A First Approach to Aerosol Classification Using Space-Borne Measurement Data: Machine Learning-Based Algorithm and Evaluation
"> Figure 1
<p>A flow chart of the development of the aerosol classification algorithm based on a machine learning approach.</p> "> Figure 2
<p>Spatial distribution of Aerosol Robotic NETwork (AERONET) sites where AERONET (<b>a</b>) Level 1.5 and (<b>b</b>) Level 2.0 data (single-scattering albedo (SSA) and depolarization ratios at 1020 nm) were collected at an overpass time (13:30 LT) of TROPOspheric Monitoring Instrument (TROPOMI) (Sentinel-5P) and Moderate Resolution Imaging Spectroradiometer (MODIS) (Aqua) from January 2018 to July 2020. For Level 1.5, the data where aerosol optical depth (AOD) is higher than 0.4 were only collected.</p> "> Figure 3
<p>The schematic diagram of learning process via 5-fold cross-validation procedure and evaluation with test dataset.</p> "> Figure 4
<p>Example of a confusion matrix in the estimation of N classes. The term n<sub>ij</sub> denotes the number of instances classified as i by the classifier (estimated class) when they actually belong to class number j (target class). The sums of the confusion matrix elements over rows i and j are represented by n<sub>i+</sub> and n<sub>+j</sub>, respectively.</p> "> Figure 5
<p>Variable importance determined by the random forest (RF) model.</p> "> Figure 6
<p>Confusion matrix and producer’s accuracy (PA) of each aerosol for the classification of seven aerosol types (pure dust (PD), dust dominant mixed (DDM), pollution dominant mixed (PDM), strongly absorbing (SA), moderately absorbing (MA), weakly absorbing (WA), and non-absorbing (NA; sulfate)).</p> "> Figure 7
<p>Confusion matrix and producer’s accuracy (PA) of each aerosol for the classification of five aerosol types (pure dust (PD), dust dominant mixed (DDM), pollution dominant mixed (PDM), strongly absorbing (SA), and non-absorbing (NA; sulfate)).</p> "> Figure 8
<p>Confusion matrix and producer’s accuracy (PA) of each aerosol for the classification of four aerosol types (pure dust (PD), dust dominant mixed (DDM), strongly absorbing (SA), and non-absorbing (NA; sulfate)).</p> "> Figure 9
<p>Wavelength dependence of SSA at 440, 675, 870, and 1020 nm for (<b>a</b>) AERONET-based aerosol types and (<b>b</b>) RF-based aerosol types, as well as the (<b>c</b>) absolute difference in SSA for each aerosol type and (<b>d</b>) average difference in SSA. Error bars represent the standard deviation of SSA difference.</p> "> Figure 10
<p>Detection rates for various thresholds of (<b>a</b>) classified aerosol type by Lee et al. [<a href="#B8-remotesensing-13-00609" class="html-bibr">8</a>] and (<b>b</b>) classified type aerosol by Torres et al. [<a href="#B6-remotesensing-13-00609" class="html-bibr">6</a>]. The detection rate was not calculated in case that the number of data point is less than 10.</p> "> Figure 11
<p>Wavelength dependence of SSA at 440, 675, 870, and 1020 nm for (<b>a</b>) AERONET-based aerosol types and (<b>b</b>) Lee et al. [<a href="#B8-remotesensing-13-00609" class="html-bibr">8</a>]-based aerosol types, as well as the (<b>c</b>) absolute difference in SSA for each aerosol type and (<b>d</b>) average difference in SSA. Error bars represent the standard deviation of SSA difference.</p> "> Figure 12
<p>Wavelength dependence of SSA at 440, 675, 870, and 1020 nm for (<b>a</b>) AERONET-based aerosol types and (<b>b</b>) Torres et al. [<a href="#B6-remotesensing-13-00609" class="html-bibr">6</a>]-based aerosol types, as well as the (<b>c</b>) absolute difference in SSA for each aerosol type and (<b>d</b>) average difference in SSA. Error bars represent the standard deviation of SSA difference.</p> ">
Abstract
:1. Introduction
2. Variables and Data Collection
2.1. Target Variable Dataset
- (1)
- PD: 0.89 < Rd
- (2)
- DDM: 0.53 ≤ Rd ≤ 0.89
- (3)
- PDM: 0.17 ≤ Rd < 0.53
- (1)
- Non-absorbing (NA): 0.95 < SSA
- (2)
- Weakly absorbing (WA): 0.90 < SSA ≤ 0.95
- (3)
- Moderately absorbing (MA): 0.85 ≤ SSA ≤ 0.90
- (4)
- Strongly absorbing (SA): SSA < 0.85
2.2. Satellite Input Variable Candidates
3. Methods
3.1. Machine Learning Approach and Training Process
3.2. Classification Model Assessments
3.2.1. Statistical Assessment
3.2.2. Assessment Using AERONET Aerosol Optical Properties
4. Determination of the Optimal Input Variables
- (1)
- All input variable candidates (N = 4906 for Level 1.5 and 1119 for Level 2.0);
- (2)
- TROPOMI input variable candidates (N = 8693 for Level 1.5 and 1804 for Level 2.0);
- (3)
- MODIS input variable candidates (N = 5714 for Level 1.5 and 1348 for Level 2.0).
