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Abstract: A surface urban heat island (SUHI) effect is one of the most significant consequences of
urbanization. Great progress has been made in evaluating the SUHI with cross-sectional studies
performed in a number of cities across the globe. Few studies; however, have focused on the
spatiotemporal changes in an area over a long period of time. Using multi-temporal remote sensing
data sets, this study examined the spatiotemporal changes of the SUHI intensity in Las Vegas,
Nevada, over a 15-year period from 2001 to 2016. We applied the geographically weighted regression
(GWR) and advanced statistical approaches to investigating the SUHI variation in relation to several
important biophysical indicators in the region. The results show that (1) Las Vegas had experienced a
significant increase in the SUHI over the 15 years, (2) Vegetation and large and small water bodies
in the city can help mitigate the SUHI effect and the cooling effect of vegetation had increased
continuously from 2001 to 2016, (3) An urban heat sink (UHS) was identified in developed areas
with low to moderate intensity, and (4) Increased surface temperatures were mainly driven by the
urbanization-induced land conversions occurred over the 15 years. Findings from this study will
inspire thoughts on practical guidelines for SUHI mitigation in a fast-growing desert city.

Keywords: surface urban heat island; geographically weighted regression; surface urban heat sink;
urbanization; Las Vegas

1. Introduction

An urban heat island (UHI) phenomenon refers to raised temperatures in urban areas in comparison
to the surrounding rural areas [1]. This phenomenon results from the replacement of natural landscape
components with manmade features, which detrimentally affect socio-ecological functioning and
services well beyond city boundaries [2]. Severe UHI effects lead to higher energy and water demand
for cooling [3], degradation of urban air quality [4], decreased human thermal comfort [5], and,
more importantly, increased risk of heat-related mobility and mortality especially for the elderly
and children [6]. Well-known UHI mitigation methods include the redevelopment and optimally
arrangement of urban green and blue infrastructure (e.g., trees/lawns, urban parks, urban lakes) [7–10],
deployment of green/white roofs [11,12], and the better design of urban wind corridor to increase
ventilation [13].

Traditionally, UHI studies were conducted using air temperature loggers from in situ monitoring
stations [14]. Although the in situ monitoring stations can capture long and continuous data
records in high temporal resolution, it suffers from the sparsely distributed data with limited spatial
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coverage [15]. With the advancement of thermal remote sensing, researchers have been able to obtain
thermal remotely sensed images with higher levels of spatial and temporal resolution [16]. Available
satellite thermal remote sensing sensors include National Oceanic and Atmospheric Administration
(NOAA) (Advanced Very-High-Resolution Radiometer (AVHRR)), Earth Observing System (EOS)
(Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER)), and Landsat (Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS)), which offer an
excellent opportunity for studying the surface urban heat island (SUHI) effect in relation to a variety of
environmental, ecological, and socio-economic parameters at a much larger spatial scale.

The land surface temperature (LST) in urban areas is closely linked to human-induced land use
land cover (LULC) transformation [2,17,18]. For instance, researchers found the LST to be negatively
associated with the abundance of urban greenspace and positively associated with the density of
impervious surfaces [19–22]. More research has confirmed the relationship of the LST with other
land cover features. For example, Chen et al. found a negative relationship between water bodies
and daytime surface temperatures in a study of Shenzhen, China [23]. Wang et al. identified a
significantly positive relationship of the daytime LST with open soil and fallow cropland over the
Phoenix metropolitan area [24].

Many existing studies have used the ordinary least squares (OLS) regression to understand the
underlying relationships between the LST and land cover composition [24–26]. For example, Yuan and
Bauer used the OLS to study the relationship between the LST and percent impervious surfaces in the
metropolitan area of Minneapolis–Saint Paul, Minnesota [22]. In another study, Zhou et al. evaluated
the variation in the SUHI in relation to a number of environmental parameters using correlation
analysis and simple linear regression [25]. In spite of the number of variables being considered, these
studies only focused on the bivariate relationships without considering the confounding effect from
other variables. Using multiple linear regression analysis, Wang et al. examined the zonal and temporal
variations in the SUHI with respect to several land cover variables over the Phoenix metropolitan
area [24]. Despite the popularity and wide adoption of the OLS regression in the existing research, it
fails to consider the spatial dependence and spatial heterogeneity with the assumption of a constant
process throughout the study area. In reality, however, the processes driving the spatial phenomenon
vary from place to place, and there is a higher degree of association among closer observations than
distant ones [27].

