Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production
<p>High-resolution scanning electron microscopy mixed backscatter and secondary electron images of immunogold-labelled adhesion molecule-1 (ICAM-1) on the surface of BEAS-2B cells: (<b>a</b>) Lower magnification showing an entire single cell with microvilli on its surface (Internal scale bars = 20 µm). (<b>b</b>–<b>f</b>) One counting field of higher magnification (Internal scale bars = 1 µm) showing (<b>b</b>) fewer gold particles on the surface of non-infected cells, (<b>c</b>) more gold particles on 50 µL (1 MOI) RV16-infected cells, (<b>d</b>) 1 µM and (<b>e</b>) 5 µM cilomilast pre-treatment reduced the numbers of gold particles on RV16-infected cells, (<b>f</b>) no particles on cells labelled with irrelevant mouse myeloma IgG<sub>1−k</sub> (MOPC21) instead of ICAM-1 mAb.</p> "> Figure 2
<p>ICAM-1 gold particle frequency distribution of BEAS-2B cells assessed by high-resolution scanning electron microscopy. The results are expressed as the number of gold particles per 10 μm<sup>2</sup> area surface against the relative frequency with medians and ranges as shown for each group. (<b>a</b>) Non-infected and (<b>b</b>) a significant increase in ICAM-1 expression after RV16 infection for 24 h, ** <span class="html-italic">p</span> < 0.01 versus (vs.) medium only, (<b>c</b>) 1 µM and (<b>d</b>) 5 µM cilomilast pre-treatment significantly reduced ICAM-1 expression on the surface of RV16-infected BEAS-2B cells, <sup>††</sup> <span class="html-italic">p</span> < 0.01 vs. RV16-infected cells (<span class="html-italic">n</span> = 300, Mann–Whitney U-test).</p> "> Figure 3
<p>Box plot of comparisons of ICAM-1 expression on pre-treated BEAS-2B cells. Counts of ICAM-1 gold particles on BEAS-2B cells assessed by high-resolution scanning electron microscopy. The results are expressed as the median, interquartile range, and full range of gold particle numbers per 10 μm<sup>2</sup> area of cell surface for each group. (<b>a</b>) Compared to medium only and UVRV16, RV16 infection significantly increased ICAM-1 gold particles at 24 h. (<b>b</b>) Compared to RV16, both 5 μM and 10 μM cilomilast significantly reduced gold particle number, and dexamethasone (Dex) had the biggest inhibition of RV16-induced ICAM-1 expression. As the positive control, ICAM-1 was up-regulated three-fold higher by a mix of TNF-α + IFN-γ. Results are median (range) (<span class="html-italic">n</span> = 300 cells, Mann–Whitney U-test).</p> "> Figure 4
<p>Time course of 50 μL (1 MOI) RV16 infection for induction of (<b>a</b>) IL-6, (<b>b</b>) CXCL8, and (<b>c</b>) CCL5 protein production from BEAS-2B cells. Exposure of RV16 medium to UV light (UV) or filtration through a 30-kDa filter almost completely abrogated RV16-mediated IL-6, CXCL8, and CCL5 up-regulation. ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 vs. medium, DMSO, filtered RV16, and UVRV16 groups, respectively. Results are mean ± SD (<span class="html-italic">n</span> = 8, paired Student’s <span class="html-italic">t</span>-test).</p> "> Figure 5
<p>Effect of pre-cilomilast on IL-6 protein release from BEAS-2B cells (<b>a</b>) 25–100 µL (0.5–2 MOI) of RV16 infection at 24 h significantly induced IL-6 production to similar levels; also 1 and 5 µM cilomilast significantly enhanced the 25–100 µL RV16-induced IL-6 production in a drug dose-dependent manner. (<b>b</b>) The 1 and 5 µM cilomilast significantly increased 50 µL (1 MOI) RV16-induced IL-6 production in a time-dependent manner, whereas 10 nM Dex significantly decreased 50 µL RV16-induced IL-6 at 24 and 48 h. (<b>c</b>) The 1–10 µM cilomilast significantly increased baseline IL-6 production. ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 vs. medium group; <sup>††</sup> <span class="html-italic">p</span> < 0.01 vs. RV16 groups. Results are mean ± SD (<span class="html-italic">n</span> = 8, paired Student’s <span class="html-italic">t</span>-test).</p> "> Figure 6
