Admissibility Analysis and Controller Design Improvement for T-S Fuzzy Descriptor Systems
<p>Controller problem solving process.</p> "> Figure 2
<p>Compare Theorem 3.1 (*) with the feasible domains of [<a href="#B34-symmetry-16-00992" class="html-bibr">34</a>] (∘) and [<a href="#B35-symmetry-16-00992" class="html-bibr">35</a>] (>).</p> "> Figure 3
<p>Compare Theorem 3.2 (<) with [<a href="#B35-symmetry-16-00992" class="html-bibr">35</a>] (∘).</p> "> Figure 4
<p>Inverted pendulum model.</p> "> Figure 5
<p>Fuzzy descriptor system state response with PDC controller.</p> "> Figure 6
<p>Fuzzy descriptor system state response with Non-PDC controller.</p> ">
Abstract
:1. Introduction
2. Problem Formulation and Basic Lemma
- We write system (2) for ease of arithmetic and operations:
3. Main Result
3.1. Admissibility Analysis
3.2. Controller Design
4. Illustrative Examples
- where
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 1, 116–132. [Google Scholar] [CrossRef]
- Wang, H.O.; Tanaka, K.; Griffin, M. Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model. IEEE Int. Fuzzy Syst. Conf. Proc. 1995, 2, 531–538. [Google Scholar]
- Wang, H.O.; Tanaka, K.; Griffin, M. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Syst. 1996, 4, 14–23. [Google Scholar] [CrossRef]
- Tanaka, K.; Hori, T.; Wang, H.O. A multiple Lyapunov function approach to stabilization of fuzzy control systems. Inf. Sci. 2003, 11, 582–589. [Google Scholar] [CrossRef]
- Thierry, M.G.; Laurent, V. LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form. IEEE Trans. Fuzzy Syst. 2004, 40, 823–829. [Google Scholar]
- Chang, X.H.; Yang, G.H. Relaxed stabilization conditions for continuous-time Takagi–Sugeno fuzzy control systems. Inf. Sci. 2010, 180, 3273–3287. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Zhu, B.Y. Analysis and Control for T-S Fuzzy Descriptor Systems; National Defence Industry Press: Beijing, China, 2011. [Google Scholar]
- Zheng, Q.X.; Xu, S.Y.; Zhang, Z.Q. Nonfragile Quantized H∞ Filtering for Discrete-Time Switched T–S Fuzzy Systems with Local Nonlinear Models. IEEE Trans. Fuzzy Syst. 2021, 29, 1507–1517. [Google Scholar] [CrossRef]
- Lv, W.S.; Park, J.H.; Lu, J.W.; Guo, R.N. Adaptive fuzzy output feedback control for a class of uncertain nonlinear systems in the presence of sensor attacks. J. Frankl. Inst. 2023, 360, 2326–2343. [Google Scholar] [CrossRef]
- Zhong, M.; Huang, C.D.; Cao, J.D.; Liu, H. Adaptive fuzzy echo state network optimal synchronization control of hybrid–order chaotic systems via reinforcement learning. Appl. Math. Comput. 2024, 181, 114665. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Wang, J.R.; Yang, Y.W. Some new results on the migrativity of uninorms over overlap and grouping functions. Fuzzy Sets Syst. 2022, 427, 55–70. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Wang, J.R.; Yang, Y.W. Migrative uninorms and nullnorms over t-norms and t-conorms revisited. Fuzzy Sets Syst. 2021, 423, 74–88. [Google Scholar] [CrossRef]
- Li, X.M.; Mehran, K.; Bao, Z.Y. Stability analysis of discrete-time polynomial fuzzy-model-based control systems with time delay and positivity constraints through piecewise Taylor series membership functions. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 7517–7529. [Google Scholar] [CrossRef]
- Wang, D. H∞ control for T-S fuzzy systems based on integral type fuzzy Lyapunov function. J. Bohai Univ. (Nat. Sci. Ed.) 2021, 42, 169–174. [Google Scholar]
- Shanmugam, L.; Joo, Y.H. Adaptive neural networks-based integral sliding mode control for T-S fuzzy model of delayed nonlinear systems. Appl. Math. Comput. 2023, 450, 127983. [Google Scholar]
- Rosenbrock, H.H. Structural properties of linear dynamical systems. Int. J. Control 1974, 20, 191–202. [Google Scholar] [CrossRef]
- Verghese, G.C.; Levy, B.C.; Kailath, T. A generalized state-space for singular system. IEEE Trans. Autom. Control 1981, 26, 811–831. [Google Scholar] [CrossRef]
- Cobb, D. Feedback and pole placement in descriptor variable system. Int. J. Control 1981, 33, 1135–1146. [Google Scholar] [CrossRef]
- Yuan, Y.S.; Lai, L.; Wu, Q.F. A Current-Fed LCL Resonant Converter for Wide Output-Voltage Applications. IEEE Trans. Ind. Electron. 2021, 68, 3939–3948. [Google Scholar] [CrossRef]