5. Results
5.1. Statistical Assessment and Classification Sensitivity of the RF Model
5.2. Evaluation of the RF Model with Aerosol Optical Properties from AERONET Data
6. Evaluation of the Threshold-Based Aerosol Classification Methods
7. Discussion
8. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bréon, F.M.; Goloub, P. Cloud droplet effective radius from spaceborne polarization measurements. Geophys. Res. Lett. 1998, 25, 1879–1882. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.; Hales, J.; Cess, R.D.; Coakley, J.J.; Hansen, J.; Hofmann, D. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Higurashi, A.; Nakajima, T. Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys. Res. lett. 2002, 29, 17-11–17-14. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Kambezidis, H. Comparison of the Ångström parameters retrieval in different spectral ranges with the use of different techniques. Meteorol. Atmos. Phys. 2008, 99, 233–246. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.; Kleidman, R. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.J.; Li, Z. Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer. J. Geophys. Res. Atmos. 2005, 110, D10S08. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, J.; Lee, H.C.; Takemura, T. Classification of aerosol type from MODIS and OMI over East Asia. Asia-Pac. J. Atmos. Sci. 2007, 43, 343–357. [Google Scholar]
- Kim, J.; Lee, J.; Lee, H.C.; Higurashi, A.; Takemura, T.; Song, C.H. Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign. J. Geophys. Res. Atmos. 2007, 112, D22S33. [Google Scholar] [CrossRef]
- Penning de Vries, M.; Beirle, S.; Hörmann, C.; Kaiser, J.; Stammes, P.; Tilstra, L.; Wagner, T. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances. Atmos. Chem. Phys. 2015, 15, 10597–10618. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Huang, C.; Chen, Q.; Zhang, H.; Yuan, Y. Satellite-based identification of aerosol particle species using a 2D-space aerosol classification model. Atmos. Environ. 2019, 219, 117057. [Google Scholar] [CrossRef]
- Chu, D.; Kaufman, Y.; Ichoku, C.; Remer, L.; Tanré, D.; Holben, B. Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett. 2002, 29, MOD2-1–MOD2-4. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Ge, J.; Huang, J. Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chin. Sci. Bull. 2013, 58, 2497–2506. [Google Scholar] [CrossRef] [Green Version]
- Thrastarson, H.T.; Manning, E.; Kahn, B.; Fetzer, E.; Yue, Q.; Wong, S.; Kalmus, P.; Payne, V.; Olsen, E. AIRS/AMSU/HSB Version 7 Level 2 Product User Guide; Jet Propulsion Laboratory: Pasadena, CA, USA, 2020.
