Spatial Interconnections of Land Surface Temperatures with Land Cover/Use: A Case Study of Tokyo
"> Figure 1
<p>Geographic location of the study area: (<b>a</b>) location of Japan, (<b>b</b>) prefectural-level administrative divisions of Greater Tokyo Metropolitan Area (TMA), and (<b>c</b>) study area in 2015 Landsat 8 satellite image generated as bands 4-3-2 RGB (red, green, blue) natural-color composites.</p> "> Figure 2
<p>Overall technical flowchart in this study. ESA, European Space Agency; CCI, Climate Change Initiative; LC, land cover; LCU, land cover/use; LST, land surface temperature; SUHI, surface urban heat island; SUHII, SUHI intensity.</p> "> Figure 3
<p>Spatiotemporal evolution of urban development in TMA from 2001–2015: (<b>a</b>–<b>d</b>) spatiotemporal patterns of land cover/use, and (<b>e</b>–<b>h</b>) spatiotemporal population patterns.</p> "> Figure 4
<p>Spatiotemporal evolution of the urban thermal environment in TMA from 2001–2015: (<b>a</b>–<b>d</b>) spatiotemporal patterns of LST, and (<b>e</b>–<b>h</b>) spatiotemporal patterns of SUHI effect.</p> "> Figure 5
<p>Urban–rural gradient: (<b>a</b>) proportion of urban fabric area, (<b>b</b>) normalized LST, and (<b>c</b>) magnitude of SUHI.</p> "> Figure 6
<p>Trends of SUHI effect experienced in TMA, 2001–2015: (<b>a</b>) variations in percentage area of different levels of SUHI intensity and (<b>b</b>) variations in mean SUHI intensity of different land cover/use types.</p> "> Figure 7
<p>Spatial identification of SUHII aggregation pattern in TMA, 2001–2015: (<b>a</b>) in 2001, (<b>b</b>) in 2006, (<b>c</b>) in 2013, (<b>d</b>) in 2015, and (<b>e</b>) spatiotemporal dynamics from 2001 to 2015.</p> "> Figure 8
<p>Centroid trajectories and moving directions of SUHI hot spots and urban areas in TMA.</p> "> Figure 9
<p>Spatiotemporal variations of estimated local coefficients derived from GWR models: (<b>a</b>) intercept, (<b>b</b>) CONTAG, (<b>c</b>) elevation, (<b>d</b>) population coefficient, (<b>e</b>) proportion of urban fabric, and (<b>f</b>) proportion of forest.</p> "> Figure 10
<p>Spatiotemporal variations of local parameters derived from GWR models: (<b>a</b>) Local R<sup>2</sup>, (<b>b</b>) standardized residual (OLS), (<b>c</b>) standardized residual (GWR), and (<b>d</b>) predicted SUHII.</p> "> Figure 11
<p>Land utilization and function of TMA in 2011: (<b>a</b>) policy areas and (<b>b</b>) urban land utilization. Data obtained from National Land Numerical Information Download Service, Ministry of Land, Infrastructure, Transport, and Tourism, Japan (<a href="https://nlftp.mlit.go.jp/ksj/index.html" target="_blank">https://nlftp.mlit.go.jp/ksj/index.html</a>).</p> ">
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Site
2.2. Working Flowchart
2.3. Land Cover/Use Specifications
2.4. LST Retrieval and SUHI Assessment
2.5. Spatial Aggregation Pattern and Variations of SUHI
2.6. Spatial Regression Analysis
2.6.1. Geographically Weighted Regression Analysis
2.6.2. Selection of Spatial Determinants
- (1)
- Land cover/use composition variables—In terms of land cover/use composition, the proportion of urban fabric area (UFP), normalized difference built-up index (NDBI), forest proportion (FP), normalized difference vegetation index (NDVI), and water proportion (WP) were considered as candidate explanatory variables. UFP, FP, and WP came from the UF and FL categories of reprocessed CCI-LC layers. NDVI and NDBI were calculated using Landsat multispectral images;
- (2)
- Landscape metric pattern variables—Determining the size, morphology, and spatial arrangement of urban landscapes is vital to explain urban temperature anomalies. Here, four landscape metric parameters were chosen to quantify the characteristics of diversity, aggregation, and evenness in urban landscapes: Shannon’s diversity index (SHDI), contagion index (CONTAG), patch density (PD), and patch richness (PR). Raster maps of landscape metrics were involved in further tests of explanatory regression;
- (3)