Many advanced spatial statistics methods have been developed to address the spatial heterogeneity
issues, including spatial econometrics/regression [28], the geographically weighted regression
(GWR) [29,30], and spatial filtering techniques [31]. Much existing research has used the GWR
to understand the potential relationships between LST and land cover composition in different parts
of the globe [26,32,33]. While the spatial variations have been effectively addressed and represented
with the use of GWR, temporal changes of urban areas have been largely overlooked by most
studies. The goal of this research is to fill this knowledge gap by offering a longitudinal study that
permits a spatiotemporal evaluation of the SUHI intensity. Coupling remote sensing and advanced
spatial statistical modeling, this study aims to achieve the following objectives: (1) examining the
spatial distribution and temporal changes of the SUHI over a 15-year time period; (2) evaluating
the spatiotemporal relationships between the SUHI and a number of biophysical variables using
correlation analysis and GWR; and (3) suggesting proper heat mitigation and adaption strategies
through analyzing the urbanization impacts on urban warming.

2. Materials and Methods

2.1. Study Area

Our study area is the city of Las Vegas, a subtropical desert city located within the greater Mojave
Desert (Figure 1). As the most populous city in Nevada, Las Vegas has experienced a fast-urban
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expansion with an average area increase of 40 km2 per year from 1990 to 2010 [2]. The population in
Las Vegas has grown significantly since the 1960s with an average increasing rate of 85.2% from 1990
to 2000. The estimated population in 2018 was 648,224 million [34]. The rapid growth is largely driven
by the role of the city as a cultural, financial, and recreational center in Nevada. The average daytime
temperature in June is 41 ◦C, with the maximum temperature reaching 45 ◦C [35]. On average, there
are 310 sunny days per year, and the average rainfall is only 2.8 mm [35]. Las Vegas experienced the
most intense UHI effects in 2016, with a 4 °C temperature difference between its metropolitan area and
the surrounding rural area [36].

Remote Sens. 2020, 11, x FOR PEER REVIEW 3 of 19 

 

urban expansion with an average area increase of 40 km2 per year from 1990 to 2010 [2]. The 
population in Las Vegas has grown significantly since the 1960s with an average increasing rate of 
85.2% from 1990 to 2000. The estimated population in 2018 was 648,224 million [34]. The rapid growth 
is largely driven by the role of the city as a cultural, financial, and recreational center in Nevada. The 
average daytime temperature in June is 41 °C, with the maximum temperature reaching 45 °C [35]. 
On average, there are 310 sunny days per year, and the average rainfall is only 2.8 mm [35]. Las Vegas 
experienced the most intense UHI effects in 2016, with a 4 ℃ temperature difference between its 
metropolitan area and the surrounding rural area [36].  

 
Figure 1. Study area located in the city of Las Vegas, Nevada. 

2.2. SUHI Intensity Derivation 

Three Landsat 5 Thematic Mapper (TM) images and one Landsat 8 Operational Land Imager 
(OLI) image were obtained from the USGS EarthExplorer website [37]. The acquisition dates are July 
13th, 2001, July 31st, 2006, July 17th, 2011, and July 26th, 2016, respectively. The thermal bands were 
used to retrieve the LST over Las Vegas in these four years. The wavelength and spatial resolution of 
the thermal band are 10.4–12.5 µm and 120 meters for Landsat 5 TM, and 10.6–11.19 µm and 100 
meters for Landsat 8 OLI image [38].  

We applied the mono-window algorithm to retrieving the LST [39]. First, the thermal band was 
used to calculate the brightness temperature, T (Equation (1)).  T = 1260.56ln 1 + 60.7760.1238 + 0.00563256 ∗ DNୠ൨ (1) 

where T is the brightness temperature (Unit: Kelvin). DNୠ is the digital number (DN) value of the 
thermal band. Next, the brightness temperature was converted into the LST following Equation (2).  Tୱ = ሼ67.3554(C + D − 1) + ሾ0.4414(C + D) + 0.4586ሿ ∗ T − D ∗ KሽC  (2) 

where Tୱ is the derived LST with the unit of Kelvin. K is the mean air temperature on the day of 
acquisition sourced from the National Oceanic and Atmospheric Administration (NOAA) [35]. C and 
D are intermediate variables given by Equations (3) and (4).  

