[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = linear matrix inequality (LMI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 822 KiB  
Article
Design of a Finite-Time Bounded Tracking Controller for Time-Delay Fractional-Order Systems Based on Output Feedback
by Jiang Wu, Hao Xie, Tianyi Li, Wenjian He, Tiancan Xi and Xiaoling Liang
Mathematics 2025, 13(2), 200; https://doi.org/10.3390/math13020200 - 9 Jan 2025
Viewed by 239
Abstract
This paper focuses on a class of fractional-order systems with state delays and studies the design problem of the finite-time bounded tracking controller. The error system method in preview control theory is first used. By taking fractional-order derivatives of the state equations and [...] Read more.
This paper focuses on a class of fractional-order systems with state delays and studies the design problem of the finite-time bounded tracking controller. The error system method in preview control theory is first used. By taking fractional-order derivatives of the state equations and error signals, a fractional-order error system is constructed. This transforms the tracking problem of the original system into an input–output finite=time stability problem of the error system. Based on the output equation of the original system and the error signal, an output equation for the error system is constructed, and a memory-based output feedback controller is designed by means of this equation. Using the input–output finite-time stability theory and linear matrix inequality (LMI) techniques, the output feedback gain matrix of the error system is derived by constructing a fractional-order Lyapunov–Krasovskii function. Then, a fractional-order integral of the input to the error system is performed to derive a finite-time bounded tracking controller for the original system. Finally, numerical simulations demonstrate the effectiveness of the proposed method. Full article
41 pages, 1344 KiB  
Article
Robust Position Control of a Knee-Joint Rehabilitation Exoskeleton Using a Linear Matrix Inequalities-Based Design Approach
by Sahar Jenhani, Hassène Gritli and Jyotindra Narayan
Appl. Sci. 2025, 15(1), 404; https://doi.org/10.3390/app15010404 - 4 Jan 2025
Viewed by 478
Abstract
This study focuses on developing a control methodology for exoskeleton robots designed for lower limb rehabilitation, specifically addressing the needs of elderly individuals and pediatric therapy. The approach centers on implementing an affine state-feedback controller to effectively regulate and stabilize the knee-joint exoskeleton [...] Read more.
This study focuses on developing a control methodology for exoskeleton robots designed for lower limb rehabilitation, specifically addressing the needs of elderly individuals and pediatric therapy. The approach centers on implementing an affine state-feedback controller to effectively regulate and stabilize the knee-joint exoskeleton robot at a desired position. The robot’s dynamics are nonlinear, accounting for unknown parameters, solid and viscous frictions, and external disturbances. To ensure robust stabilization, the Lyapunov approach is utilized to derive a set of Linear Matrix Inequality (LMI) conditions, guaranteeing the stability of the position error. The derivation of these LMI conditions is grounded in a comprehensive theoretical framework that employs advanced mathematical tools, including the matrix inversion lemma, Young’s inequality, the Schur complement, the S-procedure, and specific congruence transformations. Simulation results are presented to validate the proposed LMI conditions, demonstrating the effectiveness of the control strategy in achieving robust and accurate positioning of the lower limb rehabilitation exoskeleton robotic system. Full article
Show Figures