- Population variable—Population or population density indirectly affects the urban thermal field. Along with the vast production of anthropogenic heat, the concentration and overcrowding of the population impose serious pressure and demands on urban settlements and infrastructure constructions. This is why we incorporated the population as one of the essential determinants of SUHI formation. In this study, we used spatial demographic data at a high resolution of 100 m provided by the WorldPop Project, University of Southampton, UK (https://www.worldpop.org/) [79], to map the population distribution in TMA in 2001, 2006, 2013, and 2015. Numerous studies have gained valuable findings using this population data archive [80,81];
- (4)
- Terrain variables—The urban terrain is an important influencing factor of the stark temperature difference between urban and rural zones. Fluctuations of the topography alter the intensity of solar radiation and the thermal properties of surface materials. Here, elevation, slope, and aspect were included as potential explanatory variables. The elevation data at 3 arc-second resolution were extracted from the digital elevation model (DEM) archives of USGS’s Shuttle Radar Topography Mission (SRTM) [82]. Slope and aspect are calculated in ArcGIS based on the elevation.
2.6.3. Implementation of Spatial Regression Model
3. Results
3.1. Spatiotemporal Characteristics of Tokyo’s Urban Landscapes and Thermal Environment
3.2. Interconnections of SUHII with Urban Development
3.3. Spatial Relationships of SUHII and Land Cover/Use
4. Discussion
4.1. Land Use Policies and SUHI Magnitude
4.2. Toward a Livable Urban Environment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Serial no. (year) | Centroid_X (Longitude °) | Centroid_Y (Latitude °) | Long Axis (m) | Short Axis (m) | Long Axis/Short Axis | Rotation (°) |
---|---|---|---|---|---|---|
2001 | 139.54 | 35.68 | 29,227.03 | 18,516.53 | 1.58 | 23.73 |
2006 | 139.55 | 35.64 | 30,823.80 | 16,857.33 | 1.83 | 24.67 |
2013 | 139.64 | 35.68 | 28,311.34 | 19,289.65 | 1.47 | 43.86 |
2015 | 139.57 | 35.67 | 27,584.21 | 20,305.18 | 1.36 | 16.44 |
References
- World Climate Research Programme (WCRP). Global Research and Action Agenda on Cities and Climate Change Science-Full Version; Prieur-Richard, A.H., Walsh, M.B., Craig, M.L., Melamed, M., Colbert, M., Pathak, S., Connors, X., Bai, A., Barau, H., Bulkeley, H., et al., Eds.; WCRP Publication No.13, 2019; Available online: https://www.wcrp-climate.org/WCRP-publications/2019/GRAA-Cities-and-Climate-Change-Science-Full.pdf (accessed on 15 December 2020).
- United Nations (UN). United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/resource/docs/convkp/conveng.pdf (accessed on 15 December 2020).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change; Edenhofer, O., Pichs-Madruga, Y.R., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Castán Broto, V.; Bulkeley, H. A survey of urban climate change experiments in 100 cities. Glob. Environ. Chang. 2013, 23, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.D.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Ibrahim, S.A. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Ahmed Memon, R.; Leung, D.Y.; Chunho, L. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar]
- Nuruzzaman, M. Urban heat island: Causes, effects and mitigation measures—A review. Int. J. Environ. Monit. Anal. 2015, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division, (UN DESA). World Population Prospects: The 2015 Revision; UN DESA: New York, NY, USA, 2015. [Google Scholar]
- United Nations, Department of Economic and Social Affairs, Population Division, (UN DESA). World Urbanization Prospects: The 2018 Revision; UN DESA: New York, NY, USA, 2018. [Google Scholar]
- Gerden, T. The adoption of the Kyoto protocol of the United Nations framework convention on climate change. Contrib. Contemp. Hist. 2018, 58. [Google Scholar] [CrossRef]
- Statistic Bureau of Japan. Statistical Handbook of Japan. Available online: https://www.stat.go.jp/english/data/handbook/index.html (accessed on 15 December 2020).
