Singular and Combined Effects of Essential Oil and Honey of Eucalyptus Globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and In Vivo Findings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Eucalyptus globulus Essential Oil Extraction and Honey Samples Collection
2.3. Chemical Composition Analysis of Eucalyptus globulus Essential Oil
2.4. In Vitro Antioxidant Assays
- Ferric Reducing Antioxidant Power Assay
- Inhibition of Lipid Peroxidation
- DPPH (2,2-Diphenyl−1-picrylhydrazyl) Radical Scavenging Activity
2.5. In Vitro Anti-Inflammatory and Dermatoprotective Assays
2.6. In Vivo Anti-Inflammatory Assay
2.7. Assessment of Antimicrobial Activity
2.7.1. Tested Microorganisms
2.7.2. Inoculum Preparation
2.7.3. Disc Diffusion Assay
2.7.4. Determination of Minimum Inhibitory Concentration
2.7.5. Determination of Minimum Bactericidal Concentration
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties of E. globulus Honey Samples
3.2. Chemical Composition of Eucalyptus globulus Essential Oil
3.3. In Vitro Antioxidant Activity
3.4. In Vitro Anti-Inflammatory and Dermatoprotective Activities
3.5. In Vivo Anti-Inflammatory Activity
3.6. Antimicrobial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Baaboua, A.; El Maadoudi, M.; Bouyahya, A.; Belmehdi, O.; Kounnoun, A.; Zahli, R.; Abrini, J. Evaluation of Antimicrobial Activity of Four Organic Acids Used in Chicks Feed to Control Salmonella Typhimurium: Suggestion of Amendment in the Search Standard. Int. J. Microbiol. 2018, 2018, 7352593. [Google Scholar] [CrossRef] [PubMed]
- Abdelaali, B.; El Menyiy, N.; El Omari, N.; Benali, T.; Guaouguaou, F.-E.; Salhi, N.; Naceiri Mrabti, H.; Bouyahya, A. Phytochemistry, Toxicology, and Pharmacological Properties of Origanum Elongatum. Evid. Based Complement. Alternat. Med. 2021, 2021, 6658593. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Chamkhi, I.; Benali, T.; Guaouguaou, F.-E.; Balahbib, A.; El Omari, N.; Taha, D.; Belmehdi, O.; Ghokhan, Z.; El Menyiy, N. Traditional Use, Phytochemistry, Toxicology, and Pharmacology of Origanum Majorana L. J. Ethnopharmacol. 2021, 265, 113318. [Google Scholar] [CrossRef] [PubMed]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of P-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health Benefits and Pharmacological Properties of Carvone. Biomolecules 2021, 11, 1803. [Google Scholar] [CrossRef]
- Bouyahya, A.; Bakri, Y.; Et-Touys, A.; Assemian, I.C.C.; Abrini, J.; Dakka, N. In Vitro Antiproliferative Activity of Selected Medicinal Plants from the North-West of Morocco on Several Cancer Cell Lines. Eur. J. Integr. Med. 2018, 18, 23–29. [Google Scholar] [CrossRef]
- Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Guaouguaou, F.-E.; Balahbib, A.; Belmehdi, O.; Salhi, N.; Imtara, H.; Mrabti, H.N.; El-Shazly, M. Moroccan Antidiabetic Medicinal Plants: Ethnobotanical Studies, Phytochemical Bioactive Compounds, Preclinical Investigations, Toxicological Validations and Clinical Evidences; Challenges, Guidance and Perspectives for Future Management of Diabetes Worldwide. Trends Food Sci. Technol. 2021, 115, 147–254. [Google Scholar]