<p>Effect of pre-cilomilast on CXCL8 protein production from BEAS-2B cells. (<b>a</b>) The 25–100 µL (0.5–2 MOI) of RV16 infection at 24 h significantly induced CXCL8 production to similar levels, and 1 and 5 µM cilomilast significantly reduced the 25–75 µL (0.5–1.5 MOI) RV16-induced CXCL8 production in a drug dose-dependent manner. (<b>b</b>) Time course of cilomilast on CXCL8 release from 50 µL (1 MOI) RV16-infected BEAS-2B cells. A significant reductive effect of 1 and 5 µM cilomilast was detected only at 24 h, and 10 nM Dex significantly decreased 50 µL RV16-induced CXCL8 from 8 to 48 h. (<b>c</b>) The 5 and 10 µM cilomilast (Cil) significantly inhibited constitutive CXCL8 production at 8 h. * <span class="html-italic">p</span> < 0.05 and *** <span class="html-italic">p</span> < 0.001 vs. medium; <sup>†</sup> <span class="html-italic">p</span> < 0.05 and <sup>††</sup> <span class="html-italic">p</span> < 0.01 vs. RV16 groups. Results are mean ± SD (<span class="html-italic">n</span> = 8, paired Student’s <span class="html-italic">t</span>-test).</p> "> Figure 7
<p>Effect of pre-cilomilast on CCL5 protein production from BEAS-2B cells. (<b>a</b>) The 25–100 µL (0.5–2 MOI) of RV16 infection at 24 h significantly increased CCL5 release in an RV16 dose-dependent manner. The 5 and 10 µM cilomilast doses did not inhibit RV16-induced CCL5 level. (<b>b</b>) Time course of CCL5 production from 50 µL (1 MOI) RV16-infected BEAS-2B cells. The 50 µL RV16 consistently increased CCL5 production in a time-dependent manner, and 10 nM Dex significantly inhibited RV16-induced CCL5 at 48 and 72 h. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 vs. medium groups; <sup>†</sup> <span class="html-italic">p</span> < 0.05 vs. RV16 groups. Results are mean ± SD (<span class="html-italic">n</span> = 8, paired Student’s <span class="html-italic">t</span>-test).</p> "> Figure 8
<p>Effect of pre-cilomilast on 50 µL (1 MOI) RV16-induced IL-6, CXCL8, and CCL5 mRNA synthesis in BEAS-2B cells. (<b>a</b>) RV16 up-regulated IL-6 mRNA synthesis was further increased by 1 and 5 µM cilomilast (Cil) in both a time- and drug dose-dependent manner. The 10 nM Dex significantly inhibited RV16-induced IL-6 mRNA copies from 24 to 72 h. (<b>b</b>) RV16 increased CXCL8 mRNA synthesis in a time-dependent manner, which was suppressed by 1–10 µM Cil at 8 and 24 h in a dose-dependent manner and by 10 nM Dex from 8 to 72 h. (<b>c</b>) RV16 significantly increased CCL5 mRNA production and peaked at 24–48 h. Cil did not significantly inhibit RV16-induced CCL5 mRNA copies. However, 10 nM Dex significantly reduced RV16-induced CCL5 mRNA from 24 to 72 h. ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 vs. medium groups; <sup>†</sup> <span class="html-italic">p</span> < 0.05 and <sup>††</sup> <span class="html-italic">p</span> < 0.01 vs. RV16 groups. Results are mean ± SD (<span class="html-italic">n</span> = 8, paired Student’s <span class="html-italic">t</span>-test).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effects of Cilomilast on RV16-Induced Surface ICAM-1 Expression
2.2. Time and Dose Course of RV16 Infection on IL-6, CXCL8, and CCL5 Protein Production: Relation to Effect of Cilomilast Treatment
2.3. Effects of Cilomilast on RV16-Induced IL-6, CXCL8, and CCL5 mRNA Synthesis
3. Discussion
4. Materials and Methods
4.1. BEAS-2B Cells and Virus Culture
4.2. Reagents
4.3. Infection and Treatment
- (1)
- For pre-cilomilast treatment groups, BEAS-2B cells were incubated with a 0.1–10 µM dose of cilomilast 1 h prior to various doses of 25–100 µL (0.5–2 MOI, multiplicity of infection–infectious units/cell) of RV16.
