GC–MS Characterization and Bioactivity Study of Eucalyptus globulus Labill. (Myrtaceae) Essential Oils and Their Fractions: Antibacterial and Antioxidant Properties and Molecular Docking Modeling
<p>GC–MS chromatogram of <span class="html-italic">Eucalyptus globulus</span> EO and its fractions.</p> "> Figure 1 Cont.
<p>GC–MS chromatogram of <span class="html-italic">Eucalyptus globulus</span> EO and its fractions.</p> "> Figure 2
<p>Predominant volatile components in <span class="html-italic">E. globulus</span> essential oil and its fractions.</p> "> Figure 3
<p>Comparative analysis of inhibition zones of essential oil and its fractions (F1, F2, F3) against various strains of microorganisms; “****” for <span class="html-italic">p</span> < 0.0001 (highly significant),“ ***” for <span class="html-italic">p</span> < 0.001,“ **” for <span class="html-italic">p</span> < 0.01, “ *” for <span class="html-italic">p</span> < 0.05,“ ns” for not significant.</p> "> Figure 4
<p>2D diagram of the interaction between the human peroxiredoxin 5 receptor (PRDX5, PDB ID: 1H2D) and the selected volatile oil compounds. 1: eucalyptol; 2: α-pinene; 3: cryptone; 4: o-cymene; 5: p-cymen-2-ol; 6: terpinen-4-ol.</p> "> Figure 4 Cont.
<p>2D diagram of the interaction between the human peroxiredoxin 5 receptor (PRDX5, PDB ID: 1H2D) and the selected volatile oil compounds. 1: eucalyptol; 2: α-pinene; 3: cryptone; 4: o-cymene; 5: p-cymen-2-ol; 6: terpinen-4-ol.</p> "> Figure 5
<p>2D diagram of the interaction of DNA gyrase from <span class="html-italic">E. coli</span> with the selected volatile oil compounds. 1: eucalyptol; 2: α-pinene; 3: cryptone; 4: o-cymene; 5: p-cymen-2-ol; 6: terpinen-4-ol.</p> "> Figure 5 Cont.
<p>2D diagram of the interaction of DNA gyrase from <span class="html-italic">E. coli</span> with the selected volatile oil compounds. 1: eucalyptol; 2: α-pinene; 3: cryptone; 4: o-cymene; 5: p-cymen-2-ol; 6: terpinen-4-ol.</p> "> Figure 6
<p>2D diagram of the interaction of DNA gyrase from <span class="html-italic">Staphylococcus aureus</span> with the selected volatile oil compounds. The compounds include the following: 1: eucalyptol; 2: α-pinene; 3: cryptone; 4: o-cymene; 5: p-cymen-2-ol; 6: terpinen-4-ol.</p> "> Figure 6 Cont.
<p>2D diagram of the interaction of DNA gyrase from <span class="html-italic">Staphylococcus aureus</span> with the selected volatile oil compounds. The compounds include the following: 1: eucalyptol; 2: α-pinene; 3: cryptone; 4: o-cymene; 5: p-cymen-2-ol; 6: terpinen-4-ol.</p> "> Figure 7
<p>2D diagram of the interaction of the OmpA-like protein of <span class="html-italic">Acinetobacter baumannii</span> with the selected volatile oil compounds. 1: eucalyptol; 2: α-pinene; 3: cryptone; 4: o-cymene; 5: p-cymen-2-ol; 6: terpinen-4-ol.</p> "> Figure 7 Cont.