- Bouyahya, A.; Guaouguaou, F.-E.; El Omari, N.; El Menyiy, N.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-Inflammatory and Analgesic Properties of Moroccan Medicinal Plants: Phytochemistry, In Vitro and In Vivo Investigations, Mechanism Insights, Clinical Evidences and Perspectives. J. Pharm. Anal. 2022, 12, 35–57. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Dey, A.; Koirala, N.; Shaheen, S.; El Omari, N.; Salehi, B.; Goloshvili, T.; Silva, N.C.C.; Bouyahya, A.; Vitalini, S. Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Front. Pharmacol. 2021, 12, 600139. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Abrini, J.; Bakri, Y.; Dakka, N. Essential Oils as Anticancer Agents: News on Mode of Action. Phytothérapie 2016, 16, 254–267. [Google Scholar] [CrossRef]
- Bouyahya, A.; Belmehdi, O.; Abrini, J.; Dakka, N.; Bakri, Y. Chemical Composition of Mentha Suaveolens and Pinus Halepensis Essential Oils and Their Antibacterial and Antioxidant Activities. Asian Pac. J. Trop. Med. 2019, 12, 117. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological Properties and Therapeutic Activities of Honey in Wound Healing: A Narrative Review and Meta-Analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef] [PubMed]
- Suntiparapop, K.; Prapaipong, P.; Chantawannakul, P. Chemical and Biological Properties of Honey from Thai Stingless Bee (Tetragonula Leaviceps). J. Apic. Res. 2012, 51, 45–52. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; Et-Touys, A.; Lagrouh, F.; Dakka, N.; Bakri, Y. Analyse Phytochimique et Évaluation de l’activité Antioxydante Des Échantillons Du Miel Marocain. Phytothérapie 2018, 16, S220–S224. [Google Scholar] [CrossRef]
- Kuzyšinová, K.; Mudroňová, D.; Toporčák, J.; Molnár, L.; Javorskỳ, P. The Use of Probiotics, Essential Oils and Fatty Acids in the Control of American Foulbrood and Other Bee Diseases. J. Apic. Res. 2016, 55, 386–395. [Google Scholar] [CrossRef]
- Belkhodja, M.; Meddah, B.; Sidelarbi, K.; Bouhadi, D.; Medjadel, B.; Brakna, A. In Vitro and In Vivo Anti-Inflammatory Potential of Eucalyptus Globulus Essential Oil. Eur. J. Biol. Res. 2022, 11, 315–324. [Google Scholar] [CrossRef]
- Ridaoui, K.; Guenaou, I.; Taouam, I.; Cherki, M.; Bourhim, N.; Elamrani, A.; Kabine, M. Comparative Study of the Antioxidant Activity of the Essential Oils of Five Plants against the H2 O2 Induced Stress in Saccharomyces Cerevisiae. Saudi J. Biol. Sci. 2022, 29, 1842–1852. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.D.; Kaur, I.; Singh, N. Synthesis, Characterization, and In Vitro Drug Release and In Vitro Antibacterial Activity of O/W Nanoemulsions Loaded with Natural Eucalyptus Globulus Essential Oil. Int. J. Nanosci. Nanotechnol. 2021, 17, 191–207. [Google Scholar]
- Tomen, I.; Guragac, F.T.; Keles, H.; Reunanen, M.; Kupeli-Akkol, E. Characterization and Wound Repair Potential of Essential Oil Eucalyptus Globulus Labill. In Proceedings of the 9 th Annual European Pharma Congress, Madrid, Spain, 26–28 June 2017. [Google Scholar]
- Usman, L.A.; Oguntoye, O.S.; Ismaeel, R.O. Effect of Seasonal Variation on Chemical Composition, Antidiabetic and Antioxidant Potentials of Leaf Essential Oil of Eucalyptus Globulus L. J. Essent. Oil Bear. Plants 2020, 23, 1314–1323. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Tarantilis, P.A.; Pappas, C.; Harizanis, P.C.; Polissiou, M. Investigation of Organic Extractives from Unifloral Chestnut (Castanea Sativa L.) and Eucalyptus (Eucalyptus Globulus Labill.) Honeys and Flowers to Identification of Botanical Marker Compounds. LWT-Food Sci. Technol. 2011, 44, 1042–1051. [Google Scholar] [CrossRef]