Figure 1. Study area located in the city of Las Vegas, Nevada.

2.2. SUHI Intensity Derivation

Three Landsat 5 Thematic Mapper (TM) images and one Landsat 8 Operational Land Imager
(OLI) image were obtained from the USGS EarthExplorer website [37]. The acquisition dates are July
13th, 2001, July 31st, 2006, July 17th, 2011, and July 26th, 2016, respectively. The thermal bands were
used to retrieve the LST over Las Vegas in these four years. The wavelength and spatial resolution
of the thermal band are 10.4–12.5 µm and 120 meters for Landsat 5 TM, and 10.6–11.19 µm and 100
meters for Landsat 8 OLI image [38].

We applied the mono-window algorithm to retrieving the LST [39]. First, the thermal band was
used to calculate the brightness temperature, T6 (Equation (1)).

T6 =
1260.56

ln
[
1 + 60.776

0.1238+0.00563256∗DNb6

] (1)

where T6 is the brightness temperature (Unit: Kelvin). DNb6 is the digital number (DN) value of the
thermal band. Next, the brightness temperature was converted into the LST following Equation (2).

Ts =

{
67.3554(C + D− 1) + [0.4414(C + D) + 0.4586]∗T6 −D ∗K

}
C

(2)
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where Ts is the derived LST with the unit of Kelvin. K is the mean air temperature on the day of
acquisition sourced from the National Oceanic and Atmospheric Administration (NOAA) [35]. C and
D are intermediate variables given by Equations (3) and (4).

C = ετ6 (3)

D = (1− ε)[1 + (1− ε)τ6] (4)

where τ6 is the atmospheric transmittance, and ε is the land surface emissivity. The values of τ6

and ε were obtained from the online NASA atmospheric correction parameter calculator [40]. The
mono-window algorithm was implemented using the ENVI 5.0 software [41].

With the retrieved LST, the SUHI intensity is defined as the LST difference between the urban
area and its surrounding rural area. The city boundary was sourced from the United States Census
Bureau [34]. We created a buffer that is 10–20 km outside of the city boundary to avoid the transition
zone between urban and rural areas. The buffer distance was determined based on several studies and
a series of trial-and-error tests [2,24,42]. To minimize the confounding effects from areas with high
elevation and water, mountains, and large water bodies within the buffer were manually removed.
The SUHI intensity maps were created by subtracting the mean LST in the rural area from the LST
value of each urban pixel.

2.3. Biophysical Indicators

We used biophysical indices to represent three major land cover features in the study area,
including vegetation, built-up, and water body. The biophysical indices were calculated based on
mathematical manipulation of spectral bands. The soil adjusted vegetation index (SAVI) was used
to represent green biomass in the region (Equation (5)). The near-infrared (NIR) band and the
red band were applied to the SAVI calculation. The SAVI was selected over the NDVI because it
eliminates soil-induced variations in the NDVI, making it more effective for distinguishing green
vegetation from open soil, particularly in semi-arid areas [43]. The normalized difference built-up index
(NDBI) (Equation (6)) was used to identify the built-up area [44]. It was calculated by enhancing the
mid-infrared band (MIR) while suppressing the near-infrared band. We used the modified normalized
difference water index (MNDWI) to extract water bodies in the urban area (Equation (7)) [45]. The
green band and the short-wave infrared (SWIR) band were applied to the MNDWI calculation. Water
bodies extracted using the normalized difference water index (NDWI) are subject to overestimation
due to the spectral mixture with built-up areas. The MNDWI is a modified version of the NDWI
that successfully picks out water bodies from the surrounding built-up areas [46]. Given the high
proportion of developed areas in Las Vegas, we believe that the MNDWI provides a more accurate
estimation of water bodies than the NDWI.