<p>2D diagram of the interaction of the OmpA-like protein of <span class="html-italic">Acinetobacter baumannii</span> with the selected volatile oil compounds. 1: eucalyptol; 2: α-pinene; 3: cryptone; 4: o-cymene; 5: p-cymen-2-ol; 6: terpinen-4-ol.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Eucalyptus globulus Essential Oil and Its Fractions
2.2. Antioxidant Properties
2.3. Antibacterial Activity
2.4. Molecular Docking
2.4.1. Human Peroxiredoxin 5 Enzyme PRDX5 (PDB ID: 1H2D)
2.4.2. For the DNA Gyrase from E. coli (PDB ID: 3G7B)
2.4.3. For the DNA Gyrase from S. aureus (PDB ID: 6F86)
2.4.4. For the OmpA-like Protein of A. Baumannii (PDB ID: 3TD3)
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material and Extraction of the Essential Oil
3.3. Fractionation of Essential Oil
3.4. GC–MS Analysis
3.5. Determination of Antioxidant Activity
3.5.1. Free Radical Scavenging Activity of DPPH
3.5.2. ABTS Free Radical Scavenging Activity
3.5.3. Ferric Reducing Antioxidant Power Test (FRAP)
3.6. In Vitro Antimicrobial Activity
3.6.1. Microorganisms Studied
3.6.2. Disk Diffusion Method
3.6.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.7. Molecular Docking Study
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, H.D.; Laxmidhar, S. A Review on Phytochemical and Pharmacological of Eucalyptus globulus: A Multipurpose Tree. Int. J. Res. Ayurveda Pharm. 2011, 2, 1527–1530. [Google Scholar]
- Benjamin, R. Matisse at the Senya El Hashti: Diplomacy and Decoration in an Anglo-Moroccan Garden. Art Bull. 2019, 101, 66–87. [Google Scholar] [CrossRef]
- Ménager, H. Voyages D’études Forestières et Agricoles Dans L’hémisphère Sud; Papy, L. (Compte-rendu); Les Cahiers d’Outre-Mer: Bordeaux, France, 1951; p. 185. [Google Scholar]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Almas, I.; Innocent, E.; Machumi, F.; Kisinza, W. Chemical Composition of Essential Oils from Eucalyptus globulus and Eucalyptus maculata Grown in Tanzania. Sci. Afr. 2021, 12, e00758. [Google Scholar] [CrossRef]
- Goldbeck, J.C.; Do Nascimento, J.E.; Jacob, R.G.; Fiorentini, Â.M.; Da Silva, W.P. Bioactivity of Essential Oils from Eucalyptus globulus and Eucalyptus urograndis against Planktonic Cells and Biofilms of Streptococcus mutans. Ind. Crops Prod. 2014, 60, 304–309. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus Essential Oil as a Natural Pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Bey-Ould Si Said, Z.; Haddadi-Guemghar, H.; Boulekbache-Makhlouf, L.; Rigou, P.; Remini, H.; Adjaoud, A.; Khoudja, N.K.; Madani, K. Essential Oils Composition, Antibacterial and Antioxidant Activities of Hydrodistillated Extract of Eucalyptus globulus Fruits. Ind. Crops Prod. 2016, 89, 167–175. [Google Scholar] [CrossRef]
- Ait-Ouazzou, A.; Lorán, S.; Bakkali, M.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Chemical Composition and Antimicrobial Activity of Essential Oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J. Sci. Food Agric. 2011, 91, 2643–2651. [Google Scholar] [CrossRef]
- Asgari, M.; Kazemi, M.; Sourastani, M.; Sharififard, M. Chemical Analysis of Eucalyptus and Rosemary Essential Oils Using Gas Chromatography-Mass Spectrometry (GC-MS) and Evaluation of Their Toxicity Against the Most Common Urban Pest. Anal. Methods Environ. Chem. J. 2023, 6, 89–102. [Google Scholar] [CrossRef]