- Bobis, O.; Moise, A.R.; Ballesteros, I.; Reyes, E.S.; Durán, S.S.; Sánchez-Sánchez, J.; Cruz-Quintana, S.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Eucalyptus Honey: Quality Parameters, Chemical Composition and Health-Promoting Properties. Food Chem. 2020, 325, 126870. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Silverio, L.A.; Iturralde, G.; García-Tenesaca, M.; Paredes-Moreta, J.; Narváez-Narváez, D.A.; Rojas-Carrillo, M.; Tejera, E.; Beltrán-Ayala, P.; Giampieri, F.; Alvarez-Suarez, J.M. Physicochemical Parameters, Chemical Composition, Antioxidant Capacity, Microbial Contamination and Antimicrobial Activity of Eucalyptus Honey from the Andean Region of Ecuador. J. Apic. Res. 2018, 57, 382–394. [Google Scholar] [CrossRef]
- Malika, N.; Mohamed, F.; Chakib, E.A. Microbiological and Physicochemical Properties of Moroccan Honey. Int. J. Agric. Biol. 2005, 7, 773–776. [Google Scholar]
- Zayadi, R.A.; Bakar, F.A.; Ahmad, M.K. Elucidation of Synergistic Effect of Eucalyptus Globulus Honey and Zingiber Officinale in the Synthesis of Colloidal Biogenic Gold Nanoparticles with Antioxidant and Catalytic Properties. Sustain. Chem. Pharm. 2019, 13, 100156. [Google Scholar] [CrossRef]
- Chakir, A.; Romane, A.; Marcazzan, G.L.; Ferrazzi, P. Physicochemical Properties of Some Honeys Produced from Different Plants in Morocco. Arab. J. Chem. 2016, 9, S946–S954. [Google Scholar] [CrossRef]
- Mekkaoui, M.; Assaggaf, H.; Qasem, A.; El-Shemi, A.; Abdallah, E.M.; Bouidida, E.H.; Naceiri Mrabti, H.; Cherrah, Y.; Alaoui, K. Ethnopharmacological Survey and Comparative Study of the Healing Activity of Moroccan Thyme Honey and Its Mixture with Selected Essential Oils on Two Types of Wounds on Albino Rabbits. Foods 2021, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Said, Z.B.-O.S.; Haddadi-Guemghar, H.; Boulekbache-Makhlouf, L.; Rigou, P.; Remini, H.; Adjaoud, A.; Khoudja, N.K.; Madani, K. Essential Oils Composition, Antibacterial and Antioxidant Activities of Hydrodistillated Extract of Eucalyptus Globulus Fruits. Ind. Crops Prod. 2016, 89, 167–175. [Google Scholar] [CrossRef]
- El Omari, K.; Hamze, M.; Alwan, S.; Osman, M.; Jama, C.; Chihib, N.-E. In-Vitro Evaluation of the Antibacterial Activity of the Essential Oils of Micromeria Barbata, Eucalyptus Globulus and Juniperus Excelsa against Strains of Mycobacterium Tuberculosis (Including MDR), Mycobacterium Kansasii and Mycobacterium Gordonae. J. Infect. Public Health 2019, 12, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Belmehdi, O.; El Jemli, M.; Marmouzi, I.; Bourais, I.; Abrini, J.; Faouzi, M.E.A.; Dakka, N.; Bakri, Y. Chemical Variability of Centaurium Erythraea Essential Oils at Three Developmental Stages and Investigation of Their In Vitro Antioxidant, Antidiabetic, Dermatoprotective and Antibacterial Activities. Ind. Crops Prod. 2019, 132, 111–117. [Google Scholar] [CrossRef]