- The Bureau of Environment, Tokyo Metropolitan Government (TMG). Creating a Sustainable City-Tokyo’s Environmental Policy. Available online: https://www.metro.tokyo.lg.jp/english/about/environmental_policy/index.html (accessed on 15 December 2020).
- Centre for Regional Research, Hosei University. Report on Local Climate Change Adaptation in Japan. Available online: https://si-cat.ws.hosei.ac.jp/en/paper2016en_web.pdf (accessed on 15 December 2020).
- Association of International Research Initiatives for Environmental Studies (AIRIES). Perspectives on climate change research in Japan after the Paris Agreement: International negotiations, technologies and countermeasures, plus adaptation. Glob. Environ. Res. 2017, 21, 1–64. [Google Scholar]
- Statistics Division at Bureau of General Affairs, TMG. Tokyo Statistical Yearbook. Available online: https://www.toukei.metro.tokyo.lg.jp/tnenkan/tn-eindex.html (accessed on 15 December 2020).
- Statistic Bureau of Japan. Japan Statistical Yearbook. Available online: https://www.stat.go.jp/english/data/nenkan/ (accessed on 15 December 2020).
- The Bureau of Environment, TMG. Environmental Outlook Tokyo. Available online: https://www.kankyo.metro.tokyo.lg.jp/en/about_us/videos_documents/documents_1.files/kankyo4774.pdf (accessed on 15 December 2020).
- The Bureau of Environment, TMG. Urban Heat Island. Available online: https://www.kankyo.metro.tokyo.lg.jp/en/climate/heat_island.html (accessed on 15 December 2020).
- Case, M.; Tidwell, A. Nippon Changes: Climate Impacts Threatening Japan Today and Tomorrow; World Wildlife Fund (WWF) International: Gland, Switzerland, 2008. [Google Scholar]
- Japan Meteorological Agency (JMA). Climate Change Monitoring Report. Available online: https://www.jma.go.jp/jma/en/NMHS/indexe_ccmr.html (accessed on 15 December 2020).
- Ministry of the Environment (MOE); Ministry of Education, Culture, Sports, Science and Technology (MEXT); Ministry of Agriculture, Forestry and Fisheries (MAFF); Ministry of Land, Infrastructure, Transport and Tourism (MLIT); Japan Meteorological Agency (JMA). Climate Change and Its Impacts in Japan. Synthesis Report on Observations, Projections, and Impact Assessments of Climate Change Climate. 2018. Available online: https://www.env.go.jp/earth/tekiou/pamph2018_full_Eng.pdf (accessed on 15 December 2020).
- The Bureau of Environment, TMG. Guidelines for Heat Island Control Measures. Available online: https://www.kankyo.metro.tokyo.lg.jp/en/about_us/videos_documents/documents_1.files/heat_island.pdf (accessed on 15 December 2020).
- Ministry of the Environment (MOE), Japan. Annual Report on Environmental Statistics. Available online: https://www.env.go.jp/en/statistics/ (accessed on 15 December 2020).
- Inter-Ministry Coordination Committee to Mitigate Urban Heat Island. Outline of the Policy Framework to Reduce Urban Heat Island Effects. Available online: https://www.env.go.jp/en/air/heat/heatisland.pdf (accessed on 15 December 2020).
