Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil
<p>MALDI-TOF mass spectra of <span class="html-italic">P. fluorescens</span> biofilm development after EGEO exposition: (<b>A</b>)—3rd day; (<b>B</b>)—5th day; (<b>C</b>)—7th day; (<b>D</b>)—9th day; (<b>E</b>)—12th day; (<b>F</b>)—14th day.</p> "> Figure 1 Cont.
<p>MALDI-TOF mass spectra of <span class="html-italic">P. fluorescens</span> biofilm development after EGEO exposition: (<b>A</b>)—3rd day; (<b>B</b>)—5th day; (<b>C</b>)—7th day; (<b>D</b>)—9th day; (<b>E</b>)—12th day; (<b>F</b>)—14th day.</p> "> Figure 1 Cont.
<p>MALDI-TOF mass spectra of <span class="html-italic">P. fluorescens</span> biofilm development after EGEO exposition: (<b>A</b>)—3rd day; (<b>B</b>)—5th day; (<b>C</b>)—7th day; (<b>D</b>)—9th day; (<b>E</b>)—12th day; (<b>F</b>)—14th day.</p> "> Figure 2
<p>Dendrogram of <span class="html-italic">P. fluorescens</span> biofilm progress after EGEO exposition. PF—<span class="html-italic">P. fluorescens</span>; C—control; S—stainless steel; P—plastic; P—planktonic cells.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Eucalyptus Globulus Essential Oil
2.2. Antioxidant Activity of Eucalyptus Globulus Essential Oil
2.3. Antimicrobial Activity of Eucalyptus Globulus Essential Oil
2.4. Antimicrobial Analysis In Situ
2.5. Analysis of Biofilm Developmental Phases and Evaluation of Molecular Differences on Different Surfaces Using MALDI-TOF MS Biotyper
2.6. Insecticidal Activity of Eucalyptus Globulus Essential Oil
3. Discussion
4. Materials and Methods
4.1. Essential Oil
4.2. Microorganisms
4.3. Chemical Characterization of Eucalyptus Globulus Essential Oil via Gas Chromatography/Mass Spectrometry (GC/MS) and Gas Chromatography (GC-FID)
4.4. Determination of Antioxidant Activity Using ABTS Assay
4.5. Determination of Antimicrobial Activity via Disc Diffusion Method
4.6. Minimal Inhibitory Concentration (MIC)
4.7. Analysis of Differences in Biofilm Development with MALDI-TOF MS Biotyper
4.8. Antimicrobial Analysis In Situ (Vapor Phase) on a Food Model
4.9. Insecticidal Activity of Eucalyptus globulus Essential Oil
4.10. Statistical Data Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.L.; Matos, F.J.A. Analgesic and Anti-Inflammatory Effects of Essential Oils of Eucalyptus. J. Ethnopharmacol. 2003, 89, 277–283. [Google Scholar] [CrossRef]
- Hardel, D.K.; Sahoo, L. A Review on Phytochemical and Pharmacological of Eucalyptus gbulus: A Multipurpose Tree. Int. J. Res. Ayurveda Pharm. (IJRAP) 2011, 2, 1527–1530. [Google Scholar]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus Essential Oil as a Natural Pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Potts, B.M.; Vaillancourt, R.E.; Jordan, G.; Dutkowski, G. Exploration of the Eucalyptus Globus Gene Pool. In Proceedings of the IUFRO Conference, Aveiro, Portugal, 11–15 October 2004. [Google Scholar]
- Almas, I.; Innocent, E.; Machumi, F.; Kisinza, W. Chemical Composition of Essential Oils from Eucalyptus gbulus and Eucalyptus maculata Grown in Tanzania. Sci. Afr. 2021, 12, e00758. [Google Scholar] [CrossRef]
