Simulink Modeling and Analysis of a Three-Dimensional Discrete Memristor Map
<p>Bifurcation diagram of the one−dimensional chaotic map amplifier: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Discrete charge-controlled memristor Simulink model.</p> "> Figure 3
<p>Characteristic curves of the discrete memristor: (<b>a</b>) volt−ampere characteristic curve; (<b>b</b>) the current and voltage sequence output via scope.</p> "> Figure 4
<p>Simulink model of the three−dimensional discrete memristor map (3).</p> "> Figure 5
<p>Simulink simulation phase diagram of the three−dimensional discrete memristor map: (<b>a</b>) (<span class="html-italic">h</span>, <span class="html-italic">μ</span>) = (0.2, 0.75); (<b>b</b>) <span class="html-italic">(h</span>, <span class="html-italic">μ</span>) = (0.2, 0.89).</p> "> Figure 6
<p>Stability distribution of the equilibrium point sets E in the <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>h</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfenced separators="|"> <mrow> <mi>η</mi> </mrow> </mfenced> <mo>−</mo> <mi>ω</mi> </mrow> </semantics></math> parameter plane.</p> "> Figure 7
<p>For fixed <span class="html-italic">k</span> = 0.1, <span class="html-italic">h</span> = 0.5 and (<span class="html-italic">x</span><sub>0</sub>, <span class="html-italic">y</span><sub>0</sub>, z<sub>0</sub>) = (0.1, 0, −1), the largest Lyapunov exponent (<b>top</b>) and bifurcation diagram (<b>bottom</b>) of the three−dimensional discrete memristor map with parameter <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>∈</mo> </mrow> </semantics></math> (0, 1): (<b>a</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; (<b>b</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>The phase plane plots of chaotic/hyperchaotic attractors generated by the new model in the <span class="html-italic">x</span>–<span class="html-italic">y</span> plane for six groups of parameters <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>h</mi> <mo>,</mo> <mo> </mo> <mi>μ</mi> </mrow> </mfenced> </mrow> </semantics></math> with (<span class="html-italic">x</span><sub>0</sub>, <span class="html-italic">y</span><sub>0</sub>, <span class="html-italic">z</span><sub>0</sub>) = (0.1, 0, −1) and r = 2. (<b>a</b>) <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>h</mi> <mo>,</mo> <mo> </mo> <mi>μ</mi> </mrow> </mfenced> <mo>=</mo> <mfenced separators="|"> <mrow> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mn>0.75</mn> </mrow> </mfenced> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>h</mi> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>μ</mi> </mrow> </mfenced> <mo>=</mo> <mfenced separators="|"> <mrow> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mn>0.89</mn> </mrow> </mfenced> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>h</mi> <mo>,</mo> <mo> </mo> <mi>μ</mi> </mrow> </mfenced> <mo>=</mo> <mfenced separators="|"> <mrow> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mn>0.91</mn> </mrow> </mfenced> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>h</mi> <mo>,</mo> <mo> </mo> <mi>μ</mi> </mrow> </mfenced> <mo>=</mo> <mfenced separators="|"> <mrow> <mn>0.05</mn> <mo>,</mo> <mo> </mo> <mn>0.91</mn> </mrow> </mfenced> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>h</mi> <mo>,</mo> <mo> </mo> <mi>μ</mi> </mrow> </mfenced> <mo>=</mo> <mfenced separators="|"> <mrow> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mn>0.66</mn> </mrow> </mfenced> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>h</mi> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>μ</mi> </mrow> </mfenced> <mo>=</mo> <mfenced separators="|"> <mrow> <mn>0.37</mn> <mo>,</mo> <mo> </mo> <mn>0.66</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 9