- Hafsa, J.; Smach, M.; Ben Khedher, M.R.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Physical, Antioxidant and Antimicrobial Properties of Chitosan Films Containing Eucalyptus Globulus Essential Oil. LWT—Food Sci. Technol. 2015, 68, 356–364. [Google Scholar] [CrossRef]
- Harkat-Madouri, L.; Asma, B.; Madani, K.; Said, Z.B.-O.S.; Rigou, P.; Grenier, D.; Allalou, H.; Remini, H.; Adjaoud, A.; Boulekbache-Makhlouf, L. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil of Eucalyptus globulus from Algeria. Ind. Crops Prod. 2015, 78, 148–153. [Google Scholar] [CrossRef]
- Vilela, G.R.; de Almeida, G.S.; D’Arce, M.A.B.R.; Moraes, M.H.D.; Brito, J.O.; da Silva, M.F.d.G.; Silva, S.C.; de Stefano Piedade, S.M.; Calori-Domingues, M.A.; da Gloria, E.M. Activity of Essential Oil and Its Major Compound, 1,8-Cineole, from Eucalyptus globulus Labill., against the Storage Fungi Aspergillus Flavus Link and Aspergillus Parasiticus Speare. J. Stored Prod. Res. 2009, 45, 108–111. [Google Scholar] [CrossRef]
- Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical Composition, Antioxidant, Antibacterial and Anti-Quorum Sensing Activities of Eucalyptus globulus and Eucalyptus Radiata Essential Oils. Ind. Crops Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Čmiková, N.; Galovičová, L.; Schwarzová, M.; Vukic, M.D.; Vukovic, N.L.; Kowalczewski, P.Ł.; Bakay, L.; Kluz, M.I.; Puchalski, C.; Kačániová, M. Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. Plants 2023, 12, 1076. [Google Scholar] [CrossRef] [PubMed]
- Kokkini, S.; Karousou, R.; Dardioti, A.; Krigas, N.; Lanaras, T. Autumn Essential Oils of Greek Oregano. Phytochemistry 1997, 44, 883–886. [Google Scholar] [CrossRef]
- Tarantilis, P.A.; Polissiou, M.G. Isolation and Identification of the Aroma Components from Saffron (Crocus sativus). J. Agric. Food Chem. 1997, 45, 459–462. [Google Scholar] [CrossRef]
- Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of Antioxidative, Chelating, and DNA-Protective Effects of Selected Essential Oil Components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of Plants and Intact Rosmarinus officinalis Oil. J. Agric. Food Chem. 2014, 62, 6632–6639. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical Composition, Antioxidant and Antifungal Potential of Melaleuca Alternifolia (Tea Tree) and Eucalyptus globulus Essential Oils against Oral Candida Species. J. Med. Plants Res. 2011, 5, 4147–4156. [Google Scholar]
- Singh, H.P.; Kaur, S.; Negi, K.; Kumari, S.; Saini, V.; Batish, D.R.; Kohli, R.K. Assessment of in vitro Antioxidant Activity of Essential Oil of Eucalyptus Citriodora (Lemon-Scented Eucalypt; Myrtaceae) and Its Major Constituents. LWT—Food Sci. Technol. 2012, 48, 237–241. [Google Scholar] [CrossRef]
- Göger, G.; Karaca, N.; Altınbaşak, B.B.; Demirci, B.; Demirci, F. In Vitro Antimicrobial, Antioxidant and Anti-Inflammatory Evaluation of Eucalyptus globulus Essential Oil. Nat. Volatiles Essent. Oils 2020, 7, 1–11. [Google Scholar]
- Pombal, S.; Rodilla, J.; Gomes, A.; Silva, L.; Rocha, P. Evaluation of the Antibacterial Activity of the Essential Oil and Antioxidant Activity of Aqueous Extracts of the Eucalyptus globulus Labill. Leaves. Glob. Adv. Res. J. Agric. Sci. 2014, 3, 356–366. [Google Scholar]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Walid, K.; Mohamed, S.B. Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin. Int. Lett. Chem. Phys. Astron. 2014, 36, 303–315. [Google Scholar] [CrossRef]