- (2)
- For post-cilomilast treatment groups, BEAS-2B cells were infected with 25–100 µL of RV16 for 1 h at 33 °C with gentle shaking, after which the virus-containing medium was removed, and the cells were washed. Virus-free media containing 0.1–10 µM cilomilast were added.
4.4. Immunogold Labelling ICAM-1
4.5. ELISA for IL-6, CXCL8 and CCL5 Proteins
4.6. RT-PCR for IL-6, CXCL8 and CCL5 mRNA
4.7. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ab | Antibody |
cAMP | Cyclic ade-nosine-3′,5′-monophosphate |
CCL5 | CC-type chemokine ligand 5 |
Cilomilast | Cil |
COPD | Chronic obstructive pulmonary disease |
Dex | Dexamethasone |
DMSO | Dimethyl sulfoxide |
AP-1 | Activator protein 1 |
CREB | cAMP-responsive elements binding protein |
ELISA | Enzyme-linked immunosorbent assay |
HR-SEM | High-resolution scanning electron microscopy |
ICAM-1 | Intercellular adhesion molecule-1 |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
IFN-γ | Interferon-γ |
LPS | Lipopolysaccharide |
mAb | Monoclonal antibody |
MOI | Multiplicity of infection–infectious units/cell |
NF-κB | Nuclear factor-κB |
PDE4 | Phosphodiesterase-4 |
PKA | Protein kinase A |
RANTES | Regulated on activation normally T cell expressed and secreted |
RT-PCR | Quantitative reverse transcription real-time-polymerase chain reaction |
RV16 | Rhinovirus 16 |
SD | Standard deviation |
TNF-α | Tumour necrosis factor-α |
References
- Rutter, C.S.R.; Pérez Fernández, V.; Pearce, N.; Strachan, D.; Mortimer, K.; Lesosky, M.; Asher, I.; Ellwood, P.; Chiang, C.Y.; García-Marcos, L. The Global Burden of Asthma. Int. J. Tuberc. Lung Dis. 2022, 26, 20–23. [Google Scholar]
- Sharma, M.; Joshi, S.; Banjade, P.; Ghamande, S.A.; Surani, S. Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2023 Guidelines Reviewed. Open Respir. Med. J. 2024, 18, e18743064279064. [Google Scholar]
- Jamee, R.; Castillo, S.P.P.; William, W.B. Asthma exacerbations: Pathogenesis, prevention, and treatment. J. Allergy Clin. Immunol. 2017, 5, 918–927. [Google Scholar]
- Seemungal, T.A.; Donaldson, G.C.; Paul, E.A.; Bestall, J.C.; Jeffries, D.J.; Wedzicha, J.A. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998, 157, 1418–1422. [Google Scholar] [CrossRef]
- Nicholson, K.G.; Kent, J.; Ireland, D.C. Respiratory viruses and exacerbations of asthma in adults. Br. Med. J. 1993, 307, 982–986. [Google Scholar] [CrossRef]
- Wedzicha, J.A.; Seemungal, T.A. COPD exacerbations: Defining their cause and prevention. Lancet 2007, 370, 786–796. [Google Scholar] [CrossRef]
- Johnston, S.L.; Pattemore, P.K.; Sanderson, G.; Smith, S.; Lampe, F.; Josephs, L.; Symington, P.; O’Toole, S.; Myint, S.H.; Tyrrell, D.A.J.; et al. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. Br. Med. J. 1995, 310, 1225–1228. [Google Scholar] [CrossRef]
- Pattemore, P.K.; Johnston, S.L.; Bardin, P.G. Viruses as precipitants of asthma. I. Epidemiology. Clin. Exp. Allergy 1992, 22, 325–336. [Google Scholar] [CrossRef]
- Seemungal, T.A.; Harper-Owen, R.; Bhowmik, A.; Jeffries, D.J.; Wedzicha, J.A. Detection of rhinovirus in induced sputum at exacerbation of chronic obstructive pulmonary disease. Eur. Respir. J. 2000, 16, 677–683. [Google Scholar] [CrossRef]
- Seemungal, T.; Harper-Owen, R.; Bhowmik, A.; Moric, I.; Sanderson, G.; Message, S.; Maccallum, P.; Meade, T.W.; Jeffries, D.J.; Johnston, S.L.; et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001, 164, 1618–1623. [Google Scholar] [CrossRef]