<p>The basins of attraction in the <span class="html-italic">x</span><sub>0</sub>-<span class="html-italic">y</span><sub>0</sub> initial plane for fixed <span class="html-italic">μ</span> = 0.89 and <span class="html-italic">z</span><sub>0</sub> = − 1 with different coupling parameter values of <span class="html-italic">h</span>, demonstrating the parameter effects of the coupling memristor on the multistability. (<b>a</b>) <span class="html-italic">h</span> = 0.02; (<b>b</b>) <span class="html-italic">h</span> = 0.05; (<b>c</b>) <span class="html-italic">h</span> = 0.08 (<b>d</b>) <span class="html-italic">h</span> = 0.1; (<b>e</b>) <span class="html-italic">h</span> = 0.4; (<b>f</b>) <span class="html-italic">h</span> = 0.5.</p> "> Figure 10
<p>The basins of attraction in the <span class="html-italic">x</span><sub>0</sub>-<span class="html-italic">y</span><sub>0</sub> initial plane for fixed (<span class="html-italic">h</span>, <span class="html-italic">μ</span>) = (0.1, 0.89) with different values of memristor initial condition <span class="html-italic">z</span><sub>0</sub>, demonstrating the initial effects of the coupling memristor on the heterogeneous multistability. (<b>a</b>) <span class="html-italic">z</span><sub>0</sub> = 0; (<b>b</b>) <span class="html-italic">z</span><sub>0</sub> = 0.5; (<b>c</b>) <span class="html-italic">z</span><sub>0</sub> = 1; (<b>d</b>) <span class="html-italic">z</span><sub>0</sub> = 2; (<b>e</b>) <span class="html-italic">z</span><sub>0</sub> = 3; (<b>f</b>) <span class="html-italic">z</span><sub>0</sub> = 4.</p> ">
Abstract
:1. Introduction
2. Discrete Memristor Model and Simulink Simulation
3. Dynamic Characteristic Analysis
3.1. Equilibrium Point and Stability Analysis
3.2. Bifurcation Diagram and Lyapunov Exponent Analysis
3.3. Complexity and Multistability Analysis
3.3.1. Complexity Analysis
3.3.2. Multistability Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, X.; Wang, X.; Xian, Y. Synchronously scramble diffuse image encryption method based on a new cosine chaotic map. Chin. Phys. B 2022, 31, 080504. [Google Scholar]
- Huang, L.; Liu, J.; Xiang, J.; Wang, L.; Zhang, Y. A novel two-dimensional memristive hyperchaotic map and its DSP implementation. Res. Explor. Lab. 2023, 42, 36–40. [Google Scholar]
- Mansouri, A.; Wang, X. A novel one-dimensional chaotic map generator and its application in a new index representation-based image encryption scheme. Inf. Sci. Int. J. 2021, 563, 91–110. [Google Scholar] [CrossRef]
- Fu, T.-K.; He, S.; Sun, K. Simulink modeling and dynamic characteristics of discrete memristor chaotic system. Acta Phys. Sin. 2022, 71, 030501. [Google Scholar] [CrossRef]
- He, S.; Zhan, D.; Wang, H.; Sun, K.; Peng, Y. Discrete Memristor and Discrete Memristive Systems. Entropy 2022, 24, 786. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Sun, K.; He, S. An improved Hénon map based on G-L fractional-order discrete memristor and its FPGA implementation. Eur. Phys. J. Plus 2024, 139, 154. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y. Image encryption using 2d logistic-adjusted-sine map. Inf. Sci. 2016, 339, 237–253. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Banerjee, S.; Cao, Y.; Mou, J. A discrete Chialvo Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application. Chaos Solitons Fractals 2024, 179, 114466. [Google Scholar] [CrossRef]
- Ren, L.; Mou, J.; Banerjee, S.; Zhang, Y. A hyperchaotic map with a new discrete memristor model: Design dynamical analysis, implementation and application. Chaos Solitons Fractals 2023, 167, 113024. [Google Scholar] [CrossRef]
- Laskaridis, L.; Volos, C.; Nistazakis, H.; Meletlidou, E. Exploring the dynamics of a multistable general model of discrete memristor-based map featuring an exponentially varying memristance. Integration 2024, 95, 102131. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Sun, J. Realization of chaotic oscillations using memristor with discrete map. Chaos Solitons Fractals 2019, 138, 122–130. [Google Scholar]
- Wang, C.; Chong, Z.; Zhang, H.; Ma, P.; Dong, W. Color image encryption based on discrete memristor logistic map and DNA encoding. Integration 2024, 96, 102138. [Google Scholar] [CrossRef]
- Lai, Q.; Wan, Z.; Kuate, P.D.K.; Fotsin, H. Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105341. [Google Scholar] [CrossRef]