- Rege, M.G.; Ayanwuyi, L.O.; Zezi, A.U.; Odoma, S. Anti-Nociceptive, Anti-Inflammatory and Possible Mechanism of Anti-Nociceptive Action of Methanol Leaf Extract of Nymphaea Lotus Linn (Nymphaeceae). J. Tradit. Complement. Med. 2021, 11, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Ed-Dra, A.; Filali, F.R.; Lo Presti, V.; Zekkori, B.; Nalbone, L.; Bouymajane, A.; Trabelsi, N.; Lamberta, F.; Bentayeb, A.; Giuffrida, A.; et al. Chemical Composition, Antioxidant Capacity and Antibacterial Action of Five Moroccan Essential Oils against Listeria Monocytogenes and Different Serotypes of Salmonella Enterica. Microb. Pathog. 2020, 149, 104510. [Google Scholar] [CrossRef]
- Hu, F.; Tu, X.F.; Thakur, K.; Hu, F.; Li, X.L.; Zhang, Y.S.; Zhang, J.G.; Wei, Z.J. Comparison of Antifungal Activity of Essential Oils from Different Plants against Three Fungi. Food Chem. Toxicol. 2019, 134, 110821. [Google Scholar] [CrossRef] [PubMed]
- Ed-Dra, A.; Nalbone, L.; Filali, F.R.; Trabelsi, N.; El Majdoub, Y.O.; Bouchrif, B.; Giarratana, F.; Giuffrida, A. Comprehensive Evaluation on the Use of Thymus Vulgaris Essential Oil as Natural Additive against Different Serotypes of Salmonella Enterica. Sustain. Switz. 2021, 13, 4594. [Google Scholar] [CrossRef]
- Falcão, H.d.S.; Lima, I.O.; dos Santos, V.L.; Dantas, H.d.F.; Diniz, M.d.F.; Barbosa-Filho, J.M.; Batista, L.M. Review of the Plants with Anti-Inflammatory Activity Studied in Brazil. Rev. Bras. Farmacogn. 2005, 15, 381–391. [Google Scholar] [CrossRef]
- El Hachimi, F.; Alfaiz, C.; Bendriss, A.; Cherrah, Y.; Alaoui, K. Activite Anti-Inflammatoire de l’huile Des Graines de Zizyphus Lotus (L.) Desf. Phytotherapie 2017, 15, 147–154. [Google Scholar] [CrossRef]
- Boughton-Smith, N.K.; Deakin, A.M.; Follenfant, R.L.; Whittle, B.J.; Garland, L.G. Role of Oxygen Radicals and Arachidonic Acid Metabolites in the Reverse Passive Arthus Reaction and Carrageenin Paw Oedema in the Rat. Br. J. Pharmacol. 1993, 110, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Imtara, H.; Elamine, Y.; Lyoussi, B. Honey Antibacterial Effect Boosting Using Origanum Vulgare L. Essential Oil. Evid. Based Complement. Alternat. Med. 2018, 2018, 7842583. [Google Scholar] [CrossRef] [PubMed]
- ElBorai, A. Antibacterial and Antioxidant Activities of Different Varieties of Locally Produced Egyptian Honey. Egypt. J. Bot. 2018, 58, 97–107. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Boumaiza, A.; Nada, H.G.; Rajabi, M.; Mousa, S.A. Eucalyptus Globulus Essential Oil as a Natural Food Preservative: Antioxidant, Antibacterial and Antifungal Properties In Vitro and in a Real Food Matrix (Orangina Fruit Juice). Appl. Sci. 2020, 10, 5581. [Google Scholar] [CrossRef]
- Faustino, C.; Pinheiro, L. Analytical Rheology of Honey: A State-of-the-Art Review. Foods 2021, 10, 1709. [Google Scholar] [CrossRef]
- Adenubi, O.T.; Abolaji, A.O.; Salihu, T.; Akande, F.A.; Lawal, H. Chemical Composition and Acaricidal Activity of Eucalyptus Globulus Essential Oil against the Vector of Tropical Bovine Piroplasmosis, Rhipicephalus (Boophilus) Annulatus. Exp. Appl. Acarol. 2021, 83, 301–312. [Google Scholar] [CrossRef]