- Ait-Ouazzou, A.; Lorán, S.; Bakkali, M.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Chemical Composition and Antimicrobial Activity of Essential Oils of Thymus algeriensis, Eucalyptus gbulus and Rosmarinus officinalis from Morocco: Antimicrobial Activity of Moroccan Essential Oils. J. Sci. Food Agric. 2011, 91, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Villaverde, J.J.; Freire, C.S.R.; Domingues, M.R.M.; Neto, C.P.; Silvestre, A.J.D. Phenolic Composition and Antioxidant Activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii Bark Extracts. Ind. Crops Prod. 2012, 39, 120–127. [Google Scholar] [CrossRef]
- Abbasi, N.; Khalighi, Z.; Eftekhari, Z.; Bahmani, M. Extraction and Phytoanalysis of Chemical Compounds of Eucalyptus gbulus Leaf Native to Dehloran, Ilam Province, Iran by HS-SPME and GC-MS. Adv. Anim. Vet. Sci. 2020, 8, 647–652. [Google Scholar] [CrossRef]
- Pino, J.A.; Moncayo-Molina, L.; Spengler, I.; Pérez, J.C.; Pino, J.A.; Moncayo-Molina, L.; Spengler, I.; Pérez, J.C. Chemical Composition and Antibacterial Activity of the Leaf Essential Oil of Eucalyptus gbulus Labill. from Two Highs of the Canton Cañar, Ecuador. Rev. CENIC Cienc. Químicas 2021, 52, 26–33. [Google Scholar]
- Tyagi, A.K.; Malik, A. Antimicrobial Potential and Chemical Composition of Mentha Piperita Oil in Liquid and Vapour Phase against Food Spoiling Microorganisms. Food Control 2011, 22, 1707–1714. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Amine, F.M.; Kameli, A.; Saidi, F.; Walid, K.; Mohamed, S.B. Quality Assessment of the Essential Oil from Eucalyptus gbulus Labill of Blida (Algeria) Origin. Int. Lett. Chem. Phys. Astron. 2014, 17, 303–315. [Google Scholar] [CrossRef]
- Vilela, G.R.; de Almeida, G.S.; D’Arce, M.A.B.R.; Moraes, M.H.D.; Brito, J.O.; da Silva, M.F.d.G.F.; Silva, S.C.; de Stefano Piedade, S.M.; Calori-Domingues, M.A.; da Gloria, E.M. Activity of Essential Oil and Its Major Compound, 1,8-Cineole, from Eucalyptus gbulus Labill., against the Storage Fungi Aspergillus Flavus Link and Aspergillus Parasiticus Speare. J. Stored Prod. Res. 2009, 45, 108–111. [Google Scholar] [CrossRef]
- Merghni, A.; Noumi, E.; Hadded, O.; Dridi, N.; Panwar, H.; Ceylan, O.; Mastouri, M.; Snoussi, M. Assessment of the Antibiofilm and Antiquorum Sensing Activities of Eucalyptus gbulus Essential Oil and Its Main Component 1,8-Cineole against Methicillin-Resistant Staphylococcus aureus Strains. Microb. Pathog. 2018, 118, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yang, D.; Zhang, J.; Guo, J.; Jiang, L. Evaluation of Bio-Guided Fraction from Laminaria Japonica as a Natural Food Preservative Based on Antimicrobial Activity. Food Meas. 2020, 14, 735–748. [Google Scholar] [CrossRef]
- Sonboli, A.; Babakhani, B.; Mehrabian, A.R. Antimicrobial Activity of Six Constituents of Essential Oil from Salvia. Z. Nat. C 2006, 61, 160–164. [Google Scholar] [CrossRef]
- Van Vuuren, S.F.; Viljoen, A.M. Antimicrobial Activity of Limonene Enantiomers and 1,8-Cineole Alone and in Combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
- Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1,8-Cineole: A Review of Source, Biological Activities, and Application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical Composition, Antioxidant, Antibacterial and Anti-Quorum Sensing Activities of Eucalyptus gbulus and Eucalyptus Radiata Essential Oils. Ind. Crops Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Harkat-Madouri, L.; Asma, B.; Madani, K.; Bey-Ould Si Said, Z.; Rigou, P.; Grenier, D.; Allalou, H.; Remini, H.; Adjaoud, A.; Boulekbache-Makhlouf, L. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil of Eucalyptus gbulus from Algeria. Ind. Crops Prod. 2015, 78, 148–153. [Google Scholar] [CrossRef]
- Silvestre, A.J.D.; Cavaleiro, J.A.S.; Delmond, B.; Filliatre, C.; Bourgeois, G. Analysis of the Variation of the Essential Oil Composition of Eucalyptus gbulus Labill. from Portugal Using Multivariate Statistical Analysis. Ind. Crops Prod. 1997, 6, 27–33. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic Properties of the Terpenoids Aromadendrene and 1,8-Cineole from the Essential Oil of Eucalyptus gbulus against Antibiotic-Susceptible and Antibiotic-Resistant Pathogens. Phytomedicine 2010, 17, 1061–1066. [Google Scholar] [CrossRef]
- Iten, F.; Saller, R.; Abel, G.; Reichling, J. Additive Antimicrobial Effects of the Active Components of the Essential Oil of Thymus Vulgaris—Chemotype Carvacrol. Planta Med. 2009, 75, PJ100. [Google Scholar] [CrossRef] [Green Version]
- Pei, R.; Zhou, F.; Ji, B.; Xu, J. Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol against E. Coli with an Improved Method. J. Food Sci. 2009, 74, M379–M383. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of Essential Oils in Food Safety: Antimicrobial and Antioxidant Applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Bencheikh, D.; Gueddah, A.; Soualat, K.; Ben-aissi, H.; Benslama, A.; Harrar, A.; Khennouf, S. Polyphenolic contents, antioxidant and antibacterial activities of aqueous extracts of Eucalyptus gbulus L. and Trigonella foenum-Greacum L. J. Appl. Biol. Sci. 2021, 15, 53–63. [Google Scholar]
- Park, J.-W.; Wendt, M.; Heo, G.-J. Antimicrobial Activity of Essential Oil of Eucalyptus gbulus against Fish Pathogenic Bacteria. Lab Anim. Res. 2016, 32, 87. [Google Scholar] [CrossRef] [Green Version]
- Boulekbache-Makhlouf, L.; Slimani, S.; Madani, K. Total Phenolic Content, Antioxidant and Antibacterial Activities of Fruits of Eucalyptus gbulus Cultivated in Algeria. Ind. Crops Prod. 2013, 41, 85–89. [Google Scholar] [CrossRef]
- Bachir, R.G.; Benali, M. Antibacterial Activity of the Essential Oils from the Leaves of Eucalyptus gbulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012, 2, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Boukhatem, M.N.; Boumaiza, A.; Nada, H.G.; Rajabi, M.; Mousa, S.A. Eucalyptus gbulus Essential Oil as a Natural Food Preservative: Antioxidant, Antibacterial and Antifungal Properties In Vitro and in a Real Food Matrix (Orangina Fruit Juice). Appl. Sci. 2020, 10, 5581. [Google Scholar] [CrossRef]
- Bogavac, M.; Tešanović, K.; Marić, J.; Jovanović, M.; Karaman, M. Antimicrobial Activity and Toxicity of Eucalyptus gbulus Labill. Essential Oil against Vaginal Microorganisms. Trends Phytochem. Res. 2019, 3, 201–206. [Google Scholar]