- Bao, B.; Jiang, T.; Wang, G.; Jin, P.; Bao, H.; Chen, M. Two-memristor-based Chua’s hyper chaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 2017, 89, 1157–1171. [Google Scholar] [CrossRef]
- Li, H.; Hua, Z.; Bao, H.; Zhu, L.; Chen, M.; Bao, B. Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Ind. Electron. 2021, 68, 9931–9940. [Google Scholar] [CrossRef]
- Bao, H.; Hua, Z.; Li, H.; Chen, M.; Bao, B. Discrete memristor hyperchaotic maps. IEEE Trans. Circuits Syst. I Reg. Pap. 2021, 68, 4534–4544. [Google Scholar] [CrossRef]
- Bao, B.; Rong, K.; Li, H.; Li, K.; Hua, Z.; Zhang, X. Memristor-coupled logistic hyperchaotic map. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2992–2996. [Google Scholar] [CrossRef]
- Bao, H.; Li, H.; Hua, Z.; Xu, Q.; Bao, B. Sine-transform-based memristive hyperchaotic model with hardware implementation. IEEE Trans. Ind. Inform. 2023, 19, 2792–2801. [Google Scholar] [CrossRef]
- Yan, M.; Xu, H. The multi-scroll hyper-chaotic coexistence attractors and its application. Signal Process. Image Commun. 2021, 95, 116210. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y.; Guo, J. Design of memristor hyperchaotic circuit with burst oscillation and infinite attractor coexistence and its application. Microelectron. Eng. 2023, 282, 112099. [Google Scholar] [CrossRef]
- Almatroud, A.O.; Grassi, G.; Khennaoui, A.A.; Abbes, A.; Ouannas, A.; Alshammari, S.; Albosaily, S. A novel fractional memristor-based Grassi-Miller map: Hyperchaotic behavior and coexistence of attractors. Alex. Eng. J. 2024, 93, 1–6. [Google Scholar] [CrossRef]
- Li, C.; Yi, C.; Li, Y.; Mitro, S.; Wang, Z. Offset boosting in a discrete system. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 031102. [Google Scholar] [CrossRef]
- Li, C.; Gao, Y.; Lei, T.; Li, R.Y.M.; Xu, Y. Two independent offset controllers in a three-dimensional chaotic system. Int. J. Bifurc. Chaos 2024, 34, 2450008. [Google Scholar] [CrossRef]
- Bao, H.; Rong, K.; Chen, M.; Zhang, X.; Bocheng, B. Multistability and synchronization of discrete maps via memristive coupling. Chaos Solitons Fractals 2023, 174, 113844. [Google Scholar] [CrossRef]
- Xiang, Q.; Shen, Y.; Peng, S.; Liu, M. A Two-Dimensional Discrete Memristor Map: Analysis and Implementation. Int. J. Bifurc. Chaos 2024, 2450124. [Google Scholar] [CrossRef]
Discrete Memristor Map | Parameter | Attractor Type | LE1, LE2 | SE | PE | CorDim |
---|---|---|---|---|---|---|
S-DM [16] | k = 1.84 | Hyperchaos | 0.2554, 0.0972 | 0.9161 | 3.5426 | 1.5764 |
Q-DM [16] | k = 1.78 | Hyperchaos | 0.2692, 0.0925 | 0.9178 | 3.4519 | 1.5349 |
ML [17] | µ = 0.1, k = 1.88 | Hyperchaos | 0.2896, 0.0666 | 0.7877 | 3.5772 | 1.5252 |
2D-MLM [15] | µ = 0.2, k = 2.08 | Hyperchaos | 0.2916, 0.0945 | 0.8247 | 3.9037 | 1.5849 |
3D-MCLM [24] | k = 0.03, µ = 3.9 | Hyperchaos | 0.510, 0.467 | 0.9328 | 3.8820 | 1.620 |
3D-MCLM [24] | k = 0.35, µ = 3.1 | Hyperchaos | 0.255, 0.048 | 0.8884 | 3.9687 | 1.928 |
2D-DM [25] | r = 0.1, h = 1.98 | Hyperchaos | 0.2703, 0.0914 | 0.9222 | 3.4619 | 1.5676 |
Proposed | h = 0.5, µ = 0.7 | Hyperchaos | 0.212, 0.024 | 0.8825 | 3.7123 | 1.9686 |
Proposed | h = 0.37, µ = 0.7 | Hyperchaos | 0.2320, 0.0076 | 0.8852 | 3.9313 | 2.1315 |
Proposed | h = 0.5, µ = 0.59 | Hyperchaos | 0.3934, 0.0152 | 0.8351 | 4.1200 | 2.1358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Shi, H.; Li, R.; Xiang, Q.; Dai, S.; Li, Y. Simulink Modeling and Analysis of a Three-Dimensional Discrete Memristor Map. Symmetry 2024, 16, 990. https://doi.org/10.3390/sym16080990
Peng S, Shi H, Li R, Xiang Q, Dai S, Li Y. Simulink Modeling and Analysis of a Three-Dimensional Discrete Memristor Map. Symmetry. 2024; 16(8):990. https://doi.org/10.3390/sym16080990
Chicago/Turabian StylePeng, Shuangshuang, Honghui Shi, Renwang Li, Qian Xiang, Shaoxuan Dai, and Yilin Li. 2024. "Simulink Modeling and Analysis of a Three-Dimensional Discrete Memristor Map" Symmetry 16, no. 8: 990. https://doi.org/10.3390/sym16080990
APA StylePeng, S., Shi, H., Li, R., Xiang, Q., Dai, S., & Li, Y. (2024). Simulink Modeling and Analysis of a Three-Dimensional Discrete Memristor Map. Symmetry, 16(8), 990. https://doi.org/10.3390/sym16080990