- Lee, J.; Kim, J.; Song, C.; Kim, S.; Chun, Y.; Sohn, B.; Holben, B. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ. 2010, 44, 3110–3117. [Google Scholar] [CrossRef]
- Russell, P.; Bergstrom, R.; Shinozuka, Y.; Clarke, A.; DeCarlo, P.; Jimenez, J.; Livingston, J.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.; Thompson, A.M.; Schafer, J. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. Atmos. 2012, 117, D17203. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Sorokin, M.G.; Slutsker, I. Aerosol Robotic Network (AERONET) version 3 aerosol optical depth and inversion products. AGUFM 2017, 2017, A11O-01. [Google Scholar]
- Zo, I.-S.; Shin, S.-K. A short note on the potential of utilization of spectral AERONET-derived depolarization ratios for aerosol classification. Atmosphere 2019, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Noh, Y.; Müller, D.; Lee, K.; Kim, K.; Lee, K.; Shimizu, A.; Sano, I.; Park, C.B. Depolarization ratios retrieved by AERONET sun–sky radiometer data and comparison to depolarization ratios measured with lidar. Atmos. Chem. Phys. 2017, 17, 6271–6290. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.-K.; Tesche, M.; Noh, Y.; Müller, D. Aerosol-type classification based on AERONET version 3 inversion products. Atmos. Meas. Tech. 2019, 12, 3789–3803. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. J. Geophys. Res. Atmos. 2009, 114, D14205. [Google Scholar] [CrossRef] [Green Version]
- You, W.; Zang, Z.; Zhang, L.; Li, Z.; Chen, D.; Zhang, G. Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sens. Environ. 2015, 168, 276–285. [Google Scholar] [CrossRef]
- Choubin, B.; Abdolshahnejad, M.; Moradi, E.; Querol, X.; Mosavi, A.; Shamshirband, S.; Ghamisi, P. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. Sci. Total Environ. 2020, 701, 134474. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Shin, M.; Im, J.; Song, C.-K.; Choi, M.; Kim, J.; Lee, S.; Park, R.; Kim, J.; Lee, D.-W.; et al. Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. Atmos. Chem. Phys. 2019, 19, 1097–1113. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Lee, J.; Im, J.; Song, C.-K.; Choi, M.; Kim, J.; Lee, S.; Park, R.; Kim, S.-M.; Yoon, J. Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models. Sci. Total Environ. 2020, 713, 136516. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; De Hoogh, K.; De’Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M. Estimation of daily PM10 and PM2. 5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef]
- Han, H.J.; Sohn, B. Retrieving Asian dust AOT and height from hyperspectral sounder measurements: An artificial neural network approach. J. Geophys. Res. Atmos. 2013, 118, 837–845. [Google Scholar] [CrossRef]
- Chimot, J.; Veefkind, J.P.; Vlemmix, T.; de Haan, J.F.; Amiridis, V.; Proestakis, E.; Marinou, E.; Levelt, P.F. An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O 2-O 2 spectral band using a neural network approach. Atmos.Meas.Tech. 2017, 10, 783. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, A.; Sugimoto, N.; Matsui, I.; Arao, K.; Uno, I.; Murayama, T.; Kagawa, N.; Aoki, K.; Uchiyama, A.; Yamazaki, A. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res. Atmos. 2004, 109, D19S17. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114, D13202. [Google Scholar] [CrossRef]
- Veefkind, J.; Boersma, K.; Wang, J.; Kurosu, T.; Krotkov, N.; Chance, K.; Levelt, P. Global satellite analysis of the relation between aerosols and short-lived trace gases. Atmos. Chem. Phys. 2011, 11, 1255–1267. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.; Compernolle, S.; Eichmann, K.; de Graaf, M.; Hubert, D.; Keppens, A.; Kleipool, Q.; Langerock, B.; Sha, M.; Verhoelst, T. Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products# 06: April 2018–February 2020; Belgian Institute for Space Aeronomy: Uccle, Belgium, 2020. [Google Scholar]