- Jeffery, P.K. Structural and inflammatory changes in COPD: A comparison with asthma. Thorax 1998, 53, 129–136. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhu, J.; Bandi, V.; Guntupalli, K.K.; Jeffery, P.K. Bronchial mucosal inflammation and upregulation of CXC chemoattractants in severe exacerbations of asthma. Thorax 2007, 62, 475–482. [Google Scholar] [CrossRef]
- Zhu, J.; Message, S.D.; Qiu, Y.; Mallia, P.; Kebadze, T.; Contoli, M.; Ward, C.K.; Barnathan, E.S.; Mascelli, M.A.; Kon, O.M.; et al. Airway inflammation and illness severity in response to experimental rhinovirus infection in asthma. Chest 2014, 145, 1219–1229. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, Y.S.; Majumdar, S.; Gamble, E.; Matin, D.; Turato, G.; Fabbri, L.M.; Barnes, N.; Saetta, M.; Jeffery, P.K. Exacerbations of Bronchitis: Bronchial eosinophilia and gene expression for interleukin-4, interleukin-5, and eosinophil chemoattractants. Am. J. Respir. Crit. Care Med. 2001, 164, 109–116. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhu, J.; Bandi, V.; Atmar, R.L.; Hattotuwa, K.; Guntupalli, K.K.; Jeffery, P.K. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003, 168, 968–975. [Google Scholar] [CrossRef]
- Zhu, J.; Mallia, P.; Footitt, J.; Qiu, Y.; Message, S.D.; Kebadze, T.; Aniscenko, J.; Barnes, P.J.; Adcock, I.M.; Kon, O.M.; et al. Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD. J. Allergy Clin. Immunol 2020, 146, 840–850. [Google Scholar] [CrossRef]
- Springer, T.A. Adhesion receptors of the immune system. Nature 1990, 346, 425–433. [Google Scholar] [CrossRef]
- Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 1995, 57, 827–872. [Google Scholar] [CrossRef]
- Grunberg, K.; Sharon, R.F.; Hiltermann, T.J.; Brahim, J.J.; Dick, E.C.; Sterk, P.J.; van Krieken, J.H. Experimental rhinovirus 16 infection increases intercellular adhesion molecule-1 expression in bronchial epithelium of asthmatics regardless of inhaled steroid treatment. Clin. Exp. Allergy 2000, 30, 1015–1023. [Google Scholar] [CrossRef]
- Subauste, M.C.; Jacoby, D.B.; Richards, S.M.; Proud, D. Infection of a human respiratory epithelial cell line with rhinovirus. In duction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J. Clin. Investig. 1995, 96, 549–557. [Google Scholar] [CrossRef]
- Schroth, M.; Grimm, E.; Frindt, P.; Galagan, D.; Konno, S.; Love, R.; Gern, J. Rhinovirus replication causes RANTES production in primary bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 1999, 20, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, H.; Ohtani, T.; Ishida, A.; Kusumi, K.; Kato, M.; Kohno, H.; Odagaki, Y.; Kishikawa, K.; Yamamoto, S.; Takeda, H.; et al. Highly potent PDE4 inhibitors with therapeutic potential. Bioorg. Med. Chem. 2004, 12, 4645–464565. [Google Scholar] [CrossRef] [PubMed]
- Profita, M.; Chiappara, G.; Mirabella, F.; Di Giorgi, R.; Chimenti, L.; Costanzo, G.; Riccobono, L.; Bellia, V.; Bousquet, J.; Vignola, A.M. Effect of cilomilast (Ariflo) on TNF-alpha, IL-8, and GM-CSF release by airway cells of patients with COPD. Thorax 2003, 58, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Spond, J.; Chapman, R.; Fine, J.; Jones, H.; Kreutner, W.; Kung, T.T.; Minnicozzi, M. Comparison of PDE 4 inhibitors, rolipram and SB 207499 (ariflo), in a rat model of pulmonary neutrophilia. Pulm. Pharmacol. Ther. 2001, 14, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Liu, N.; Dass, S.B.; Reiss, T.F.; Knorr, B.A. Randomized, placebo-controlled study of a selective PDE4 inhibitor in the treatment of asthma. Respir. Med. 2009, 103, 342–347. [Google Scholar] [CrossRef]