- Lee, D.-S.; Hong, I.K.; Song, H.-G. Antimicrobial activity of fraction mixture of ethanol extracts from Eucalyptus gbulus, Yucca recurvifolia, and Melaleuca alternifolia against several human skin microbes. Korean J. Microbiol. 2019, 55, 46–51. [Google Scholar] [CrossRef]
- Tian, Y.; Dong, F.; Zhou, X.; Yang, X. Repellent, Insecticidal and Antimicrobial Activities of Leaf Essential Oils from Three Eucalyptus Species. Chem. Biodivers. 2020, 17, e1900580. [Google Scholar] [CrossRef]
- Balčiūnaitienė, A.; Liaudanskas, M.; Puzerytė, V.; Viškelis, J.; Janulis, V.; Viškelis, P.; Griškonis, E.; Jankauskaitė, V. Eucalyptus gbulus and Salvia officinalis Extracts Mediated Green Synthesis of Silver Nanoparticles and Their Application as an Antioxidant and Antimicrobial Agent. Plants 2022, 11, 1085. [Google Scholar] [CrossRef] [PubMed]
- Parra, P.; Cedeno, K.; Maldonado, P. Development and Evaluation of the Antimicrobial Activity to Produce a Hand Sanitizing Gel with Essential Oils of Cinnamon (Cinnamomum zeylanicum), Eucalyptus (Eucalyptus gbulus) and Tangerine (Citrus maxima). In Proceedings of the 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Curicó, Chile, 24–27 October 2022; pp. 1–6. [Google Scholar]
- Mekonnen, A.; Yitayew, B.; Tesema, A.; Taddese, S. In Vitro Antimicrobial Activity of Essential Oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus gbulus, and Rosmarinus officinalis. Int. J. Microbiol. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cruz, J. Anti-Oxidant Activity of Isolates from Acid Hydrolysates of Eucalyptus gbulus Wood. Food Chem. 2005, 90, 503–511. [Google Scholar] [CrossRef]
- Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.A.; Ali, S.M.; Siddiqui, M.; Khan, A. Antimicrobial Activity of Five Herbal Extracts against Multi Drug Resistant (MDR) Strains of Bacteria and Fungus of Clinical Origin. Molecules 2009, 14, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Terentjeva, M.; Kántor, A.; Tokár, M.; Puchalski, C.; Ivanišová, E. Antimicrobial Effect of Sage (Salvia officinalis L.) and Rosemary (Rosmarinus officinalis L.) Essential Oils on Microbiota of Chicken Breast. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 2017, 71, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; López-Malo, A.; Ávila-Sosa, R. Essential Oils in Vapor Phase as Alternative Antimicrobials: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Goldbeck, J.C.; do Nascimento, J.E.; Jacob, R.G.; Fiorentini, Â.M.; da Silva, W.P. Bioactivity of Essential Oils from Eucalyptus gbulus and Eucalyptus urograndis against Planktonic Cells and Biofilms of Streptococcus mutans. Ind. Crops Prod. 2014, 60, 304–309. [Google Scholar] [CrossRef]
- Gherasim, O.; Popescu, R.C.; Grumezescu, V.; Mogoșanu, G.D.; Mogoantă, L.; Iordache, F.; Holban, A.M.; Vasile, B.Ș.; Bîrcă, A.C.; Oprea, O.-C.; et al. MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications. Materials 2021, 14, 1612. [Google Scholar] [CrossRef]
- Pernando, N.S.A.; Hasyrul, H.; Wirnawati, K.A.A.K.S. Antibacterial and Antibiofilm Activity Staphylococcus aureus From Plants Containing Essential Oils: A Mini-Review. Lett. Appl. NanoBioSci 2022, 12, 5. [Google Scholar] [CrossRef]
- Ali, S.T.; Ayub, A.; Ali, S.N. Antibacterial activity of methanolic extracts from some selected medicinal plants. FUUAST J. Biol. 2017, 7, 123–125. [Google Scholar]