Figure 1

Figure 1
<p>Visual depiction of the knee exoskeleton’s geometry [<a href="#B30-applsci-15-00404" class="html-bibr">30</a>], adopted from [<a href="#B51-applsci-15-00404" class="html-bibr">51</a>].</p>
Full article ">Figure 2
<p>Simulated dynamic model of the knee-joint rehabilitation exoskeleton robot implemented in MATLAB/Simulink.</p>
Full article ">Figure 3
<p>Simulation results obtained based on the first designed method. Temporal variation of: (<b>a</b>) the angular position error <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, (<b>b</b>) the angular velocity error <math display="inline"><semantics> <mover accent="true"> <mi>ϕ</mi> <mo>˙</mo> </mover> </semantics></math>, (<b>c</b>) the affine state-feedback controller <span class="html-italic">u</span>, and (<b>d</b>) the lumped disturbance <math display="inline"><semantics> <msub> <mi mathvariant="normal">⁢Δ</mi> <mi>t</mi> </msub> </semantics></math>.</p>
Full article ">Figure 4
<p>Simulation results obtained according to the second designed method. Temporal variation of: (<b>a</b>) the angular position error <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, (<b>b</b>) the angular velocity error <math display="inline"><semantics> <mover accent="true"> <mi>ϕ</mi> <mo>˙</mo> </mover> </semantics></math>, (<b>c</b>) the affine state-feedback controller <span class="html-italic">u</span>, and (<b>d</b>) the lumped disturbance <math display="inline"><semantics> <msub> <mi mathvariant="normal">⁢Δ</mi> <mi>t</mi> </msub> </semantics></math>.</p>
Full article ">Figure 5
<p>Simulation results obtained relying to the third designed method. Temporal variation of: (<b>a</b>) the angular position error <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, (<b>b</b>) the angular velocity error <math display="inline"><semantics> <mover accent="true"> <mi>ϕ</mi> <mo>˙</mo> </mover> </semantics></math>, (<b>c</b>) the affine state-feedback controller <span class="html-italic">u</span>, and (<b>d</b>) the lumped disturbance <math display="inline"><semantics> <msub> <mi mathvariant="normal">⁢Δ</mi> <mi>t</mi> </msub> </semantics></math>.</p>
Full article ">Figure 6
<p>Simulation results obtained using the fourth designed method. Temporal variation of: (<b>a</b>) the angular position error <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, (<b>b</b>) the angular velocity error <math display="inline"><semantics> <mover accent="true"> <mi>ϕ</mi> <mo>˙</mo> </mover> </semantics></math>, (<b>c</b>) the affine state-feedback controller <span class="html-italic">u</span>, and (<b>d</b>) the lumped disturbance <math display="inline"><semantics> <msub> <mi mathvariant="normal">⁢Δ</mi> <mi>t</mi> </msub> </semantics></math>.</p>
Full article ">Figure 7
<p>Comparison of the four approaches: Temporal variation of (<b>a</b>) the angular position error <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, (<b>b</b>) the angular velocity error <math display="inline"><semantics> <mover accent="true"> <mi>ϕ</mi> <mo>˙</mo> </mover> </semantics></math>, (<b>c</b>) the affine state-feedback controller <span class="html-italic">u</span>, and (<b>d</b>) the lumped disturbance <math display="inline"><semantics> <msub> <mi mathvariant="normal">⁢Δ</mi> <mi>t</mi> </msub> </semantics></math>.</p>
Full article ">Figure 8
<p>Simulation results obtained via the fourth design method and by applying the classical PID controller proposed in <a href="#sec6dot2-applsci-15-00404" class="html-sec">Section 6.2</a>. (<b>a</b>) Temporal variation of the angular position error <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, (<b>b</b>) temporal variation of the angular velocity error <math display="inline"><semantics> <mover accent="true"> <mi>ϕ</mi> <mo>˙</mo> </mover> </semantics></math>, (<b>c</b>) temporal evolution of the applied PID controller, and (<b>d</b>) the applied lumped disturbance <math display="inline"><semantics> <msub> <mi mathvariant="normal">⁢Δ</mi> <mi>t</mi> </msub> </semantics></math>.</p>
Full article ">
20 pages, 953 KiB  
Article
Observer-Based Robust H Control for Stochastic Markov Jump Delay Systems Through Dual Adaptive Sliding Mode Approach
by Jianping Deng, Xin Meng and Baoping Jiang
Electronics 2025, 14(1), 132; https://doi.org/10.3390/electronics14010132 - 31 Dec 2024
Viewed by 360
Abstract
This study presents an approach to enhancing the robustness of H control in Ito^-type stochastic Markov jump systems, addressing uncertainties in parameters, time-varying delays, and nonlinear perturbations. In this study, the nonlinearities are not exactly known, so an adaptive [...] Read more.
This study presents an approach to enhancing the robustness of H control in Ito^-type stochastic Markov jump systems, addressing uncertainties in parameters, time-varying delays, and nonlinear perturbations. In this study, the nonlinearities are not exactly known, so an adaptive control strategy is employed. Firstly, an adaptive state observer of full dimension is constructed along with the derivation of error dynamics. Subsequently, different from traditional methods, two linear sliding surfaces are designed, respectively, for the state observer system and error dynamics, resulting in two sliding mode dynamics. Secondly, by employing the linear matrix inequality (LMI) method, sufficient conditions are established to ensure mean-square exponential stability of the closed-loop systems, including observer sliding mode dynamics and error sliding mode dynamics, along with an H attenuation performance index γ. Thirdly, adaptive sliding mode controllers are proposed, ensuring the finite-time arrival and maintenance of the established sliding surfaces. Finally, the efficacy of the derived outcomes is illustrated utilizing the Tunnel Diode circuit model as a demonstrative case study. In this example, the system’s state responses, sliding surface functions, control input, and estimated parameters are simulated under different operating modes and external disturbances. The results demonstrate that the proposed adaptive sliding mode control strategy ensures faster and better convergence compared to error dynamics without control. Full article
(This article belongs to the Special Issue Advanced Control Strategies and Applications of Multi-Agent Systems)
Show Figures