- Ait-Ouazzou, A.; Lorán, S.; Bakkali, M.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Chemical Composition and Antimicrobial Activity of Essential Oils of Thymus Algeriensis, Eucalyptus Globulus and Rosmarinus Officinalis from Morocco. J. Sci. Food Agric. 2011, 91, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Almas, I.; Innocent, E.; Machumi, F.; Kisinza, W. Chemical Composition of Essential Oils from Eucalyptus Globulus and Eucalyptus Maculata Grown in Tanzania. Sci. Afr. 2021, 12, e00758. [Google Scholar] [CrossRef]
- Harkat-Madouri, L.; Asma, B.; Madani, K.; Said, Z.B.-O.S.; Rigou, P.; Grenier, D.; Allalou, H.; Remini, H.; Adjaoud, A.; Boulekbache-Makhlouf, L. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil of Eucalyptus Globulus from Algeria. Ind. Crops Prod. 2015, 78, 148–153. [Google Scholar] [CrossRef]
- Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical Composition, Antioxidant, Antibacterial and Anti-Quorum Sensing Activities of Eucalyptus Globulus and Eucalyptus Radiata Essential Oils. Ind. Crops Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Pino, J.A.; Moncayo-Molina, L.; Spengler, I.; Pérez, J.C. Chemical Composition and Antibacterial Activity of the Leaf Essential Oil of Eucalyptus Globulus Labill. from Two Highs of the Canton Cañar, Ecuador. Rev. CENIC Cienc. Quím. 2021, 52, 26–33. [Google Scholar]
- Alaba, F.B.J.; Avestruz, P.R.S.D.; Cordero, R.R.A.; Erum, E.L.; Ng, M.R.S.; Sumampong, M.M.Q.; Abiso-Padilla, J. Essential Oils of Allium Sativum and Eucalyptus Globulus as Antagonists for Sars-Cov−2 Infection: A Review. Int. J. Res. Publ. Rev. 2022, 3, 404–416. [Google Scholar]
- Faezeh Taghizadeh, S.; Panahi, A.; Esmaeilzadeh Kashi, M.; Kretschmer, N.; Asili, J.; Ahmad Emami, S.; Azizi, M.; Shakeri, A. Structural Diversity of Complex Phloroglucinol Derivatives from Eucalyptus Species. Chem. Biodivers. 2022, 19, e202200025. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, K.S.; Gasparotto Sattler, J.A.; Lauer Macedo, L.F.; Serna González, C.V.; Pereira de Melo, I.L.; da Silva Araújo, E.; Granato, D.; Sattler, A.; de Almeida-Muradian, L.B. Phenolic Compounds, Antioxidant Capacity and Physicochemical Properties of Brazilian Apis Mellifera Honeys. LWT 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Gül, A.; Pehlivan, T. Antioxidant Activities of Some Monofloral Honey Types Produced across Turkey. Saudi J. Biol. Sci. 2018, 25, 1056–1065. [Google Scholar] [CrossRef]
- El-Haskoury, R.; Kriaa, W.; Lyoussi, B.; Makni, M. Ceratonia Siliqua Honeys from Morocco: Physicochemical Properties, Mineral Contents, and Antioxidant Activities. J. Food Drug Anal. 2018, 26, 67–73. [Google Scholar] [CrossRef]
- El Menyiy, N.; Akdad, M.; Elamine, Y.; Lyoussi, B. Microbiological Quality, Physicochemical Properties, and Antioxidant Capacity of Honey Samples Commercialized in the Moroccan Errachidia Region. J. Food Qual. 2020, 2020, e7383018. [Google Scholar] [CrossRef]
- Safer, A.M.; Al-Nughamish, A.J. Hepatotoxicity Induced by the Anti-Oxidant Food Additive, Butylated Hydroxytoluene (BHT), in Rats: An Electron Microscopical Study. Histol. Histopathol. 1999, 14, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Aazza, S.; Lyoussi, B.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Figueiredo, A.C.; Miguel, M.G. Anti-Oxidant, Anti-Inflammatory and Anti-Proliferative Activities of Moroccan Commercial Essential Oils. Nat. Prod. Commun. 2014, 9, 1934578 X1400900442. [Google Scholar] [CrossRef]