- van Geffen, J.; Eskes, H.; Boersma, K.; Maasakkers, J.; Veefkind, J. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products; KNMI: De Bilt, The Netherlands, 2019. [Google Scholar]
- Feng, T.; Bei, N.; Zhao, S.; Wu, J.; Li, X.; Zhang, T.; Cao, J.; Zhou, W.; Li, G. Wintertime nitrate formation during haze days in the Guanzhong basin, China: A case study. Environ. Poll. 2018, 243, 1057–1067. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM 2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Wang, S.; Liu, H.; Xu, J.; Fu, K.; Klimont, Z.; Hao, J.; He, K.; Cofala, J.; Amann, M. NOx emissions in China: Historical trends and future perspectives. Atmos. Chem. Phys. 2013, 13, 9869–9897. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.-Y.; Cao, F.; Fan, M.-Y.; Zhang, W.-Q.; Zhai, X.-Y.; Wang, Q.; Zhang, Y.-L. Coal and biomass burning as major emissions of NOX in Northeast China: Implication from dual isotopes analysis of fine nitrate aerosols. Atmos. Environ. 2020, 242, 117762. [Google Scholar] [CrossRef]
- Chen, F.; Lao, Q.; Jia, G.; Chen, C.; Zhu, Q.; Zhou, X. Seasonal variations of nitrate dual isotopes in wet deposition in a tropical city in China. Atmos. Environ. 2019, 196, 1–9. [Google Scholar] [CrossRef]
- Elliott, E.M.; Kendall, C.; Wankel, S.D.; Burns, D.A.; Boyer, E.; Harlin, K.; Bain, D.J.; Butler, T. Nitrogen isotopes as indicators of NO x source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States. Environ. Sci. Tech. 2007, 41, 7661–7667. [Google Scholar] [CrossRef] [PubMed]
- Elliott, E.M.; Yu, Z.; Cole, A.S.; Coughlin, J.G. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing. Sci. Total Environ. 2019, 662, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.-Y.; Zhang, Y.-L.; Lin, Y.-C.; Chang, Y.-H.; Cao, F.; Zhang, W.-Q.; Hu, Y.-B.; Bao, M.-Y.; Liu, X.-Y.; Zhai, X.-Y. Isotope-based source apportionment of nitrogen-containing aerosols: A case study in an industrial city in China. Atmos. Environ. 2019, 212, 96–105. [Google Scholar] [CrossRef]
- Theys, N.; Smedt, I.D.; Yu, H.; Danckaert, T.; Gent, J.V.; Hörmann, C.; Wagner, T.; Hedelt, P.; Bauer, H.; Romahn, F. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis. Atmos. Meas. Tech. 2017, 10, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, R.; Kondragunta, S.; Stenchikov, G.; Civerolo, K.; Doddridge, B.; Holben, B. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 1997, 278, 827–830. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Chen, L.; Wang, Z.; Wang, J.; Che, H.; Xu, X.; Wang, W.; Tao, J.; Zhu, H.; Hou, C. Evaluation of MODIS Deep Blue aerosol algorithm in desert region of East Asia: Ground validation and intercomparison. J. Geophys. Res. Atmos. 2017, 122, 10357–310368. [Google Scholar] [CrossRef]
- Wu, S.; Mickley, L.J.; Kaplan, J.; Jacob, D.J. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos. Chem. Phys. 2012, 12, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liao, H. Impacts of land use and land cover changes on biogenic emissions of volatile organic compounds in China from the late 1980s to the mid-2000s: Implications for tropospheric ozone and secondary organic aerosol. Tellus B 2014, 66, 24987. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. 2019, 9, e1301. [Google Scholar] [CrossRef] [Green Version]
- Jager, G.; Benz, U. Measures of classification accuracy based on fuzzy similarity. IEEE T. Geosci. Remote 2000, 38, 1462–1467. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Bergstrom, R.W.; Russell, P.B.; Hignett, P. Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. J. Atmos. Sci. 2002, 59, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; Tanaka, T.Y.; Uchiyama, A.; Chiba, M.; Mikami, M.; Yabuki, S.; Key, J.R. Sensitivity experiments of direct radiative forcing caused by mineral dust simulated with a chemical transport model. J. Meteorol. Soc. Jpn. 2005, 83, 315–331. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Lacis, A.A. Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures. J. Geophys. Res. Atmos. 2015, 120, 2037–2052. [Google Scholar] [CrossRef]