- Kusaka, H. Recent progress on urban climate study in Japan. Geogr. Rev. Jpn. 2019, 53, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Myint, S.W.; Kaplan, S.; Middel, A.; Zheng, B.; Rahman, A.; Huang, H.P.; Brazel, A.; Blumberg, D.G. Understanding the impact of urbanization on surface urban heat Islands-A longitudinal analysis of the oasis effect in subtropical desert cities. Remote Sens. 2017, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Tayyebi, A.; Shafizadeh-Moghadam, H.; Tayyebi, A.H. Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the megacity of Tehran. Land Policy 2018, 71, 459–469. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Pengwang, C.; Gao, W. Evaluation of urbanization dynamics and its impacts on surface heat islands: A case study of Beijing, China. Remote Sens. 2017, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Keeratikasikorn, C.; Bonafoni, S. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery. Remote Sens. 2018, 10, 440. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M.; Handayani, H.H. Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos City, Nigeria. Sustainability 2018, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.M.S.L.B.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of landscape structure on the variation of land surface temperature in Sub-Saharan Region: A case study of Addis Ababa using Landsat data (1986–2016). Sustainability 2019, 11, 2257. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Estoque, R.C. Detecting cooling effect of landscape from composition and configuration: An urban heat island study on Hangzhou. Urban For. Urban Green. 2020, 53. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Hayes, J.F. Correlation or causality between land cover patterns and the urban heat island effect? Evidence from Brisbane, Australia. Remote Sens. 2016, 8, 716. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Sun, W.; Yang, G.; Weng, Q. Investigating spatiotemporal patterns of surface urban heat islands in the Hangzhou Metropolitan Area, China, 2000. Remote Sens. 2019, 11, 1553. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, X.; Murayama, Y.; Morimoto, T. Impacts of land cover/use on the urban thermal environment: A comparative study of 10 megacities in China. Remote Sens. 2020, 12, 307. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Murayama, Y. Geo-simulation of land use/cover scenarios and impacts on land surface temperature in Sapporo, Japan. Sustain. Cities Soc. 2020, 63, 102432. [Google Scholar] [CrossRef]
- Wang, L.; Hou, H.; Weng, J. Ordinary least squares modelling of urban heat island intensity based on landscape composition and configuration: A comparative study among three megacities along the Yangtze River. Sustain. Cities Soc. 2020, 62, 102381. [Google Scholar] [CrossRef]
- Tsunematsu, N.; Yokoyama, H.; Honjo, T.; Ichihashi, A.; Ando, H.; Matsumoto, F.; Seto, Y.; Shigyo, N.; Games, P. Impacts of Urban Heat Island Mitigation Strategies on Surface Temperatures in Downtown Tokyo. In Proceedings of the 9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment, Toulouse, France, 20–24 July 2015; Available online: http://www.meteo.fr/icuc9/LongAbstracts/ccma7-2-1471106_a.pdf (accessed on 15 December 2020).
- Tsunematsu, N.; Yokoyama, H.; Honjo, T.; Ichihashi, A.; Ando, H.; Shigyo, N. Relationship between land use variations and spatiotemporal changes in amounts of thermal infrared energy emitted from urban surfaces in downtown Tokyo on hot summer days. Urban. Clim. 2016, 17, 67–79. [Google Scholar] [CrossRef]
- Zhou, X.; Okaze, T.; Ren, C.; Cai, M.; Ishida, Y.; Watanabe, H.; Mochida, A. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze. Sustain. Cities Soc. 2020, 55, 102060. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- European Space Agency (ESA). Land Cover CCI Product User Guide Version 2 Tech. Rep. 2017. Available online: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 15 December 2020).
- Lamarche, C.; Bontemps, S.; Verhegghen, A.; Radoux, J.; Vanbogaert, E.; Kalogirou, V.; Seifert, F.M.; Arino, O.; Defourny, P. Characterizing the Surface Dynamics for Land Cover Mapping: Current Achievements of the ESA CCI Land Cover. ESA Special Publication, 2013. Available online: https://ftp.space.dtu.dk/pub/Ioana/papers/s333_4lama.pdf (accessed on 15 December 2020).
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 15 December 2020).