- Maria, P.; Mihaela, V.; Roxana, A. Study Concerning the Honey Qualities in Transylvania Region. JASO 2009, 2, 1034–1040. [Google Scholar] [CrossRef]
- Hafsa, J.; Smach, M.A.; Ben Khedher, M.R.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Physical, Antioxidant and Antimicrobial Properties of Chitosan Films Containing Eucalyptus gbulus Essential Oil. LWT–Food Sci. Technol. 2016, 68, 356–364. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Compositional Analysis and Insecticidal Activity of Eucalyptus gbulus (Family: Myrtaceae) Essential Oil against Housefly (Musca domestica). Acta Trop. 2012, 122, 212–218. [Google Scholar] [CrossRef]
- Russo, S.; Cabrera, N.; Chludil, H.; Yaber-Grass, M.; Leicach, S. Insecticidal Activity of Young and Mature Leaves Essential Oil from Eucalyptus gbulus Labill. against Tribolium Confusum Jacquelin Du Val (Coleoptera: Tenebrionidae). Chil. J. Agric. Res. 2015, 75, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Abdel Halim, A.S.; Morsy, T.A. The Insecticidal Activity of Eucalyptus gbulus Oil on the Development of Musca Domestica Third Stage Larvae. J. Egypt Soc. Parasitol. 2005, 35, 631–636. [Google Scholar]
- Bourakna, Z.; Righi, K.; Assia Righi, F. GC/MS Analysis of Eucalyptus gbulus L. (Myrtaceae) Leaves Essential Oil from Algeria and Their Insecticidal Activity against Adults of Bactrocera Oleae (Rossi) (Diptera; Tephritidae). J. Essent. Oil Bear. Plants 2022, 25, 876–887. [Google Scholar] [CrossRef]
- Ainane, A.; Abdoul-Latif, F.M.; Abdoul-Latif, T.M.; Ainane, T. Evaluation of Biological Activities of Two Essential Oils as a Safe Environmental Bioinsecticides: Case of Eucalyptus gbulus and Rosmarinus officinalis. Srees 2020, 29, 544–556. [Google Scholar] [CrossRef]
- Sharma, A.D.; Kaur, I. By-Product Hydrosol of Eucalyptus gbulus Essential Oil Distillation as Source of Botanical Insecticides: Wealth from Waste. Not. Sci. Biol. 2021, 13, 10854. [Google Scholar] [CrossRef]
- Boulamtat, R.; Mesfioui, A.; El-Fakhouri, K.; Oubayoucef, A.; Sabraoui, A.; Aasfar, A.; El-Bouhssini, M. Chemical Composition, and Insecticidal Activities of Four Plant Essential Oils from Morocco against Larvae of Helicoverpa armigera (Hub.) under Field and Laboratory Conditions. Crop Prot. 2021, 144, 105607. [Google Scholar] [CrossRef]
- Sparkman, O.D. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy Robert P. Adams. J. Am. Soc. Mass Spectrom. 2005, 16, 1902–1903. [Google Scholar] [CrossRef] [Green Version]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Terentjeva, M.; Galovičová, L.; Ivanišová, E.; Štefániková, J.; Valková, V.; Borotová, P.; Kowalczewski, P.Ł.; Kunová, S.; Felšöciová, S.; et al. Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules 2020, 25, 3956. [Google Scholar] [CrossRef] [PubMed]
- Aman, M.; Rai, V. Antifungal Activity of Fungicides and Plant Extracts against Yellow Sigatoka Disease Causing Mycosphaerella musicola. Cream 2015, 5, 277–284. [Google Scholar] [CrossRef]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Ait Ben Aoumar, A. Antifungal Activity of Some Moroccan Plants against Geotrichum candidum, the Causal Agent of Postharvest Citrus Sour Rot. Crop Prot. 2012, 35, 41–46. [Google Scholar] [CrossRef]