SAVI =
ρ(NIR) − ρ(Red)

ρ(NIR) − ρ(Red) + L
(1 + L) (5)

where L is a soil adjustment factor, L = 0.5

NDBI =
ρ(MIR) − ρ(NIR)
ρ(MIR) + ρ(NIR)

(6)

MNDWI =
ρ(Green) − ρ(SWIR)
ρ(Green) + ρ(SWIR)

(7)

2.4. Statistical Analysis

A total of 1000 randomly selected points was used as our sample points. The sample points were
created using the ArcMap software [47], and they are identical for the four years. Table 1 shows the
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summary statistics of the SUHI and biophysical variables based on all sample points in the study
region. The mean SUHI intensity based on the sample points increased from −1.11 ◦C in 2001 to 1.12
◦C in 2016, indicating a continuous increase in the average SUHI over the 15 years.

Table 1. Descriptive statistics of the surface urban heat island (SUHI) intensity and biophysical variables
for years 2001, 2006, 2011, and 2016.

2001 2006 2011 2016

Mean StDev Mean StDev Mean StDev Mean StDev
SUHI −1.11 3.19 −0.99 3.03 −0.12 2.80 1.12 3.03
SAVI 0.02 0.15 −0.01 0.14 0.00 0.14 0.14 0.10
NDBI 0.19 0.09 0.19 0.08 0.18 0.09 −0.02 0.06

MNDWI −0.22 0.11 −0.04 0.10 −0.05 0.10 −0.04 0.07

We performed a correlation analysis to understand the bivariate relationships between the SUHI
and the biophysical indicators. A multiple regression analysis was later conducted to evaluate the
individual contribution of each biophysical variable to the SUHI while controlling for the effects of
other variables.

The GWR was performed to understand local variations and to be able to visualize the local
relationships spatially [48–50]. Mathematically, the GWR is given by:

yi = β0(ui, vi) +
∑
j=1

β j(ui, vi)xi j + εi (8)

where yi is the dependent variable, xi j is the jth independent variable at location i, and εi is a random
error term at location i. (ui, vi) are the coordinates of the observed location i and β j(ui, vi) is the
coefficient associated with the jth variable at location i.

The kernel and bandwidth are key parameters in the GWR model that affect model accuracy. We
used the adaptive Gaussian kernel because the sampling points were randomly distributed over an
irregular study area. The optimal bandwidth was determined following the golden search algorithm.
The model accuracy was evaluated using the corrected Akaike Information Criterion (AICc) [48].
Lower values of AICc indicate a better model fit. The GWR models were estimated using the GWR
4.0 [51].

2.5. Statistical Summary by LULC Type

Four LULC maps were created from the National Land Cover Dataset (NLCD) to understand
the SUHI changes in the context of urbanization in Las Vegas (Figure 2). The NLCD provides
nationwide land cover products for the United States with a 30-meter resolution [52]. Nine LULC types
were extracted for the region, including developed open space, developed low intensity, developed
medium intensity, developed high intensity, barren land (rock/sand/clay), shrub/scrub, open water,
grassland/herbaceous, and woody wetlands.

For each LULC type, we summarized the local estimates for the three biophysical indicators and
evaluated the SUHI changes in the context of rapid urbanization. The ability to generate localized
estimates and observing them under a particular regionalization scheme are distinct advantages of
local models like the GWR. Understanding how the relationships evolve over time will shed light on
better management of natural resources and the smart growth of a desert city.
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3. Results

3.1. SUHI Intensity Maps

Figure 3 shows the spatial distribution of the SUHI over Las Vegas for the four years observed. In
2001, there was an increasing trend in the SUHI from northwest to southeast of the region, with the
hottest area observed in the city of Henderson. Over the 15-year study period, there was a significant
expansion of areas with warm temperatures. By 2016, the heat island effect had greatly intensified for
the region. The average SUHI was −1.083◦C in 2001 compared with 1.187 ◦C in 2016 for the entire
study area, a 2.27 ◦C increase. Areas experiencing the most temperature increases include the Las
Vegas Strip, downtown Las Vegas, and the Boulder city at the southeast corner. For example, the mean
SUHI in downtown Las Vegas changed from 0.467 ◦C in 2001 to 3.013 ◦C in 2016. Overall, there was a
consistent increase in the SUHI across Las Vegas, with only a couple of negative SUHI pockets in 2016.
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3.2. Correlation Analysis