- Göger, G.; Karaca, N.; Altinbaşak, B.B.; Demirci, B.; Demirci, F. In Vitro Antimicrobial, Antioxidant and Anti-Inflammatory Evaluation of Eucalyptus Globulus Essential Oil. Nat. Volatiles Essent. Oils 2020, 7, 1–11. [Google Scholar]
- Nile, S.H.; Keum, Y.S. Chemical Composition, Antioxidant, Anti-Inflammatory and Antitumor Activities of Eucalyptus Globulus Labill. Indian J. Exp. Biol. 2018, 56, 734–742. [Google Scholar]
- Vigo, E.; Cepeda, A.; Perez-Fernandez, R.; Gualillo, O. In-Vitro Anti-Inflammatory Effect of Eucalyptus Globulus and Thymus Vulgaris: Nitric Oxide Inhibition in J774 A. 1 Murine Macrophages. J. Pharm. Pharmacol. 2004, 56, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Mirke, N.B.; Shelke, P.S.; Malavdkar, P.R.; Jagtap, P.N. In Vitro Protein Denaturation Inhibition Assay of Eucalyptus Globulus and Glycine Max for Potential Anti-Inflammatory Activity. Innov. Pharm. Pharmacother. 2020, 8, 28–31. [Google Scholar]
- Sharma, A.D.; Farmaha, M.; Kaur, I.; Singh, N. Phytochemical Analysis Using GC-FID, FPLC Fingerprinting, Antioxidant, Antimicrobial, Anti-Inflammatory Activities Analysis of Traditionally Used Eucalyptus Globulus Essential Oil. Drug Anal. Res. 2021, 5, 26–38. [Google Scholar] [CrossRef]
- Alzubier, A.A.; Okechukwu, P.N. Investigation of Anti-Inflammatory, Antipyretic and Analgesic Effect of Yemeni Sidr Honey. World Acad. Sci. Eng. Technol. 2011, 56, 47–52. [Google Scholar]
- Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.L.; Matos, F.J.A. Analgesic and Anti-Inflammatory Effects of Essential Oils of Eucalyptus. J. Ethnopharmacol. 2003, 89, 277–283. [Google Scholar] [CrossRef]
- Choi, I.-Y.; Lim, J.H.; Hwang, S.; Lee, J.-C.; Cho, G.-S.; Kim, W.-K. Anti-Ischemic and Anti-Inflammatory Activity of (S)-Cis-Verbenol. Free Radic. Res. 2010, 44, 541–551. [Google Scholar]
- Li, X.-J.; Yang, Y.-J.; Li, Y.-S.; Zang, W.K.; Tang, H.-B. A-Pinene, Linalool, and 1-Octanol Contribute to the Topical Anti-Inflammatory and Analgesic Activities of Frankincense by Inhibiting COX−2. J. Ethnopharmacol. 2016, 179, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Nakagawa, K.; Hayashi, S.; Amakura, Y.; Yoshimura, M.; Yoshida, T.; Yamaji, R.; Nakano, Y.; Inui, H. Hydrolyzable Tannins as Antioxidants in the Leaf Extract of Eucalyptus Globulus Possessing Tyrosinase and Hyaluronidase Inhibitory Activities. Food Sci. Technol. Res. 2009, 15, 331–336. [Google Scholar] [CrossRef]
- Moreira, P.; Sousa, F.J.; Matos, P.; Brites, G.S.; Gonçalves, M.J.; Cavaleiro, C.; Figueirinha, A.; Salgueiro, L.; Batista, M.T.; Branco, P.C. Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus Globulus Leaves. Pharmaceutics 2022, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.; Sachan, A.K.; Jain, S.; Barik, R. Studies on Inhibitory Effect of Eucalyptus Oil on Sebaceous Glands for the Management of Acne. Indian J. Nat. Prod. Resour. 2011, 2, 345–349. [Google Scholar]
- Kubera Sampath Kumar, S.; Prakash, C.; Ramesh, P.; Sukumar, N.; Balaji, J.; Palaniswamy, N.K. Study of Wound Dressing Material Coated with Natural Extracts of Calotropis Gigantean, Eucalyptus Globulus and Buds of Syzygium Aromaticum Solution Enhanced with RhEGF (REGEN-DTM 60). J. Nat. Fibers 2021, 18, 2270–2283. [Google Scholar] [CrossRef]