No | RI a | Compound b | % |
---|---|---|---|
1 | 909 | isobutyl isobutyrate | 0.1 |
2 | 926 | a-thujene | 0.4 |
3 | 938 | a-pinene | 7.3 |
4 | 948 | camphene | 0.8 |
5 | 977 | sabinene | 1.0 |
6 | 980 | b-pinene | 3.0 |
7 | 992 | b-myrcene | 1.7 |
8 | 1004 | a-phellandrene | 1.0 |
9 | 1009 | d-3-carene | 0.1 |
10 | 1016 | a-terpinene | 1.0 |
11 | 1023 | p-cimene | 7.7 |
12 | 1028 | a-limonene | 6.9 |
13 | 1033 | 1,8-cineole | 63.1 |
14 | 1047 | (E)-b-ocimene | 0.2 |
15 | 1060 | g-terpinene | 3.6 |
16 | 1088 | a-terpinolene | 0.6 |
17 | 1140 | trans-pinocarveol | 0.1 |
18 | 1148 | camphor | 0.1 |
19 | 1151 | menthone | 0.2 |
20 | 1160 | pinocarvone | 0.1 |
21 | 1178 | 4-terpinenol | 0.2 |
22 | 1189 | a-terpineol | 0.1 |
26 | 1443 | aromadendrene | 0.4 |
27 | 1498 | ledene | tr c |
Total | 99.7 |
Class of Compounds | % |
---|---|
monoterpenes | 99.2 |
monoterpene hydrocarbons | 35.3 |
oxygenated monoterpenes | 63.9 |
monoterpene epoxide | 63.1 |
monoterpene alcohols | 0.4 |
monoterpene ketones | 0.4 |
sesquiterpenes | 0.4 |
sesquiterpene hydrocarbons | 0.4 |
oxygenated sesquiterpenes | Tr |
sesquiterpene alcohols | Tr |
non-terpenic | 0.1 |
ester | 0.1 |
Total | 99.7 |
Microorganism | Inhibition Zone (mm) | Activity of EO | Control |
---|---|---|---|
Gram-positive bacteria | |||
Bacillus subtilis | 6.67 ± 0.58 | ** | 33 ± 1.00 |
Enterococcus faecalis | 2.33 ± 0.58 | * | 29 ± 0.50 |
Staphylococcus aureus | 5.67 ± 0.58 | ** | 32 ± 1.00 |
Gram-negative bacteria | |||
Pseudomonas aeruginosa | 4.33 ± 0.58 | * | 25 ± 1.00 |
Salmonella enterica | 5.10 ± 1.00 | ** | 27 ± 2.00 |
Yersinia enterocolitica | 5.33 ± 0.58 | ** | 27 ± 1.50 |
Pseudomonas fluorescens biofilm | 3.67 ± 0.58 | * | 28 ± 1.00 |
Yeasts | |||
Candida albicans | 14.00 ± 1.00 | *** | 28 ± 2.00 |
Candida glabrata | 7.33 ± 0.58 | ** | 33 ± 1.50 |
Candida krusei | 4.33 ± 0.58 | * | 33 ± 3.00 |
Candida tropicalis | 5.05 ± 1.00 | ** | 33 ± 1.00 |
Fungi | |||
Aspergillus flavus | 11.00 ± 0.00 | *** | 32 ± 0.58 |
Botrytis cinerae | 11.67 ± 0.58 | *** | 33 ± 1.00 |
Penicillium citrinum | 12.33 ± 0.58 | *** | 31 ± 0.58 |
Microorganism | MIC 50 (µL/mL) | MIC 90 (µL/mL) |
---|---|---|
Gram-positive bacteria | ||
Bacillus subtilis | 374.02 | 397.64 |
Enterococcus faecalis | 6.37 | 22.44 |
Staphylococcus aureus | 140.25 | 334.72 |
Gram-negative bacteria | ||
Pseudomonas aeruginosa | 374.02 | 397.64 |
Salmonella enterica | 15.62 | 49.67 |
Yersinia enterocolitica | 46.89 | 50.07 |
Pseudomonas fluorescens biofilm | 93.80 | 99.91 |
Yeasts | ||
Candida albicans | 77.21 | 86.42 |
Candida glabrata | 245.02 | 295.79 |
Candida krusei | 5.86 | 6.31 |
Candida tropicalis | 2.93 | 3.17 |
Fungi | Inhibition Zone (mm) |
---|---|
Aspergillus flavus | |
500 µL/mL | 7.67 ± 0.58 |
250 µL/mL | 5.00 ± 1.00 |
125 µL/mL | 5.00 ± 0.58 |
62.5 µL/mL | 3.33 ± 1.53 |
Botrytis cinerea | |
500 µL/mL | 6.33 ± 0.58 |
250 µL/mL | 4.33 ± 2.06 |
125 µL/mL | 7.33 ± 2.89 |
62.5 µL/mL | 5.00 ± 2.65 |
Penicillium citrinum | |
500 µL/mL | 4.33 ± 1.53 |
250 µL/mL | 0.00 ± 0.00 |
125 µL/mL | 0.00 ± 0.00 |