Table 2 shows the Pearson’s correlation between the SUHI and the biophysical indicators. For
all years, the SUHI was significantly correlated with all the variables at the 0.01 level. There was a
negative correlation between the SUHI and SAVI, and a positive correlation between the SUHI and
NDBI. For both indices, the strongest relationships were observed in 2016. A weak, albeit significant
correlation existed between the SUHI and MNDWI in 2001. It turned into a negative correlation and
became stronger in the subsequent years.

Table 2. Pearson’s r between the SUHI and biophysical indicators.

SAVI NDBI MNDWI

SUHI
2001 −0.253 ** 0.191 ** 0.091 **
2006 −0.364 ** 0.290 ** −0.152 **
2011 −0.247 ** 0.250 ** −0.159 **
2016 −0.484 ** 0.500 ** −0.285 **

** Correlation is significant at the 0.01 level (p < 0.01).

3.3. Regression Analysis

Table 3 shows the regression results for the linear regression and GWR for the four years. There
was no significant multicollinearity issue in the models based on the variance inflation factor (VIF).
From the linear regression model, there was a negative relationship between the SUHI and SAVI, and
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the relationships were statistically significant for 2001, 2006, and 2011. The NDBI was positively related
to the SUHI in 2001, which turned into negative in 2006, although the relationship was only marginally
significant. The MNDWI was found to be significant for all years, but the direction of the relationship
varied from year to year. A positive association was found in 2001 and 2011, and a negative association
was observed in 2006 and 2016. The model failed to provide a very good fit for the data with an
adjusted R2 ranging from 0.07 to 0.30. Overall, the results of the global linear regression were unstable
and inconclusive, which calls for the need of a local estimation.

Table 3. Summary of parameter estimates and diagnostics for the linear regression and geographically
weighted regression (GWR) for 2001, 2006, 2011, and 2016.

2001 Linear Regression GWR

β S.E. a p-value VIF Mean β b S.D. c

SAVI −1.85 1.34 0.167 4.12 −5.92 16

NDBI 6.78 2.3 0.003 4.8 −0.56 26.23

MNDWI 4.71 1.5 0.002 2.65 −.28 15.91

Diagnostics

AICc 4992.78 4203.26

Adjusted R2 0.07 0.618

Bandwidth 1000 75.77

2006 Linear regression GWR

β S.E. a p-value VIF Mean β b S.D. c

SAVI −8.72 1.33 <0.001 3.75 −6.83 9.2

NDBI −1.96 3.56 0.038 9.59 4.93 19.51

MNDWI −7.64 2.54 <0.001 6.43 −0.33 13.82

Diagnostics

AICc 5046.54 4400.50

Adjusted R2 0.156 0.607

Bandwidth 1000 68.22

2011 Linear regression GWR

β S.E. a p-value VIF Mean β b S.D. c

SAVI −3.98 1.16 <0.001 3.92 −5.15 9.37

NDBI 6.03 2.93 0.623 9.25 1.61 20.02

MNDWI 3.6 2.14 0.016 5.92 1.51 16.29

Diagnostics

AICc 4654.97 4063.12

Adjusted R2 0.100 0.557

Bandwidth 1000 69.93

2016 Linear regression GWR

β S.E. a p-value VIF Mean β b S.D. c

SAVI −12.32 1.62 <0.001 4.43 −11.41 15.26

NDBI 4.31 3.71 0.247 8.8 1.93 24.129

MNDWI −8.66 2.66 0.001 5.15 −2.11 17.48

Diagnostics

AICc 4648.89 4076.65

Adjusted R2 0.3 0.665

Bandwidth 1000 52.77
a S.E. is the standard error of the global parameter estimates; b Mean β is the averaged local estimates; c S.D. is the
standard deviation of the local parameter estimates.