- Nasir Shah, S.; Khan, I.; Tul Muntaha, S.; Hayat, A.; Ur Rehman, M.; Ali Shah, T.; Siddique, F.; Salamatullah, A.M.; Mekonnen, A.B.; Bourhia, M. Bioactive, Antioxidant and Antimicrobial Properties of Chemically Fingerprinted Essential Oils Extracted from Eucalyptus globulus: In-Vitro and In-Silico Investigations. Front. Chem. 2023, 11, 1287317. [Google Scholar] [CrossRef]
- El Guerrouj, B.; Taibi, M.; Elbouzidi, A.; Bouhassoun, S.; Loukili, E.H.; Moubchir, T.; Haddou, M.; Hammouti, Y.; Khoulati, A.; Addi, M. The Effect of Altitude on the Chemical Composition, Antioxidant and Antimicrobial Activities of Eucalyptus globulus Labill. Essential Oils. Trop. J. Nat. Prod. Res. 2023, 7, 5279–5285. [Google Scholar] [CrossRef]
- Assaggaf, H.M.; Naceiri Mrabti, H.; Rajab, B.S.; Attar, A.A.; Hamed, M.; Sheikh, R.A.; Omari, N.E.; Menyiy, N.E.; Belmehdi, O.; Mahmud, S.; et al. Singular and Combined Effects of Essential Oil and Honey of Eucalyptus globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and In Vivo Findings. Molecules 2022, 27, 5121. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of essential oil components by Gas Chromatography-/Mass Spectrometry. Allured Publ. Corp. 2007, 456, 544–545. [Google Scholar]
- Şahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H. Biological Activities of the Essential Oils and Methanol Extract of Origanum vulgare ssp. Vulgare in the Eastern Anatolia Region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Pukalskas, A.; van Beek, T.A.; Venskutonis, R.P.; Linssen, J.P.; van Veldhuizen, A.; de Groot, Æ. Identification of Radical Scavengers in Sweet Grass (Hierochloe odorata). J. Agric. Food Chem. 2002, 50, 2914–2919. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on Products of Browning Reaction Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Oubihi, A.; Ouryemchi, I.; Nounah, I.; Tarfaoui, K.; Harhar, H.; Ouhssine, M.; Guessous, Z. Chemical Composition, Antibacterial and Antifungal Activities of Thymus Leptobotrys Murb Essential Oil. Adv. Tradit. Med. 2020, 20, 673–679. [Google Scholar] [CrossRef]
- Nasri, C.; Halabi, Y.; Aghzaf, S.; Nounah, I.; Brunel, M.; Oubihi, A.; El-Guorrami, O.; Harhar, H.; Costa, J.; Tabyaoui, M. Seven Persea Americana Varieties Essential Oils Comparison: Chemical Composition, Toxicity, Antibacterial, and Antioxidant Activities. Biocatal. Agric. Biotechnol. 2022, 44, 102468. [Google Scholar] [CrossRef]
- Yohanes, R.; Geremew, T.; Tafese, T.; Endale Annisa, M. Antibacterial and Antioxidant Activity of Compounds from Citrus Sinensis Peels and in Silico Molecular Docking Study. Int. J. Second. Metab. 2023, 10, 437–458. [Google Scholar] [CrossRef]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antioxidant Activities of a New Chemotype of Piper cubeba L. Fruit Essential Oil (Methyleugenol/Eugenol): In Silico Molecular Docking and ADMET Studies. Plants 2020, 9, 1534. [Google Scholar] [CrossRef]
- Chkirate, K.; Akachar, J.; Hni, B.; Hökelek, T.; Anouar, E.H.; Talbaoui, A.; Mague, J.T.; Sebbar, N.K.; Ibrahimi, A.; Essassi, E.M. Synthesis, Spectroscopic Characterization, Crystal Structure, DFT, ESI-MS Studies, Molecular Docking and In Vitro Antibacterial Activity of 1,5-Benzodiazepin-2-One Derivatives. J. Mol. Struct. 2022, 1247, 131188. [Google Scholar] [CrossRef]