62.5 µL/mL | 0.00 ± 0.00 |
White Radish | ||||
---|---|---|---|---|
Bacterial Growth Inhibition (%) | Gram-Positive Bacteria | |||
Eucalyptus globulus EO (µL/L) | B. subtilis | E. faecalis | S. aureus | |
62.5 | −43.94 ± 1.98 a | 76.86 ± 1.43 d | 76.79 ± 2.15 d | |
125 | −24.74 ± 2.05 b | 54.15 ± 2.47 c | 5.67 ± 1.03 a | |
250 | 24.92 ± 1.68 d | 33.41 ± 1.48 b | 13.49 ± 2.59 b | |
500 | −11.92 ± 0.66 c | 13.59 ± 2.80 a | 56.97 ± 2.22 c | |
Bacterial Growth Inhibition (%) | Gram-negative bacteria | |||
Eucalyptus globulus EO (µL/L) | P. flourescens biofilm | P. aeroginosa | S. enterica | Y. enterocolitica |
62.5 | 43.69 ± 1.92 d | 8.62 ± 1.06 a | 13.33 ± 1.94 a | 15.44 ± 2.64 a |
125 | 35.00 ± 2.69 c | 24.74 ± 2.10 b | 75.29 ± 2.91 d | 65.75 ± 1.86 c |
250 | −54.41 ± 2.13 a | 34.08 ± 1.99 c | 24.70 ± 2.82 b | 33.37 ± 1.47 b |
500 | 25.13 ± 2.04 b | 86.79 ± 2.40 d | 44.11 ± 1.43 c | 91.26 ± 4.58 d |
Mycelial Growth Inhibition (%) | Yeasts | |||
Eucalyptus globulus EO (µL/L) | C. albicans | C. glabrata | C. krusei | C. tropicalis |
62.5 | 5.97 ± 1.36 a | 86.82 ± 3.07 d | 11.71 ± 1.00 a | 35.57 ± 2.04 c |
125 | 64.97 ± 2.56 d | −8.00 ± 1.60 a | 34.07 ± 2.53 b | 8.26 ± 1.35 b |
250 | 13.34 ± 2.19 b | 65.96 ± 1.71 c | 66.26 ± 2.35 c | 55.97 ± 2.97 d |
500 | 54.29 ± 2.50 c | 14.69 ± 2.77 b | 75.97 ± 2.98 d | −24.37 ± 2.90 a |
Mycelial Growth Inhibition (%) | Microscopic fungi | |||
Eucalyptus globulus EO (µL/L) | A. flavus | B. cinerea | P. citrinum | |
62.5 | 76.67 ± 2.77 d | 76.06 ± 2.77 d | 85.77 ± 1.71 d | |
125 | 55.00 ± 2.62 c | 56.01 ± 2.34 c | 63.74 ± 2.06 c | |
250 | 43.37 ± 2.06 b | 34.67 ± 2.90 b | 33.10 ± 1.44 a | |
500 | 14.68 ± 2.05 a | 11.70 ± 0.87 a | 54.30 ± 2.24 b |
Concentration (%) | Number of Living Individuals | Number of Dead Individuals | Insecticidal Activity (%) |
---|---|---|---|
100 | 0 | 30 | 100.00 |
50 | 0 | 30 | 100.00 |
25 | 0 | 30 | 100.00 |
12.5 | 12 | 18 | 60.00 |
6.25 | 24 | 6 | 20.00 |
3.125 | 28 | 2 | 6.66 |
Control group | 30 | 0 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čmiková, N.; Galovičová, L.; Schwarzová, M.; Vukic, M.D.; Vukovic, N.L.; Kowalczewski, P.Ł.; Bakay, L.; Kluz, M.I.; Puchalski, C.; Kačániová, M. Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. Plants 2023, 12, 1076. https://doi.org/10.3390/plants12051076
Čmiková N, Galovičová L, Schwarzová M, Vukic MD, Vukovic NL, Kowalczewski PŁ, Bakay L, Kluz MI, Puchalski C, Kačániová M. Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. Plants. 2023; 12(5):1076. https://doi.org/10.3390/plants12051076
Chicago/Turabian StyleČmiková, Natália, Lucia Galovičová, Marianna Schwarzová, Milena D. Vukic, Nenad L. Vukovic, Przemysław Łukasz Kowalczewski, Ladislav Bakay, Maciej Ireneusz Kluz, Czeslaw Puchalski, and Miroslava Kačániová. 2023. "Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil" Plants 12, no. 5: 1076. https://doi.org/10.3390/plants12051076
APA StyleČmiková, N., Galovičová, L., Schwarzová, M., Vukic, M. D., Vukovic, N. L., Kowalczewski, P. Ł., Bakay, L., Kluz, M. I., Puchalski, C., & Kačániová, M. (2023). Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. Plants, 12(5), 1076. https://doi.org/10.3390/plants12051076