- Zhang, K.P.; Jiang, B.; Chen, F.Y. Multiple-model-based diagnosis of multiple faults with high-speed train applications using second-level adaptation. IEEE Trans. Ind. Electron. 2020, 68, 6257–6266. [Google Scholar]
- Liu, P.; Liu, T.; Sun, J.W.; Zeng, Z.G. Predefined-Time Synchronization of Multiple Fuzzy Recurrent Neural Networks via a New Scaling Function. IEEE Trans. Fuzzy Syst. 2024, 32, 1527–1538. [Google Scholar] [CrossRef]
- Sau, N.H.; Hong, D.T.; Huyen, N.T.T.; Huong, B.V.; Mai, V.T. Delay-Dependent and Order-Dependent H∞ Control for Fractional-Order Neural Networks with Time-Varying Delay. Differ. Equ. Dyn. Syst. 2021, 29, 825–839. [Google Scholar] [CrossRef]
- Zhu, J.L.; Wang, T.; Li, T. Stability Criteria of Linear Time-Delay Singular Systems Based on Wirtinger-Type Integral Inequality. J. Shanghai Jiao Tong Univ. 2020, 54, 967–972. [Google Scholar]
- Zhao, Y.H.; Liu, Y.F.; Ma, Y.C. Robust finite-time sliding mode control for discrete-time singular system with time-varying delays. J. Frankl. Inst. 2021, 358, 4848–4863. [Google Scholar] [CrossRef]
- Yang, E.P.; Xue, D.J. Research on Controller Design Based on Deep Learning. Comput. Digit. Eng. 2022, 50, 656–673. [Google Scholar]
- Sun, F.Q. Dynamic Output Feedback H∞ Controller Design for a Class of Integrated Control Systems. J. Jilin Univ. (Sci. Ed.) 2023, 61, 687–694. [Google Scholar]
- Wang, L.K.; Lam, H.K. H∞ control for continuous-time Takagi–Sugeno fuzzy model by applying generalized Lyapunov function and introducing outer variables. Automatica 2021, 125, 109409. [Google Scholar] [CrossRef]
- Hu, G.L.; Zhang, J.; Yan, Z.G. Local H∞ Control for Continuous-Time T-S Fuzzy Systems via Generalized Non-Quadratic Lyapunov Functions. Mathematics 2022, 10, 3438. [Google Scholar] [CrossRef]
- Xu, S.Y.; Song, B.; Lu, J.W.; Lam, J. Robust stability of uncertain discrete-time singular fuzzy systems. Fuzzy Sets Syst. 2007, 158, 2306–2316. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, Q.L.; Zhang, G.F. Admissibility Analysis and Control Synthesis for T–S Fuzzy Descriptor Systems. IEEE Trans. Fuzzy Syst. 2017, 25, 729–740. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Zhang, Q.L.; Zhang, D.Q. Admissible conditions of fuzzy descriptor systems based on fuzzy Lyapunov function approach. Int. J. Inf. Syst. Sci. 2008, 4, 219–232. [Google Scholar]
- Kao, Y.G.; Xie, J.; Wang, C.H. Stabilization of singular Markovian jump systems with generally uncertain transition rates. IEEE Trans. Autom. Control 2014, 59, 2604–2610. [Google Scholar] [CrossRef]
- Tuan, H.D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y. Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 2001, 9, 324–332. [Google Scholar] [CrossRef]
- Tanaka, K.; Ohtake, H.; Wang, H.O. A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions. IEEE Trans. Fuzzy Syst. 2007, 15, 333–341. [Google Scholar] [CrossRef]
- Huang, C.P. Admissibility and Design Issues for T-S Fuzzy Descriptor Systems with Perturbed Derivative Matrices in the Rules. IEEE Trans. Fuzzy Syst. 2022, 30, 2574–2582. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, Q.L.; Ai, J.; Sun, X. Finite-time fuzzy stabilisation and control for nonlinear descriptor systems with non-zero initial state. Int. J. Syst. Sci. 2015, 46, 364–376. [Google Scholar] [CrossRef]
Methods | System Parameters |
---|---|
Theorem 2 | |
Methods | System Parameters |
---|---|
Theorem 3 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhang, S.; Yu, F. Admissibility Analysis and Controller Design Improvement for T-S Fuzzy Descriptor Systems. Symmetry 2024, 16, 992. https://doi.org/10.3390/sym16080992
Yang H, Zhang S, Yu F. Admissibility Analysis and Controller Design Improvement for T-S Fuzzy Descriptor Systems. Symmetry. 2024; 16(8):992. https://doi.org/10.3390/sym16080992
Chicago/Turabian StyleYang, Han, Shuanghong Zhang, and Fanqi Yu. 2024. "Admissibility Analysis and Controller Design Improvement for T-S Fuzzy Descriptor Systems" Symmetry 16, no. 8: 992. https://doi.org/10.3390/sym16080992
APA StyleYang, H., Zhang, S., & Yu, F. (2024). Admissibility Analysis and Controller Design Improvement for T-S Fuzzy Descriptor Systems. Symmetry, 16(8), 992. https://doi.org/10.3390/sym16080992