- Liu, F.; Murayama, Y. Landsat evaluation of land cover composition and its impacts on urban thermal environment: A case study on the fast-growing Shanghai Metropolitan Area. Geoinfor Geostat Overv. 2018, 2. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- McCarville, D.; Buenemann, M.; Bleiweiss, M.; Barsi, J. Atmospheric correction of Landsat thermal infrared data: A calculator based on North American Regional Reanalysis (NARR) data. In Proceedings of the American Society for Photogrammetry and Remote Sensing Conference, Milwaukee, WI, USA, 1–5 May 2011; Volume 15. [Google Scholar]
- Barsi, A.J.; Barker, L.J.; Schott, R.J. An atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 5, pp. 3014–3016. [Google Scholar]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Obs. Syst. 2005, 5882, 58820E. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 68–83. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M. Modelling the urban heat island effect of smart growth policy scenarios in Brisbane. Land Policy 2017, 64, 38–55. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Griffith, D.A. Towards a theory of spatial statistics. Geogr. Anal. 1980, 12, 325–339. [Google Scholar] [CrossRef]
- Griffith, D.A. Theory of Spatial Statistics. In Spatial Statistics and Models; Springer: Dordrecht, The Netherlands, 1984; pp. 3–15. [Google Scholar]
- Lefever, D.W. Measuring geographic concentration by means of the standard deviational ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Wang, B.; Shi, W.; Miao, Z. Confidence analysis of standard deviational ellipse and its extension into higher dimensional Euclidean space. PLoS ONE 2015, 10, e0118537. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Zhong, K.; Zhang, F.; Liu, X.; Sun, C. Measuring spatio-temporal dynamics of impervious surface in Guangzhou, China, from 1988 to 2015, using time-series Landsat imagery. Sci. Total Environ. 2018, 627, 264–281. [Google Scholar] [CrossRef]
- Johnson, D.P.; Wilson, J.S. The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Appl. Geogr. 2009, 29, 419–434. [Google Scholar] [CrossRef]
- Szymanowski, M.; Kryza, M. Local regression models for spatial interpolation of urban heat island-an example from Wrocław, SW Poland. Appl. Clim. 2012, 108, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zha, Y.; Zhang, J. Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major cities. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102131. [Google Scholar] [CrossRef]
- Noi, P.T.; Degener, J.; Kappas, M. Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data. Remote Sens. 2017, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Ivajnšič, D.; Kaligarič, M.; Žiberna, I. Geographically weighted regression of the urban heat island of a small city. Appl. Geogr. 2014, 53, 341–353. [Google Scholar] [CrossRef]
- Dutilleul, P.; Legendre, P. Spatial heterogeneity against heteroscedasticity: An ecological paradigm versus a statistical concept. Oikos 1993, 66, 152–171. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Weng, Q.; Weaver, R. A geographically weighted regression analysis of the underlying factors related to the surface urban heat island phenomenon. Remote Sens. 2018, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fan, C.; Zhao, Q.; Myint, S.W. A geographically weighted regression approach to understanding urbanization impacts on urban warming and cooling: A case study of Las Vegas. Remote Sens. 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 1–4. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High resolution global gridded data for use in population studies. Sci. Data 2017, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Peng, Y. Scale effects of the relationships between urban heat islands and impact factors based on a geographically-weighted regression model. Remote Sens. 2016, 8, 760. [Google Scholar] [CrossRef] [Green Version]
- Manley, G. On the frequency of snowfall in Metropolitan England. Q. J. R. Meteorol. Soc. 1958, 84, 70–72. [Google Scholar] [CrossRef]
- De Peres, L.F.; de Lucena, A.J.; Rotunno Filho, O.C.; de França, J.R.A. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 104–116. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.; Ye, X.; Cai, Y.; Ma, W.; Chen, M. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Hirano, Y.; Fujita, T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 2012, 37, 371–383. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef] [Green Version]
- Kardinal Jusuf, S.; Wong, N.H.; Hagen, E.; Anggoro, R.; Hong, Y. The influence of land use on the urban heat island in Singapore. Habitat Int. 2007, 31, 232–242. [Google Scholar] [CrossRef]
- Giridharan, R.; Ganesan, S.; Lau, S.S.Y. Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy Build. 2004, 36, 525–534. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- The Bureau of Urban Development, TMG. Outline of the City Planning. Available online: https://www.toshiseibi.metro.tokyo.lg.jp/eng/index.html (accessed on 15 December 2020).
- Yamamoto, Y. Measures to mitigate urban heat islands. Q. Rev. 2006, 18, 65–83. [Google Scholar]
- Kusaka, H.; Kimura, F.; Hirakuchi, H.; Mizutori, M. The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J. Meteorol. Soc. Jpn. Ser. II 2000, 78, 405–420. [Google Scholar] [CrossRef] [Green Version]
- Akashi, T. Creating the “Wind Paths” in the City to Mitigate Urban Heat Island Effects—A Case Study in Central District of Tokyo. In Proceedings of the CIB-W101 (Spatial Planning and Infrastructure Development) Annual Meeting, Dublin, Ireland, 5 September 2008; Available online: https://www.kenken.go.jp/japanese/contents/cib/w101_old/pdf/04.pdf (accessed on 15 December 2020).