While the OLS creates global estimates for the entire region, the GWR generates a set of spatially
varying estimates specific to a region defined by the local model. Table 3 lists the mean (Mean β) and
standard deviation (S.D.) calculated based on all the local estimates. From the model diagnostics, the
GWR achieved a significant improvement in model performance compared with the OLS, bringing the
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mean adjusted R2 from 0.157 to 0.612. The averaged AICc for the OLS was 4835.8, which decreased to
4185.88 with the GWR. Local processes were identified by the GWR through much smaller bandwidths
in models for all years, which represented very localized spatial relationships between SUHI intensity
and biophysical parameters.

3.4. Spatial Patterns of the GWR Estimates

Figures 4–6 show the locations and values of local estimates for the four years for SAVI, NDBI, and
MNDWI, respectively. Only significant estimates were plotted (p < 0.05). From Figure 4, significant
points were mostly found near Las Vegas Strip and Las Vegas downtown in all four years. Consistent
with the correlation and global regression analysis, we found an intensifying relationship between
the SAVI and SUHI intensity with more significant locations observed in 2016 than 2011. While only
negative associations were found with global models, positive associations were identified for a few
places in 2001, which turned non-significant or negative in the later years. The stronger relationship
was not only supported by the increased number of significant locations, but also the size of the
estimates. Two of the three clusters of positive places in 2001 disappeared in 2006, and the one located
in Spring Valley turned into a negative cluster extending to the Strip in 2006 and 2011. The negative
relationship continued to dominate the region, with a significant increase in both the number of places
with negative estimates and the magnitude of the estimates.
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Figure 5. Spatial pattern of the normalized difference built-up index (NDBI) estimates from the GWR
for four years in Las Vegas.

A mix of positive and negative estimates was found in the relationship between the SUHI and
NDBI (Figure 5). We observe significant positive associations in North Las Vegas in 2001, the area of
which shrank gradually over the 15 years, leaving only a few clusters here and there in the region
in 2016. Negative relationships were mainly found near the Strip and the Boulder City. While the
intensity of positive and negative associations varied from year to year, the number of points with
significant estimates had declined for both positive and negative relationships.

Figure 6 shows a combination of positive and negative relationships between the SUHI and
MNDWI, with positive estimates in North Las Vegas and negative ones clustered in the middle and
southeastern parts of the region. There was a decline in the number of positive estimates, while the
number of negative estimates remained stable throughout the 15 years. Note that due to the low
presence of the water body in the region, the estimates at non-water locations appeared to be spurious.
Consistently negative estimates, however, were found near Lake Las Vegas and Boulder City.
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Figure 6. Spatial pattern of the modified normalized difference water index (MNDWI) estimates from
the GWR for four years in Las Vegas.

3.5. Summarized Estimates by LULC Types

Table 4 shows the averaged local estimates by major LULC types in the city. We excluded the
statistics for the MNDWI because the areas of open water were very small in the LULC types examined.
The impact of the vegetation index was negative consistently through all LULC types across all years.
The LULC type with the strongest SAVI-SUHI association was shrub/scrub in 2001, 2011, and 2016,
and barren land in 2006. The relationships for the NDBI were positive for all LULC types except for
medium/high-intensity developed areas and shrub/scrub. The strongest negative relationship with the
NDBI occurred in high intensity developed land in 2001 and 2006, and shrub/scrub in 2011 and 2016.
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Table 4. Averaged coefficient estimates by land use land cover (LULC) type for 2001, 2006, 2011,
and 2016.

2001 2006 2011 2016

SAVI NDBI SAVI NDBI SAVI NDBI SAVI NDBI
Open Space −4.34 2.92 −17.98 38.03 −11.65 10.67 −20.57 16.86

Low Intensity −6.08 0.70 −17.53 12.13 −11.70 9.32 −21.97 7.04
Medium Intensity −10.27 −12.83 −17.68 12.55 −13.23 −5.35 −20.55 12.58

High Intensity −11.02 −17.57 −17.20 −11.98 −11.59 −5.45 −21.20 −2.74
Barren Land −0.18 15.62 −19.20 31.44 −7.65 21.12 −15.72 2.14
Shrub/Scrub −20.94 −3.66 −17.81 11.00 −21.96 −23.38 −28.25 −21.99

4. Discussion

4.1. Effects of Land Cover Features on SUHI

Our statistical analyses show that the SUHI was closely associated with the biophysical variables
examined in this study, representing the close relationships between the SUHI and vegetation cover,
built-up areas, and water bodies. Our results further confirm the effectiveness of using GWR models
to understand and identify relationships at a local scale.