- Al-Hisnawi, A.A.; Mustafa, J.M.; Yasser, Y.K. The Antimicrobial Activity Synergism between Eucalyptus Honey, Pomegranate, Date and Antibiotics on Escherichia Coli Causing Diarrhea in Children. AIP Conf. Proc. 2019, 2144, 040003. [Google Scholar]
- Bachir, R.G.; Benali, M. Antibacterial Activity of the Essential Oils from the Leaves of Eucalyptus Globulus against Escherichia Coli and Staphylococcus Aureus. Asian Pac. J. Trop. Biomed. 2012, 2, 739–742. [Google Scholar] [CrossRef]
- Djenane, D.; Yangüela, J.; Amrouche, T.; Boubrit, S.; Boussad, N.; Roncalés, P. Chemical Composition and Antimicrobial Effects of Essential Oils of Eucalyptus Globulus, Myrtus Communis and Satureja Hortensis against Escherichia Coli O157:H7 and Staphylococcus Aureus in Minced Beef. Food Sci. Technol. Int. Cienc. Tecnol. Los Aliment. Int. 2011, 17, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Damjanović-Vratnica, B.; Đakov, T.; Šuković, D.; Damjanović, J. Antimicrobial Effect of Essential Oil Isolated from Eucalyptus Globulus Labill. from Montenegro. Czech J. Food Sci. 2011, 29, 277–284. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
Color | Extra Light Amber |
Moisture (%) | 11.63 ± 1.19 |
pH | 4.01 ± 0.02 |
Free acidity (meq/kg) | 23.48 ± 0.04 |
HMF (mg/kg) | 11.24 ± 0.05 |
Lactone acidity (meq/kg) | 3.41 ± 0.01 |
Electrical conductivity (ms/cm) | 0.49 ± 0.03 |
Density (g/mL) | 1.40 ± 0.02 |
Ashes (%) | 0.37 ± 0.01 |
No | Compound | % |
---|---|---|
1 | eucalyptol (1,8-cineole) | 90.14 |
2 | α-pinene | 3.85 |
3 | γ-terpinene | 2.39 |
6 | α-phellandrene | 0.96 |
7 | β-pinene | 0.62 |
8 | β-myrcene | 0.58 |
9 | Camphene | 0.48 |
10 | β-ocimene | 0.28 |
Samples | DPPH | RP | LP |
---|---|---|---|
Essential oil | 0.37 ± 0.06 ns | 0.29 ± 0.03 *** | 0.17 ± 0.01 ** |
Honey | 0.28 ± 0.12 * | 0.17 ± 0.06 * | 0.11 ± 0.02 ns |
Mixture | 0.19 ± 0.08 ** | 0.08 ± 0.01 ns | 0.07 ± 0.05 ns |
BHA | 0.5 ± 0.01 | 0.05 ± 0.03 | 0.05 ± 0.03 |
Assay | EGEO (IC50 μg/mL) | E. globulus Honey (IC50 μg/mL) | EGEO/Honey Mixture (IC50 μg/mL) | Quercetin (IC50 μg/mL) |
---|---|---|---|---|
5-Lipoxygenase | 0.88 ± 0.01 **** | 4.23 ± 0.07 **** | 1.02 ± 0.03 **** | 0.09 ± 0.05 |
Tyrosinase | 38.21 ± 0.13 **** | 79.13 ± 0.05 **** | 41.32 ± 0.01 **** | 45.68 ± 0.02 |
Drugs | Dose (mg/kg) | Carrageenan-Induced Hind Paw Edema Volume (mL mean s.e.m.) and % of Inhibition | ||||||
---|---|---|---|---|---|---|---|---|
T0 | 1 h | % inh | 3 h | %inh | 6 h | % inh | ||
Control | - | 0.82 | 1.34 | 1.51 | 1.63 | |||
EGEO | 50 | 0.79 | 1.22 | 17.30 | 1.18 | 43.47 | 1.12 | 59.25 |
100 | 0.73 | 1.13 | 23.07 | 1.04 | 55.07 | 0.98 | 69.13 | |
E. globulus honey | 50 | 0.82 | 1.26 | 15.38 | 1.22 | 42.02 | 1.20 | 53.08 |
100 | 0.83 | 1.25 | 19.23 | 1.20 | 46.37 | 1.14 | 61.72 | |
EGEO and E. globulus honey mixture (1/1) | 50 | 0.80 | 1.18 | 26.92 | 1.15 | 49.27 | 1.12 | 60.49 |
100 | 0.84 | 1.20 | 30.76 | 1.12 | 59.42 | 1.07 | 71.60 | |
Indomethacin | 10 | 0.84 | 1.11 | 48.07 | 1.13 | 57.97 | 1.13 | 64.19 |
Microorganisms | Samples | Controls | |||
---|---|---|---|---|---|
EGEO | E. globulus Honey | Mixture | Chloramphenicol | Nystatin | |