- Honjo, T. Analysis of urban heat island movement and intensity in Tokyo Metropolitan Area by AMeDAS data. J. Agric. Meteorol. 2019, 75, 84–91. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Zhang, C.; Hanink, D.M.; Liu, Y.; Zhai, R. Analyzing horizontal and vertical urban expansions in three East Asian megacities with the SS-coMCRF model. Landsc. Urban. Plan. 2018, 177, 114–127. [Google Scholar] [CrossRef]
- Wang, R.; Derdouri, A.; Murayama, Y. Spatiotemporal simulation of future land use/cover change scenarios in the Tokyo metropolitan area. Sustainability 2018, 10, 2056. [Google Scholar] [CrossRef] [Green Version]
- Mabon, L.; Kondo, K.; Kanekiyo, H.; Hayabuchi, Y.; Yamaguchi, A. Fukuoka: Adapting to climate change through urban green space and the built environment? Cities 2019, 93, 273–285. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef] [Green Version]
LC Class | Description |
---|---|
Agricultural land (AL) | Rainfed cropland, irrigated cropland, mosaic cropland (>50%); natural vegetation (trees, shrubs, herbaceous cover) (<50%), mosaic natural vegetation (>50%); cropland (<50%) |
Forest land (FL) | Tree cover: broadleaved, evergreen, deciduous, needle-leaved, closed to open (>15%); mixed leaf, mosaic tree, and shrub (>50%); herbaceous cover (<50%) |
Mixed land (ML) | Bare area, wetland, shrubland, lichens, and mosses, sparse vegetation |
Urban fabric (UF) | Urban settlements, buildings, roads, and artificially surfaced areas |
Water area (WA) | Water |
Spacecraft | Landsat Sensor | Acquisition Time | GMT Time | Band Average Atmospheric Transmission | Effective Bandpass Upwelling Radiance | Effective Bandpass Downwelling Radiance |
---|---|---|---|---|---|---|
LANDSAT_7 | ETM | 24/9/2001 | 1:04:17 | 0.87 | 0.97 | 1.61 |
LANDSAT_5 | TM | 16/10/2006 | 1:09:59 | 0.79 | 1.57 | 2.54 |
LANDSAT_8 | OLI_TIRS | 17/9/2013 | 1:17:48 | 0.82 | 1.47 | 2.42 |
LANDSAT_8 | OLI_TIRS | 9/10/2015 | 1:15:51 | 0.88 | 0.9 | 1.54 |
Significance Level | 99.9% Significant | 99% Significant | 95% Significant | 90% Significant | Not Significant |
---|---|---|---|---|---|
Classification criteria (z) | z > 3.29 or z < −3.29 | z > 2.58 or z < −2.58 | z > 1.96 or z < −1.96 | z > 1.65 or z < −1.65 | −1.65 < z < 1.65 |
Variable | Signif. | OLS | GWR | ||||
---|---|---|---|---|---|---|---|
Coefficient | SE | t | VIF | Mean Coefficient | Std. dev Coefficient | ||
2001 | |||||||
Intercept | *** | −2.200 | 0.039 | −56.795 | −1.418 | 1.983 | |
CONTAG | *** | 0.042 | 0.002 | 23.191 | 1.202 | 0.009 | 0.034 |
Elevation | . | −2.154 | 0.716 | −3.010 | 1.009 | −1.095 | 4.237 |
Population | *** | 0.019 | 0.001 | 17.605 | 3.320 | 0.068 | 0.097 |
UFP | *** | 3.597 | 0.081 | 44.420 | 3.311 | 2.055 | 1.236 |
FP | *** | −3.028 | 0.095 | −31.972 | 1.178 | −3.030 | −3.573 |
2006 | |||||||
Intercept | *** | −2.689 | 0.042 | −63.446 | −1.510 | 2.428 | |
CONTAG | *** | 0.055 | 0.002 | 28.557 | 1.216 | 0.016 | 0.039 |