Our results confirm the findings from previous studies that green vegetation plays a positive role
in reducing the SUHI intensity [2,20,26]. In Las Vegas, the cooling impact from green vegetation has
intensified over the 15 years. This is signified by the area expansion for negative SAVI estimates and
the intensification of the negative relationship. The impact of green vegetation on the city’s thermal
environment varies for different land use zones. Unlike cities where vegetation is mostly seen in
residential areas and parks, large amounts of green spaces are planned in commercial areas in Las
Vegas for recreational and aesthetic purposes. These areas benefit most from the cooling effect brought
by green vegetation despite the hot and dry climate. There are fewer green spaces in some other
commercial areas, such as parking lots and other built-up areas. A small amount of vegetation is found
in open soil and barren lands. However, the vegetation fraction in these areas is too small to have a
significant impact on the SUHI.

The positive relationship between the SUHI intensity and built-up areas is widely
recognized [24,33,53]. Impervious surfaces such as roads, pavements, and parking lots tend to
produce a warming effect and elevate the LST [54]. This is corroborated in our study that a positive
relationship exists between the SUHI and NDBI, as indicated in the correlations and global regression
models. The visualization from the GWR models, however, identifies several places with significantly
negative relationships, notably in the Strip and Boulder City. The negative estimates indicate a cooling
effect from manmade features, which can be attributed to the following factors. Most rooftops in
the built-up areas are composed of bright-color building materials with high albedo and low heat
retention, which are associated with lower surface temperatures. Certain cooling systems such as air
conditioning, fountains, and misting systems at the restaurant may provide additional cooling to the
built-up environment. The high-rise buildings located on the Strip are landmarks of the city. These
tall buildings not only attract tourists worldwide but also provide shades that significantly lower the
surface temperatures. Negative relationships were also observed in low-intensity residential areas.
These areas are occupied with high-albedo rooftops, which contribute significantly to cooling the
surrounding areas [55].

Our results suggest that the MNDWI is an effective indicator of water bodies in Las Vegas. Aside
from extracting large water bodies like Lake Las Vegas, the MNDWI is excellent at identifying small
water bodies like ponds and swimming pools in the city (Figure 7). Our findings corroborate the
previous findings that the water body mitigates the SUHI effect [19,24]. The major cooling effect comes
from large water bodies. When large water bodies are present, they provide significant cooling to the
surrounding environment. In areas further from large water bodies, the cooling effects from small
artificial water bodies should not be ignored. As few as the number of natural water bodies in Las
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Vegas, the artificial water systems such as swimming pools and fountains can greatly relieve the heat
stress among residents and tourists, especially in the summertime.
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4.2. Urban Heat Sink

In contrast to conventional UHI studies, we identified a negative heat island effect, which is
prevalent in the northwestern part of the city (Figure 3). The negative urban heat island effect,
commonly referred to as an urban heat sink (UHS), has received the attention of UHI researchers
since the 1990s [56]. According to previous studies, a UHS is mostly found in forests, agriculture,
and other green spaces in a city [33]. The presence of the UHS in desert cities was recently discussed
by Fan et al., wherein they referred to as the oasis effect [2]. To understand the land composition of
the UHS in Las Vegas, we calculated the percentage of each LULC type in areas identified as a UHS
(negative SUHI values) (Figure 8). Low and medium intensity-developed areas constitute a significant
proportion of the UHS areas. Collectively, the two land-use types account for 42.31% of the UHS in
2001, which increases to 63.81% in 2016. The UHS is closely associated with the LULC condition in the
urban area and its rural surroundings. Because buildings and other impervious surfaces have higher
thermal inertia than open soil, built-up areas tend to have a lower rate of temperature change than the
surrounding desert lands [2]. Therefore, a UHS can be expected during the first hours of the day when
the city starts to warm up [56]. Similarly, a UHI is more likely to happen during sunset hours as the
city starts to cool down. Since both images were acquired around 10 am local time, a UHS is most
likely to occur in the developed areas.
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4.3. Effects of Urbanization on Spatiotemporal Changes of SUHI