- Assila, H.; Brandán, S.A.; Mortada, S.; Zaoui, Y.; Alzahrani, A.Y.A.; Arshad, S.; Ramli, Y.; Faouzi, M.E.A.; Karrouchi, K.; Ansar, M. Pyridazine Derivative as Potent Antihyperglycemic Agent: Synthesis, Crystal Structure, α-Amylase and α-Glucosidase Inhibition and Computational Studies. J. Mol. Struct. 2024, 1308, 138145. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Dassault Systemes. BIOVIA Discovery Studio Visualizer 2016; Dassault Systemes: San Diego, CA, USA, 2016. [Google Scholar]
- Nagare, S.; Lokhande, K.B.; Swamy, K.V. Docking and Simulation Studies on Cyclin D/CDK4 Complex for Targeting Cell Cycle Arrest in Cancer Using Flavanone and Its Congener. J. Mol. Model. 2023, 29, 90. [Google Scholar] [CrossRef]
N.pic | Compounds | RT (min) | * RI Retention Indices | RI Retention Index Libraries | Similarity Index (%) | Relative Percentage of Eucalyptus globulus and Its Fractions | |||
---|---|---|---|---|---|---|---|---|---|
CEO | (F1) | (F2) | (F3) | ||||||
1 | α-Thujene | 7.659 | 902 | 938 | 96 | - | 1.30 | - | - |
2 | α-Pinene | 7.891 | 948 | 939 | 97 | 4.15 | 2.46 | - | - |
3 | β-Pinene | 9.178 | 943 | 981 | 96 | 0.86 | - | - | - |
4 | Octamethylcyclotetrasiloxane | 9.290 | 827 | - | 93 | - | - | - | 2.97 |
5 | β-Myrcene | 9.489 | 958 | 992 | 95 | 1.51 | - | - | - |
6 | p-Cymene | 10.573 | 1042 | 1027 | 95 | 8.11 | 24.35 | 19.86 | 6.89 |
7 | Limonene | 10.700 | 1018 | 1033 | 92 | - | 2.96 | - | - |
8 | Eucalyptol | 10.888 | 1059 | 1030 | 94 | 62.32 | 42.60 | 34.99 | 10.65 |
9 | γ-Terpinene | 11.588 | 998 | 1074 | 96 | 3.51 | - | - | - |
10 | Linalool | 12.784 | 1082 | 1100 | 95 | - | 1.79 | 2.31 | - |
11 | p-Menth-2-en-1-ol | 13.557 | 1109 | 1108 | 93 | - | - | 0.97 | - |
12 | Decamethylcyclopentasiloxane | 13.910 | - | - | - | - | - | - | 31.70 |
13 | Terpinen-4-ol | 15.241 | 1137 | 1179 | 94 | 2.43 | 4.82 | 8.47 | - |
14 | Cryptone | 15.388 | 1069 | 1156 | 93 | - | 13.10 | 15.95 | 7.10 |
15 | α-Fenchol | 15.651 | 1138 | 1140 | 95 | 3.83 | - | 3.11 | - |
16 | Cuminal | 16.984 | 1230 | 1224 | 95 | - | 3.20 | - | - |
17 | Phellandral | 17.995 | 1175 | 1252 | 93 | - | 1.42 | 3.39 | - |
18 | p-Cymen-7-ol | 18.340 | 1284 | 1274 | 91 | - | 1.40 | 6.23 | - |
19 | p-Cymen-2-ol | 18.524 | 1262 | 1200 | 92 | - | - | 1.19 | 7.02 |
20 | Dodecamethylcyclohexasiloxane | 18.693 | - | - | - | - | - | - | 23.2 |
21 | Allo-aromandendrene | 22.360 | 1386 | 1461 | 95 | 1.54 | - | - | - |
22 | (E)-β-caryophyllene | 22.904 | 1494 | 1467 | 94 | 0.81 | - | - | - |
23 | Tetradecamethylcycloheptasiloxane | 23.024 | - | - | - | - | - | - | 6.1 |
24 | β-Nerolidol | 25.368 | 1564 | 1565 | 97 | 1.78 | - | - | - |
25 | Globulol | 26.244 | 1530 | 1576 | 92 | 5.9 | - | - | - |
26 | Spathulenol | 26.501 | 1570 | 1619 | 94 | 1.59 | - | 2.26 | - |
27 | Rosifoliol | 27.349 | 1598 | 1600 | 87 | 0.85 | - | - | - |
28 | Hexadecamethylcyclooctasiloxane | 27.495 | - | - | - | - | - | - | 3.37 |
29 | Cryptomeridiol | 28.205 | 1738 | - | 88 | 0.65 | - | - | - |
Total identified (%) | - | - | 99.84 | 99.4 | 98.73 | 99.1 |
EO, Fractions, and Standards | DPPH IC50 (μg/mL) | ABTS IC50 (μg/mL) | FRAP EC50 (μg/mL) |
---|---|---|---|
CEO | ND | ND | 22,402.20 ± 64.58 f |
F1 | ND | ND | 1054.93 ± 8.95 g |
F2 | ND | 9979.31 ± 122.41 c | 2103.51 ± 2.96 h |
F3 | 3329.34 ± 54.68 a | 3721.91 ± 27.02 d | 1185.48 ± 6.29 g |
Ascorbic acid | - | 2.52 ± 0.02 e | - |
Quercetin | 5.49 ± 0.02 b | - | - |
Catechin | - | - | 13.90 ± 0.03 i |
Microorganisms | Inhibition Zone Diameter (mm) a | ||||||
---|---|---|---|---|---|---|---|
Essential Oil | Antibiotics | ||||||
CEO | F1 | F2 | F3 | Ampicillin | Penicillin | Gentamicin | |
