town areas. |
Red roof | Usually referring to rural land. |
Dark roof | Usually referring to residential land in industrial parks |
Blue roof | Usually referring to land used for industrial parks. |
Bare surface | Referring to exposed land with little vegetation. |
Fine Land Cover Types | Number of DPs | Area of DPs (km2) | Number of Pixels in DPs (103) | Fraction (‰) |
---|---|---|---|---|
Open pit | 17 | 2.22 | 24,635 | 0.04 |
Ore processing site | 36 | 0.92 | 10,256 | 0.10 |
Dumping ground | 38 | 0.79 | 8724 | 0.11 |
Paddy | 36 | 0.10 | 1085 | 0.92 |
greenhouse | 13 | 0.05 | 565 | 1.77 |
Green dry land | 66 | 0.18 | 2021 | 0.49 |
Gray dry land | 30 | 0.06 | 626 | 1.60 |
Fallow land | 42 | 0.09 | 1013 | 0.99 |
Woodland | 71 | 0.75 | 8298 | 0.12 |
Shrubbery | 43 | 0.12 | 1295 | 0.77 |
Coerced forest | 28 | 0.11 | 1228 | 0.81 |
Nursery | 41 | 0.21 | 2386 | 0.42 |
Pond and stream | 99 | 0.47 | 5253 | 0.19 |
Mine pit pond | 12 | 0.06 | 659 | 1.52 |
Dark road | 9 | 0.04 | 399 | 2.50 |
Bright road | 5 | 0.00 | 32 | 31.63 |
Light gray road | 63 | 0.06 | 704 | 1.42 |
Bright roof | 61 | 0.08 | 932 | 1.07 |
Red roof | 128 | 0.02 | 198 | 5.06 |
Dark roof | 81 | 0.03 | 344 | 2.91 |
Blue roof | 33 | 0.05 | 503 | 1.99 |
Bare surface | 6 | 0.01 | 136 | 7.34 |
Parameter | Ranges | Results | ||
---|---|---|---|---|
CV | GA | PSO | ||
G | 2−11, 2−9, …, 23 | 2−7 | 2−9 | 2−5 |
C | 2−3, 2−1, …, 27 | 27 | 27 | 23 |
Second Level Classes | SVM | CV | GA | PSO | CV-P | GA-P | PSO-P |
---|---|---|---|---|---|---|---|
Open pit | 45.99 | 51.58 | 50.00 | 52.41 | 12.15 | 8.72 | 13.96 |
Ore processing site | 46.59 | 51.43 | 52.46 | 54.14 | 10.39 | 12.60 | 16.21 |
Dumping ground | 65.95 | 71.70 | 69.61 | 71.22 | 8.72 | 5.55 | 7.99 |
Paddy | 84.38 | 88.32 | 87.96 | 88.78 | 4.67 | 4.24 | 5.21 |
greenhouse | 85.41 | 94.36 | 93.19 | 91.58 | 10.48 | 9.11 | 7.22 |
Green dry land | 61.03 | 68.32 | 67.91 | 65.70 | 11.94 | 11.27 | 7.65 |
Gray dry land | 73.13 | 87.50 | 84.36 | 81.86 | 19.65 | 15.36 | 11.94 |
Fallow land | 69.84 | 78.67 | 74.15 | 73.63 | 12.64 | 6.17 | 5.43 |
Woodland | 80.75 | 83.96 | 83.18 | 83.90 | 3.98 | 3.01 | 3.90 |
Shrubbery | 45.03 | 52.48 | 52.31 | 49.50 | 16.54 | 16.17 | 9.93 |
Coerced forest | 72.12 | 78.79 | 79.60 | 76.10 | 9.25 | 10.37 | 5.52 |
Nursery | 54.08 | 66.29 | 61.54 | 63.44 | 22.58 | 13.79 | 17.31 |
Pond and stream | 95.57 | 97.54 | 96.62 | 97.54 | 2.06 | 1.10 | 2.06 |
Mine pit pond | 96.48 | 98.51 | 99.00 | 98.02 | 2.10 | 2.61 | 1.60 |
Dark road | 80.00 | 89.86 | 87.44 | 90.38 | 12.33 | 9.30 | 12.98 |
Bright road | 94.23 | 99.00 | 98.00 | 97.51 | 5.06 | 4.00 | 3.48 |
Light gray road | 75.12 | 86.54 | 80.63 | 86.70 | 15.20 | 7.33 | 15.42 |
Bright roof | 81.25 | 88.21 | 87.31 | 85.00 | 8.57 | 7.46 | 4.62 |
Red roof | 93.26 | 95.43 | 96.94 | 94.42 | 2.33 | 3.95 | 1.24 |
Dark roof | 63.21 | 79.26 | 77.78 | 78.14 | 25.39 | 23.05 | 23.62 |
Blue roof | 95.88 | 97.46 | 98.49 | 95.92 | 1.65 | 2.72 | 0.04 |
Bare surface | 75.13 | 87.88 | 85.43 | 86.15 | 16.97 | 13.71 | 14.67 |
OA | 74.55 | 81.77 | 80.41 | 80.27 | 9.68 | 7.86 | 7.67 |
Pair of Classifications | f12 | f21 | χ2 | p |
---|---|---|---|---|
SVM vs. CV | 229 | 70 | 84.6 | <0.001 |
SVM vs. GA | 178 | 49 | 73.3 | <0.001 |
SVM vs. PSO | 186 | 60 | 64.5 | <0.001 |
CV vs. GA | 60 | 90 | 6.0 | <0.05 |
CV vs. PSO | 46 | 79 | 8.7 | <0.01 |
GA vs. PSO | 76 | 79 | 0.1 |
SVM | CV | GA | PSO | CV-P | GA-P | PSO-P | |
---|---|---|---|---|---|---|---|
OA | 57.43 | 63.71 | 62.43 | 60.43 | 10.94 | 8.71 | 5.22 |
Pair of Classifications | f12 | f21 | χ2 | p |
---|---|---|---|---|
SVM vs. CV | 127 | 60 | 24.0 | <0.001 |
SVM vs. GA | 102 | 44 | 23.0 | <0.001 |
SVM vs. PSO | 95 | 51 | 13.3 | <0.001 |
CV vs. GA | 51 | 60 | 0.7 | |
CV vs. PSO | 39 | 62 | 5.2 | <0.025 |
GA vs. PSO | 56 | 70 | 1.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Li, X.; Wang, L. Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery. Remote Sens. 2020, 12, 82. https://doi.org/10.3390/rs12010082
Chen W, Li X, Wang L. Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery. Remote Sensing. 2020; 12(1):82. https://doi.org/10.3390/rs12010082
Chicago/Turabian StyleChen, Weitao, Xianju Li, and Lizhe Wang. 2020. "Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery" Remote Sensing 12, no. 1: 82. https://doi.org/10.3390/rs12010082
APA StyleChen, W., Li, X., & Wang, L. (2020). Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery. Remote Sensing, 12(1), 82. https://doi.org/10.3390/rs12010082