Results show that Las Vegas has undergone rapid urbanization over the 15 years. 24.2%
of barren land was converted into developed areas (developed open space, developed low,
medium, and high-intensity areas), and 21.8% of open space was converted into developed
low/medium/high-intensity areas. With increased urban areas and intensity, 87.3% of Las Vegas
had experienced an increase in the SUHI from 2001 to 2016. Figure 9 shows the mean SUHI intensity
for major LULC types in the four years. In 2001, a UHS effect was found for all LULC types except
for shrub/scrub, where a classic SUHI effect was observed. Over the 15 years, three types of changes
occurred. For some LULC types, the UHS became smaller in size, indicating a weaker heat sink
(cooling) effect. The LULC type in this category is developed in low-intensity areas. Even though the
UHS effect was very weak, the cooling effect remained in 2016. For some other LULC types, the heat
sink was so weak that it became a heat island. Examples in this category include developed open
space, developed medium/high intensity, and barren land. Lastly, there is an increase in the SUHI score
for shrub/scrub, showing an enhanced heat island effect. As discussed before, buildings can help lower
surface temperatures in many ways. This is supported by the UHS scores for all three developed areas
in 2001. However, as urban intensity increases, the cooling effect is largely offset by the warming effect
from an increased number of buildings in a unit area. Comparing the results for the three types of
developed areas, warmer temperatures (smaller UHS or larger UHI) are associated with higher urban
intensity, while a UHS was observed for low-intensity developed areas for four years consistently.
Overall, rapid urbanization in Las Vegas has led to increased surface temperatures over the city, a
weakened heat sink effect, and an enhanced SUHI effect.Remote Sens. 2020, 11, x FOR PEER REVIEW 16 of 19 
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4.4. Implications for SUHI Mitigation

Based on our study, vegetation is identified as a key factor for lowering surface temperatures.
Therefore, it would be beneficial to increase the amount of green vegetation in the city by planting more
trees along roads or streets. Given the water scarcity in desert cities like Las Vegas, drought-enduring and
water-resistant vegetation would be a smarter choice, and appropriate tree locations and arrangements
need to be considered [8,9]. While manmade features are known to aggravate the SUHI in some
regions, in Las Vegas, lower surface temperatures are observed in built-up areas with moderate
intensity [20,57]. In fact, built-up areas are major contributors to a heat sink effect, with around
two-thirds of the UHS areas in low and medium intensity developed areas in 2016. In addition to
increasing the number of buildings in desert areas, the use of highly reflective cool surfaces or green
roofs would be advantageous [43,58]. Our results indicate that large water bodies help lower surface
temperatures. While planning large and contiguous water bodies is not always practical in large cities
like Las Vegas, introducing small water bodies in the form of swimming pools, artificial ponds, and
fountains can bring significant cooling effects for a desert city.

5. Conclusions

In this study, we evaluated the spatiotemporal changes of the SUHI over Las Vegas using
multi-temporal Landsat images and NLCD data. Both the OLS and GWR models were applied to
evaluate the relationships of the SUHI with a range of biophysical variables over a 15-year time period.
Compared to the global models, we observed a significant improvement in model performance with
the GWR. Our results show that vegetation and water body are essential factors for SUHI mitigation in
Las Vegas. Contrary to previous studies, the GWR models identify several regions with a negative
relationship between the SUHI and NDBI, suggesting a cooling effect of built-up areas. Further, a
UHS was identified, and a sizable proportion of the UHS was found in low and medium intensity
developed areas. As the intensity continues to increase, most heat sinks turned into heat islands. From
2001 to 2016, Las Vegas has experienced a significant increase in the LST, featured by a marked decline
of the UHS areas and a considerable expansion of the UHI areas. The urbanization over the 15 years
is the main driver of the increased surface temperatures. How to cope with the rising temperatures
associated with urbanization has always been a key challenge for urban planners and decision-makers.
Our study contributes important knowledge to this perspective by providing insightful findings and
practical guidelines for heat island adaptation and mitigation.
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