- Compton, C.H.; Gubb, J.; Nieman, R.; Edelson, J.; Amit, O.; Bakst, A.; Ayres, J.G.; Creemers, J.P.; Schultze-Werninghaus, G.; Brambilla, C.; et al. Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: A randomised, dose-ranging study. Lancet 2001, 358, 265–270. [Google Scholar] [CrossRef]
- Gamble, E.; Burns, W.; Zhu, J.; Ansari, T.; De Rose, V.; Kips, J.; Barnes, N.C.; Jeffery, P.K. Variation of CD8+ T-lymphocytes around the bronchial internal perimeter in chronic bronchitis. Eur. Respir. J 2003, 22, 992–995. [Google Scholar] [CrossRef]
- Guo, J.; Xu, Z.; Gunderson, R.C.; Xu, B.; Michie, S.A. LFA-1/ICAM-1 adhesion pathway mediates the homeostatic migration of lymphocytes from peripheral tissues into lymph nodes through lymphatic vessels. Biomolecules 2023, 13, 1194. [Google Scholar] [CrossRef]
- Dupuy, A.; Aponte-Santamaría, C.; Yeheskel, A.; Hortle, E.; Oehlers, S.H.; Gräter, F.; Hogg, P.J.; Passam, F.H.; Chiu, J. Mechano-Redox Control of Mac-1 De-Adhesion by PDI promotes directional movement under flow. Circ. Res. 2023, 132, e151–e168. [Google Scholar] [CrossRef]
- Ohkawara, Y.; Yamauchi, K.; Maruyama, N.; Hoshi, H.; Ohno, I.; Honma, M.; Tanno, Y.; Tamura, G.; Shirato, K.; Ohtani, H. In situ expression of the cell adhesion molecules in bronchial tissues from asthmatics with air flow limitation: In vivo evidence of VCAM-1/VLA-4 interaction in selective eosinophil infiltration. Am. J. Respir. Cell Mol. Biol. 1995, 12, 4–12. [Google Scholar] [CrossRef]
- Chin, J.E.; Winterrowd, G.E.; Hatfield, C.A.; Brashler, J.R.; Griffin, R.L.; Vonderfecht, S.L.; Kolbasa, K.P.; Fidler, S.F.; Shull, K.L.; Krzesicki, R.F.; et al. Involvement of intercellular adhesion molecule-1 in the antigen-induced infiltration of eosinophils and lymphocytes into the airways in a murine model of pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 1998, 18, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.J.; Cortijo, J.; Taha, M.A.; Cerda-Nicolas, M.; Schatton, E.; Burgbacher, B.; Klar, J.; Tenor, H.; Schudt, C.; Issekutz, A.C.; et al. Roflumilast inhibits leukocyte-endothelial cell interactions, expression of adhesion molecules and microvascular permeability. Br. J. Pharmacol. 2007, 152, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Pietsch, P.; Zepp, A.; Schrör, K.; Baumann, G.; Felix, S.B. Regulation of tumor necrosis factor alpha- and interleukin-1-beta-induced induced adhesion molecule expression in human vascular smooth muscle cells by cAMP. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 2568–2575. [Google Scholar] [CrossRef] [PubMed]
- Yamaya, M.; Nishimura, H.; Hatachi, Y.; Yoshida, M.; Fujiwara, H.; Asada, M.; Nakayama, K.; Yasuda, H.; Deng, X.; Sasaki, T.; et al. Procaterol inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells. Eur. J. Pharmacol. 2011, 650, 431–444. [Google Scholar] [CrossRef]
- Zhu, J.; Rogers, A.V.; Burke-Gaffney, A.; Hellewell, P.G.; Jeffery, P.K. Cytokine-induced airway epithelial ICAM-1 upregulation: Quantification by high-resolution scanning and transmission electron microscopy. Eur. Respir. J. 1999, 13, 1318–1328. [Google Scholar] [CrossRef]
- Marazaki, M.; Kishimoto, T. Interleukin-6. In Guidebook to Cytokines and Their Receptors; Nicola, N.A., Ed.; Oxford University Press: Oxford, UK, 2008; pp. 56–58. [Google Scholar]
- Jenkins, B.J. IL-6 family cytokines: An updated perspective on their broad pathophysiology. Cytokine 2022, 152, 155822. [Google Scholar] [CrossRef]