- Meloni, D.; Di Sarra, A.; Pace, G.; Monteleone, F. Aerosol optical properties at Lampedusa (Central Mediterranean). 2. Determination of single scattering albedo at two wavelengths for different aerosol types. Atmos. Chem. Phys. 2006, 6, 715–727. [Google Scholar] [CrossRef] [Green Version]
Sensor (Mission) | Product (Level) | Variables | Notes |
---|---|---|---|
TROPOMI (Sentinel-5P) | AI (L2) | Aerosol index | A qualitative measure indicating the presence of absorbing aerosols |
Solar zenith angle | The angle between the zenith and the sun | ||
CO (L2) | CO column amount | The number of molecules of CO from the surface to top of atmosphere per unit area | |
NO2 (L2) | Tropospheric NO2 column density | The number of molecules of NO2 from the surface to top of the troposphere per unit area | |
MODIS (Aqua) | MYD04 (L2) | Aerosol optical depth | A measure of the extinction of the solar radiance by aerosols |
Ångström exponent | A power law relationship with AOD An indicator of particle size | ||
TOA reflectance (deep blue; 412, 470 and 660 nm) | A ratio of reflected radiance to the incident solar radiance | ||
MCD12C1 (L3) | Land cover type | Major land cover type among land classes (annual) | |
Percent of urban area | A ratio of urban area (annual) |
Initial Input Variable Sets | ||||||
---|---|---|---|---|---|---|
Dataset Name | Input Variables | AERONET Data Level | The Number of Data | OA (%) | ||
Total | Training (60%) | Test (40%) | ||||
All input variable candidates (11 variables) | TROPOMI
| Level 1.5 | 4906 | 2946 | 1960 | 59% |
Level 2.0 | 1119 | 674 | 445 | 58% | ||
TROPOMI input variable candidates (4 variables) |
| Level 1.5 | 8693 | 5218 | 3475 | 51% |
Level 2.0 | 1804 | 1086 | 718 | 53% | ||
MODIS input variable candidates (7 variables) |
| Level 1.5 | 5714 | 3432 | 2282 | 56% |
Level 2.0 | 1348 | 812 | 536 | 52% |
Optimal Input Variable Set | |||||
---|---|---|---|---|---|
Input Variables | AERONET Data Level | The Number of Data | OA (%) | ||
Total | Training (60%) | Test (40%) | |||
TROPOMI
| Level 1.5 | 4906 | 2946 | 1960 | 59% |
Seven Aerosol Classes (PD, DDM, PDM, SA, MA, WA, and NA (Sulfate)) | Four Aerosol Classes (PD, DDM, SA, and NA (Sulfate)) | |||
---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | |
SSA440 | 0.007 | 0.006 | 0.002 | 0.003 |
SSA675 | 0.008 | 0.009 | 0.004 | 0.005 |
SSA870 | 0.010 | 0.011 | 0.005 | 0.007 |
SSA1020 | 0.012 | 0.012 | 0.006 | 0.008 |
FMF | 0.027 | 0.020 | 0.005 | 0.006 |
Rd | 0.047 | 0.016 | 0.016 | 0.019 |
Overall accuracy | 59% | 73% |
Method | Variables | Classified Aerosol Types | AERONET-Based Aerosol Types |
---|---|---|---|
Lee et al. [8] | Aerosol index AE AOD | Smoke | SA and MA |
Dust | PD and DDM | ||
Sulfate, Seasalt+Sulfate | WA and NA (sulfate) | ||
Seasalt | They were not compared due to small number of classified cases (less than 10) | ||
Dust+Smoke | |||
Torres et al. [6] | Aerosol index CO | Carbonaceous | SA and MA |
Dust | PD and DDM | ||
Sulfate | WA and NA (sulfate) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Lee, H.; Park, J. A First Approach to Aerosol Classification Using Space-Borne Measurement Data: Machine Learning-Based Algorithm and Evaluation. Remote Sens. 2021, 13, 609. https://doi.org/10.3390/rs13040609
Choi W, Lee H, Park J. A First Approach to Aerosol Classification Using Space-Borne Measurement Data: Machine Learning-Based Algorithm and Evaluation. Remote Sensing. 2021; 13(4):609. https://doi.org/10.3390/rs13040609
Chicago/Turabian StyleChoi, Wonei, Hanlim Lee, and Jeonghyeon Park. 2021. "A First Approach to Aerosol Classification Using Space-Borne Measurement Data: Machine Learning-Based Algorithm and Evaluation" Remote Sensing 13, no. 4: 609. https://doi.org/10.3390/rs13040609
APA StyleChoi, W., Lee, H., & Park, J. (2021). A First Approach to Aerosol Classification Using Space-Borne Measurement Data: Machine Learning-Based Algorithm and Evaluation. Remote Sensing, 13(4), 609. https://doi.org/10.3390/rs13040609