Gram-positive | |||||||
Staphylococcus aureus | 14 ± 0.00 a | 13 ± 0.00 a | 46 ± 0.7 b | 45 ± 0.00 b | 07 ± 0.35 | NA | 22 ± 0.00 |
Staphylococcus epidermidis | 11 ± 1.41 b | 13 ± 0.7 a | 08.00 ± 0.00 c | 10 ± 0.35 b | NA | NA | 14.33 ± 0.35 |
Gram-negative | |||||||
Klebsiella pneumonia | 11 ± 0.7 a | 08.00 ± 0.00 b | 09 ± 0.35 b | 08 ± 0.00 b | NA | NA | 08 ± 0.7 |
Enterobacter cloacae | 9.50 ± 0.35 a | 9.50 ± 0.35 a | 10.50 ± 0.35 a | 10 ± 0.35 a | NA | NA | 19.50 ± 0.35 |
Escherichia coli | 9.00 ± 0.7 a | 09.50 ± 0.35 a | 11 ± 0.00 a | 08 ± 0.00 b | NA | NA | 20 ± 0.00 |
Acinetobacter baumannii | 13 ± 0.00 b | 12.50 ± 0.00 b | 12 ± 0.7 a | 10 ± 0.00 c | NA | NA | 13 ± 0.7 |
PRDX5 (1H2D) Kcal/mol | E. coli (3G7B) Kcal/mol | S. aureus (6F86) Kcal/mol | A. baumannii (3TD3) Kcal/mol | |
---|---|---|---|---|
Eucalyptol | −4.3 | −4.6 | −4.7 | −4.8 |
α-Pinene | −4.3 | −4.7 | −4.6 | −4.7 |
Cryptone | −4.4 | −5.0 | −5.4 | −4.5 |
o-Cymene | −4.4 | −5.2 | −5.2 | −4.4 |
p-Cymen-2-ol | −4.2 | −5.3 | −5.8 | −4.4 |
Terpinen-4-ol | −4.4 | −5.1 | −5.6 | −4.7 |
Microorganisms | MIC | MBC | ||||||
---|---|---|---|---|---|---|---|---|
Essential Oil | ||||||||
CEO | F1 | F2 | F3 | CEO | F1 | F2 | F3 | |
Gram-positive | ||||||||
Staphylococcus aureus | 10 | 2 | 2 | 1 | 10 | 2 | 2 | 10 |
Staphylococcus epidermidis | 10 | <10 | 10 | 4 | 10 | - | 10 | 10 |
Gram-negative | ||||||||
Klebsiella pneumonia | <10 | <10 | <10 | 10 | - | - | - | 10 |
Enterobacter cloacae | <10 | <10 | 10 | 10 | - | - | 10 | 10 |
Escherichia coli | <10 | <10 | <10 | 10 | - | - | - | 10 |
Acinetobacter baumannii | <10 | <10 | 10 | 4 | - | - | 10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait benlabchir, A.; Fikri-Benbrahim, K.; Moutawalli, A.; Alanazi, M.M.; Halmoune, A.; Benkhouili, F.Z.; Oubihi, A.; Kabra, A.; Hanoune, E.; Assila, H.; et al. GC–MS Characterization and Bioactivity Study of Eucalyptus globulus Labill. (Myrtaceae) Essential Oils and Their Fractions: Antibacterial and Antioxidant Properties and Molecular Docking Modeling. Pharmaceuticals 2024, 17, 1552. https://doi.org/10.3390/ph17111552
Ait benlabchir A, Fikri-Benbrahim K, Moutawalli A, Alanazi MM, Halmoune A, Benkhouili FZ, Oubihi A, Kabra A, Hanoune E, Assila H, et al. GC–MS Characterization and Bioactivity Study of Eucalyptus globulus Labill. (Myrtaceae) Essential Oils and Their Fractions: Antibacterial and Antioxidant Properties and Molecular Docking Modeling. Pharmaceuticals. 2024; 17(11):1552. https://doi.org/10.3390/ph17111552
Chicago/Turabian StyleAit benlabchir, Abdessamad, Kawtar Fikri-Benbrahim, Amina Moutawalli, Mohammed M. Alanazi, Asma Halmoune, Fatima Zahra Benkhouili, Asmaa Oubihi, Atul Kabra, Elbatoul Hanoune, Hamza Assila, and et al. 2024. "GC–MS Characterization and Bioactivity Study of Eucalyptus globulus Labill. (Myrtaceae) Essential Oils and Their Fractions: Antibacterial and Antioxidant Properties and Molecular Docking Modeling" Pharmaceuticals 17, no. 11: 1552. https://doi.org/10.3390/ph17111552
APA StyleAit benlabchir, A., Fikri-Benbrahim, K., Moutawalli, A., Alanazi, M. M., Halmoune, A., Benkhouili, F. Z., Oubihi, A., Kabra, A., Hanoune, E., Assila, H., & Ouaritini, Z. B. (2024). GC–MS Characterization and Bioactivity Study of Eucalyptus globulus Labill. (Myrtaceae) Essential Oils and Their Fractions: Antibacterial and Antioxidant Properties and Molecular Docking Modeling. Pharmaceuticals, 17(11), 1552. https://doi.org/10.3390/ph17111552