- Bhowmik, A.; Seemungal, T.A.; Sapsford, R.J.; Wedzicha, J.A. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations [see comments]. Thorax 2000, 55, 114–120. [Google Scholar] [CrossRef]
- Hacievliyagil, S.S.; Gunen, H.; Mutlu, L.C.; Karabulut, A.B.; Teme, İ. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. Respir. Med. 2006, 100, 846–854. [Google Scholar] [CrossRef]
- Wedzicha, J.A.; Seemungal, T.A.; MacCallum, P.K.; Paul, E.A.; Donaldson, G.; Bhowmik, A.; Jeffries, D.J.; Meade, T.W. Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels. Thromb. Haemost. 2000, 84, 210–215. [Google Scholar]
- Aslani, M.R.; Amani, M.; Moghadas, F.; Ghobadi, H. Adipolin and IL-6 Serum Levels in Chronic Obstructive Pulmonary Disease. Adv. Respir. Med. 2022, 90, 391–398. [Google Scholar] [CrossRef]
- Edwards, M.R.; Haas, J.; Panettieri, R.A., Jr.; Johnson, M.; Johnston, S.L. Corticosteroids and beta2 agonists differentially regulate rhinovirus-induced interleukin-6 via distinct Cis-acting elements. J. Biol. Chem. 2007, 282, 15366–15375. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Kawamatawong, T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J. Thorac. Dis. 2017, 9, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Thakur, M.; Mishra, M.; Yadav, M.; Vibhuti, R.; Menon, A.M.; Nagda, G.; Dwivedi, V.P.; Dakal, T.C.; Yadav, V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol. Lett. 2021, 240, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An evolving chemokine. Cytokine 2022, 153, 155828. [Google Scholar] [CrossRef]
- Farivar, A.S.; Merry, H.E.; Fica-Delgado, M.J.; McCourtie, A.S. kinnon-Patterson BC, Mulligan MS. Interleukin-6 regulation of direct lung ischemia reperfusion injury. Ann. Thorac. Surg. 2006, 82, 472–478. [Google Scholar] [CrossRef]
- Tomura, M.; Nakatani, I.; Murachi, M.; Tai, X.G.; Toyo-oka, K.; Fujiwara, H. Suppression of allograft responses induced by interleukin-6, which selectively modulates interferon-gamma but not interleukin-2 production. Transplantation 1997, 64, 757–763. [Google Scholar] [CrossRef]
- Ordonez, C.L.; Shaughnessy, T.E.; Matthay, M.A.; Fahy, J.V. Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma. Clinical and biologic significance. Am. J. Respir. Crit. Care Med. 2000, 161, 1185–1190. [Google Scholar] [CrossRef]
- Persaud, A.T.; Bennett, S.A.; Thaya, L.; Burnie, J.; Guzzo, C. Human monocytes store and secrete preformed CCL5, independent of de novo protein synthesis. J. Leukoc. Biol. 2022, 111, 573–583. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, S.P.; Li, J.Y.; Chen, P.C.; Lee, Y.Z.; Li, K.M.; Zarivach, R.; Sun, Y.J.; Sue, S.C. Integrative Model to Coordinate the Oligomerization and Aggregation Mechanisms of CCL5. J. Mol. Biol. 2020, 432, 1143–1157. [Google Scholar] [CrossRef]
- Alam, R.; Stafford, S.; Forsythe, P.; Harrison, R.; Faubion, D.; Lett-Brown, M.A.; Grant, J.A. RANTES is a chemotactic and activating factor for human eosinophils. J. Immunol. 1993, 150 Pt 1, 3442–3448. [Google Scholar] [CrossRef] [PubMed]
- Schall, T.J.; Bacon, K.; Toy, K.J.; Goeddel, D.V. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990, 347, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Appay, V.; Rowland-Jones, S.L. RANTES: A versatile and controversial chemokine. Trends Immunol. 2001, 22, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, M.; Kale, S.L.; Oriss, T.B.; Gorry, M.; Ramonell, R.P.; Dalton, K.; Ray, P.; Fahy, J.V.; Seibold, M.A.; Castro, M.; et al. CCL5 is a potential bridge between type 1 and type 2 inflammation in asthma. J. Allergy Clin. Immunol. 2023, 152, 94–106. [Google Scholar] [CrossRef]