E. coli ATCC 25922 | 17.4 ± 0.1 **** | 10.0 ± 0.1 **** | 13.3 ± 0.1 **** | 22.4 ± 0.0 | nt |
P. mirabilis ATCC 25933 | 16.9 ± 0.1 **** | 9.8 ± 0.1 **** | 13.0 ± 0.1 **** | 22.4 ± 0.1 | nt |
S. typhimurium ATCC 700408 | 14.1 ± 0.1 **** | 8.0 ± 0.0 **** | 10.4 ± 0.1 **** | 13.2 ± 0.1 | nt |
B. subtilis ATCC 6633 | 21.1 ± 0.1 **** | 11.1 ± 0.2 **** | 14.5 ± 0.2 **** | 16.0 ± 0.1 | nt |
S. aureus ATCC 29213 | 20.4 ± 0.2 **** | 10.6 ± 0.1 **** | 14.9 ± 0.1 **** | 25.2 ± 0.1 | nt |
L. monocytogenes ATCC 13932 | 21.4 ± 0.1 **** | 11.0 ± 0.1 **** | 15.1 ± 0.1 **** | 28.9 ± 0.2 | nt |
Candida albicans | 14.8 ± 0.1 **** | 6.0 ± 0.0 **** | 9.8 ± 0.1 **** | NT | 29.0 ± 0.1 |
Trichophyton rubrum | 12.9 ± 0.1 **** | 6.0 ± 0.0 **** | 9.4 ± 0.1 **** | NT | 25.7 ± 0.1 |
Aspergillus niger | 16.9 ± 3.2 *** | 6.0 ± 0.0 **** | 8.8 ± 0.2 **** | NT | 26.4 ± 0.1 |
Microorganisms | Samples % (v/v) | Controls (µg/mL) | ||||||
---|---|---|---|---|---|---|---|---|
EGEO | E. globulus Honey | Mixture | Chloramphenicol | Nystatin | ||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MIC | |
E. coli ATCC 25922 | 1 | 1 | 8 | >8 | 2 | 4 | 4 | NT |
P. mirabilis ATCC 25933 | 1 | 1 | 8 | >8 | 2 | 4 | 4 | NT |
S. typhimurium ATCC 700408 | 2 | 2 | >8 | >8 | 8 | 8 | 64 | NT |
B. subtilis ATCC 6633 | 0.5 | 0.5 | 4 | 8 | 1 | 2 | 32 | NT |
S. aureus ATCC 29213 | 0.5 | 0.5 | 4 | 8 | 1 | 2 | 4 | NT |
L. monocytogenes ATCC 13932 | 0.5 | 0.5 | 4 | 8 | 1 | 2 | 2 | NT |
Candida albicans | 2 | NT | >8 | NT | 8 | NT | NT | 4 |
Trichophyton rubrum | 4 | NT | >8 | NT | 8 | NT | NT | 16 |
Aspergillus niger | 4 | NT | >8 | NT | 8 | NT | NT | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assaggaf, H.M.; Naceiri Mrabti, H.; Rajab, B.S.; Attar, A.A.; Hamed, M.; Sheikh, R.A.; Omari, N.E.; Menyiy, N.E.; Belmehdi, O.; Mahmud, S.; et al. Singular and Combined Effects of Essential Oil and Honey of Eucalyptus Globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and In Vivo Findings. Molecules 2022, 27, 5121. https://doi.org/10.3390/molecules27165121
Assaggaf HM, Naceiri Mrabti H, Rajab BS, Attar AA, Hamed M, Sheikh RA, Omari NE, Menyiy NE, Belmehdi O, Mahmud S, et al. Singular and Combined Effects of Essential Oil and Honey of Eucalyptus Globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and In Vivo Findings. Molecules. 2022; 27(16):5121. https://doi.org/10.3390/molecules27165121
Chicago/Turabian StyleAssaggaf, Hamza M., Hanae Naceiri Mrabti, Bodour S. Rajab, Ammar A. Attar, Munerah Hamed, Ryan A. Sheikh, Nasreddine El Omari, Naoual El Menyiy, Omar Belmehdi, Shafi Mahmud, and et al. 2022. "Singular and Combined Effects of Essential Oil and Honey of Eucalyptus Globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and In Vivo Findings" Molecules 27, no. 16: 5121. https://doi.org/10.3390/molecules27165121
APA StyleAssaggaf, H. M., Naceiri Mrabti, H., Rajab, B. S., Attar, A. A., Hamed, M., Sheikh, R. A., Omari, N. E., Menyiy, N. E., Belmehdi, O., Mahmud, S., Alshahrani, M. M., Park, M. N., Kim, B., Zengin, G., & Bouyahya, A. (2022). Singular and Combined Effects of Essential Oil and Honey of Eucalyptus Globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and In Vivo Findings. Molecules, 27(16), 5121. https://doi.org/10.3390/molecules27165121