Elevation | −2.245 | 0.770 | −2.914 | 1.009 | −0.396 | 5.130 | |
Population | ** | 0.015 | 0.001 | 14.442 | 3.041 | 0.051 | 0.072 |
UFP | *** | 4.043 | 0.083 | 48.612 | 3.022 | 2.414 | 1.601 |
FP | *** | −2.158 | 0.105 | −20.628 | 1.184 | −2.457 | 3.354 |
2013 | |||||||
Intercept | *** | −3.796 | 0.035 | −107.340 | −2.801 | 1.605 | |
CONTAG | *** | 0.034 | 0.001 | 22.936 | 1.253 | 0.008 | 0.029 |
Elevation | −1.235 | 0.590 | −2.092 | 1.011 | −0.148 | 3.805 | |
Population | *** | 0.030 | 0.001 | 42.321 | 2.635 | 0.068 | 0.066 |
UFP | *** | 5.571 | 0.058 | 96.675 | 2.523 | 3.793 | 1.521 |
FP | *** | −1.267 | 0.083 | −15.351 | 1.201 | −0.819 | 2.412 |
2015 | |||||||
Intercept | *** | −3.687 | 0.040 | −91.403 | −2.023 | 2.061 | |
CONTAG | *** | 0.060 | 0.002 | 36.415 | 1.253 | 0.017 | 0.036 |
Elevation | ** | −2.512 | 0.655 | −3.835 | 1.010 | −0.781 | 3.332 |
Population | *** | 0.017 | 0.001 | 22.201 | 2.560 | 0.039 | 0.046 |
UFP | *** | 4.962 | 0.064 | 77.940 | 2.452 | 3.080 | 1.853 |
FP | *** | −0.393 | 0.092 | −4.268 | 1.202 | −0.832 | 3.089 |
Diagnostics | ||||||||
---|---|---|---|---|---|---|---|---|
2001 | 2006 | 2013 | 2015 | |||||
OLS | ||||||||
AICc | 30,707.0348 | 31,876.9032 | 27,633.9224 | 29,298.5158 | ||||
R-squared | 0.6527 | 0.6215 | 0.8479 | 0.7284 | ||||
Adjusted R-squared | 0.6524 | 0.6213 | 0.8478 | 0.7282 | ||||
Sigma2 | 2.8064 | 3.2524 | 1.9051 | 2.3499 | ||||
Moran’s I (MI) | 0.7563 | *** | 0.7531 | *** | 0.5881 | *** | 0.6539 | *** |
GWR | ||||||||
Bandwidth | 7865.0869 | 7927.2010 | 9178.8466 | 9324.3980 | ||||
Residual squares | 5654.6935 | 6006.6736 | 6529.5922 | 5784.9793 | ||||
Effective Number | 304.8643 | 301.9406 | 235.4162 | 229.2992 | ||||
AICc | 20,265.3305 | 20,739.8789 | 21,305.8567 | 20,336.6583 | ||||
R-squared | 0.9117 | 0.9118 | 0.9342 | 0.9157 | ||||
Adjusted R-squared | 0.9082 | 0.9083 | 0.9322 | 0.9132 | ||||
Sigma2 | 0.8610 | 0.8872 | 0.9210 | 0.8666 | ||||
Moran’s I (MI) | 0.3316 | *** | 0.3532 | *** | 0.3417 | *** | 0.3930 | *** |
F of GWR Improvement | 8.0804 | *** | 7.0857 | *** | 5.1831 | *** | 7.3013 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Hou, H.; Murayama, Y. Spatial Interconnections of Land Surface Temperatures with Land Cover/Use: A Case Study of Tokyo. Remote Sens. 2021, 13, 610. https://doi.org/10.3390/rs13040610
Liu F, Hou H, Murayama Y. Spatial Interconnections of Land Surface Temperatures with Land Cover/Use: A Case Study of Tokyo. Remote Sensing. 2021; 13(4):610. https://doi.org/10.3390/rs13040610
Chicago/Turabian StyleLiu, Fei, Hao Hou, and Yuji Murayama. 2021. "Spatial Interconnections of Land Surface Temperatures with Land Cover/Use: A Case Study of Tokyo" Remote Sensing 13, no. 4: 610. https://doi.org/10.3390/rs13040610
APA StyleLiu, F., Hou, H., & Murayama, Y. (2021). Spatial Interconnections of Land Surface Temperatures with Land Cover/Use: A Case Study of Tokyo. Remote Sensing, 13(4), 610. https://doi.org/10.3390/rs13040610