- Cooper, N.; Teixeira, M.M.; Warneck, J.; Miotla, J.M.; Wills, R.E.; Macari, D.M.; Gristwood, R.W.; Hellewell, P.G. Comparison of the inhibitory activity of PDE4 inhibitors on leukocyte PDE4 activity in vitro and eosinophil trafficking in vivo. Br. J. Pharmacol. 1999, 126, 1863–1871. [Google Scholar] [CrossRef]
- Van Ly, D.; De Pedro, M.; James, P.; Morgan, L.; Black, J.L.; Burgess, J.K.; Oliver, B.G. Inhibition of phosphodiesterase 4 modulates cytokine induction from toll like receptor activated, but not rhinovirus infected, primary human airway smooth muscle. Respir. Res. 2013, 14, 127–138. [Google Scholar] [CrossRef]
- Bodkhe, S.; Nikam, M.; Sherje, A.P.; Khan, T.; Suvarna, V.; Patel, K. Current insights on clinical efficacy of roflumilast for treatment of COPD, asthma and ACOS. Int. Immunopharmacol. 2020, 88, 106906. [Google Scholar] [CrossRef]
- Reddel, R.R.; Yang, K.; Gerwin, B.I.; McMenamin, M.G.; Lecher, J.F.; Su, R.T.; Brash, D.E.; Park, J.B.; Rhim, J.S.; Harris, C.C. Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res. 1988, 48, 1904–1909. [Google Scholar]
- Papi, A.; Johnston, S.L. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kB-mediated transcription. J. Biol. Chem. 1999, 274, 9707–9720. [Google Scholar] [CrossRef]
RV16 + Cilomilast | Control | Cilomilast Only | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Groups | Medium | RV16 | 0.1 μM | 1 μM | 5 μM | 10 μM | TNF-α + IFN-γ | RV16 + 10 nM Dex | 1 μM | 5 μM |
Pre-RV16 M(R) | 7 (0–86) | 29 ** (0–240) | 25 (0–172) | 18 †† (0–160) | 16 †† (0–158) | 16 †† (0–149) | 97 ** (18–360) | 9 †† (0–98) | 4.7 * (0–57) | 4.3 * (0–54) |
Post-RV16 M(R) | 8 (0–92) | 28 ** (0–220) | 26 (0–158) | 25 (0–132) | 17 †† (0–92) | 15 †† (0–109) | 11 †† (0–101) |
Primers: Sense | Primers: Antisense | Probes | |
---|---|---|---|
IL-6 | 5′-CCA GGA GCC CAG CTA TGAAC-3′ | 5′-CCC AGG GAG AAG GCA ACT G-3′ | 5′-(6-FAM) CCT TCT CCA CAA GCG CCT TCG GT (Tamra-Q)-3′ |
CXCL8 | 5′-CTG GCC GTG GCT CTC TTG-3′ | 5′-CCT TGG CAA AAC TGC ACC TT-3′ | 5′-(6-FAM) CAG CCT TCC TGA TTT CTG CAG CTC TGT GT(Tamra-Q)-3′ |
CCL5 | 5′-GCA TCT GCC TCC CCA TATC-3′ | 5′-CAG TGG GCG GGC AATG-3′ | 5′-(6-FAM) TCG GAC ACC ACA CCC TGC TGCT(Tamra-Q)-3′ |
18S rRNA | 5′-CGC CGC TAG AGG TGA AAT TCT-3′ | 5′-CAT TCT TGGCAA ATG CTT TCG-3′ | 5′-(6-FAM) ACC GGC GCA AGACGG ACC AGA(Tamra-Q)-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Edwards, M.R.; Message, S.D.; Stanciu, L.A.; Johnston, S.L.; Jeffery, P.K. Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production. Pharmaceuticals 2024, 17, 1554. https://doi.org/10.3390/ph17111554
Zhu J, Edwards MR, Message SD, Stanciu LA, Johnston SL, Jeffery PK. Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production. Pharmaceuticals. 2024; 17(11):1554. https://doi.org/10.3390/ph17111554
Chicago/Turabian StyleZhu, Jie, Michael R. Edwards, Simon D. Message, Luminita A. Stanciu, Sebastian L. Johnston, and Peter K. Jeffery. 2024. "Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production" Pharmaceuticals 17, no. 11: 1554. https://doi.org/10.3390/ph17111554
APA StyleZhu, J., Edwards, M. R., Message, S. D., Stanciu, L. A., Johnston, S. L., & Jeffery, P. K. (2024). Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production. Pharmaceuticals, 17(11), 1554. https://doi.org/10.3390/ph17111554