Figure 1

Figure 1
<p>The TD jump circuit model.</p>
Full article ">Figure 2
<p>State responses of <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi mathvariant="bold-italic">x</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> and jump mode under the proposed adaptive control strategy.</p>
Full article ">Figure 3
<p>Sliding surface functions <math display="inline"><semantics> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mi>e</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Control input <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">ϕ</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="bold-italic">u</mi> <mi>i</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> </semantics></math> and estimated parameters for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>The state responses of error dynamics (8) without control and the SMD (16).</p>
Full article ">Figure 6
<p>The state responses of <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi mathvariant="bold-italic">x</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> under traditional feedback control.</p>
Full article ">
22 pages, 11753 KiB  
Article
Transient Stability Analysis for Grid-Connected Renewable Power Generation Systems Based on LMI Optimization Modelling
by Wenzuo Tang, Bo Li, Shuaicheng Hou, Xianqi Shao and Hongjie Yu
Electronics 2024, 13(24), 5052; https://doi.org/10.3390/electronics13245052 - 23 Dec 2024
Viewed by 320
Abstract
Grid-connected renewable power generation systems (RPGSs) may be disconnected from the grid under a transient process, which may possibly induce large-scale power outage accidents. Optimization of parameters based on transient stability analysis of RPGSs would be a feasible solution to such a problem. [...] Read more.
Grid-connected renewable power generation systems (RPGSs) may be disconnected from the grid under a transient process, which may possibly induce large-scale power outage accidents. Optimization of parameters based on transient stability analysis of RPGSs would be a feasible solution to such a problem. However, the accurate stability boundary of a grid-connected RPGS are hard to obtain, as the commonly used transient stability analysis methods have the problems of large computation burden with no quantitative solution (numerical method), low analysis accuracy (equal area method), and complexity or impossibility in implementation (Lyapunov function-based methods). In this paper, a modified transient stability analysis method is proposed. By calculating the largest area of the domain of attraction (LEDA) based on the linear matrix inequality (LMI) method and optimization modelling, and then applying parameter sensitivity analysis to the LEDA, the dominant parameters that have high impacts on the LEDA are revealed. A parameter optimization design method that can improve the system’s transient stability is eventually obtained. A hardware-in-the-loop (HIL) simulation system of a 2 MW grid-connected RPGS is established based on the Typhoon HIL 602 device. The theoretical results are verified by using HIL simulation results. Full article
Show Figures

Figure 1

Figure 1
<p>Structure diagram of the grid-connected inverter.</p>
Full article ">Figure 2
<p>Control structure diagram of the PLL.</p>
Full article ">Figure 3
<p>Equivalent control structure diagram.</p>
Full article ">Figure 4
<p>The sin(<span class="html-italic">x</span><sub>1</sub> + <span class="html-italic">x</span><sub>1,e</sub>) and its Taylor expansion.</p>
Full article ">Figure 5
<p>The sin(<span class="html-italic">x</span><sub>1</sub> + <span class="html-italic">x</span><sub>1,e</sub>) and its Taylor expansion. (<b>a</b>) Phase trajectory diagram before expansion; (<b>b</b>) phase trajectory diagram after expansion.</p>
Full article ">Figure 6
<p>Comparative simulation graph of full-order and reduced-order models: (<b>a</b>) waveform of <span class="html-italic">x</span><sub>1</sub> when <span class="html-italic">U<sub>g</sub></span> drops from 1 p.u. to 0.5 p.u.; (<b>b</b>) waveform of <span class="html-italic">x</span><sub>2</sub> when <span class="html-italic">U<sub>g</sub></span> drops from 1 p.u. to 0.5 p.u.; (<b>c</b>) waveform of <span class="html-italic">x</span><sub>1</sub> when <span class="html-italic">U<sub>g</sub></span> drops from 1 p.u. to 0.4 p.u.; (<b>d</b>) waveform of <span class="html-italic">x</span><sub>2</sub> when <span class="html-italic">U<sub>g</sub></span> drops from 1 p.u. to 0.4 p.u.</p>
Full article ">Figure 7
<p>LEDA under different <span class="html-italic">L<sub>g</sub></span>.</p>
Full article ">Figure 8
<p>LEDA under different <span class="html-italic">k<sub>p</sub>/k<sub>i</sub></span>.</p>
Full article ">Figure 9
<p>LEDA under different <span class="html-italic">U<sub>g</sub></span>.</p>
Full article ">Figure 10
<p>A 3D diagram of critical values of <span class="html-italic">k<sub>p</sub></span> under different <span class="html-italic">U<sub>g</sub></span> and <span class="html-italic">L<sub>g</sub></span>: (<b>a</b>) <span class="html-italic">k<sub>i</sub></span> = 900; (<b>b</b>) <span class="html-italic">k<sub>i</sub></span> = 18,000.</p>
Full article ">Figure 11
<p>Stable and unstable region under <span class="html-italic">k<sub>p</sub></span> = 700, <span class="html-italic">k<sub>i</sub></span> = 900: (<b>a</b>) <span class="html-italic">k<sub>i</sub></span> = 900; (<b>b</b>) <span class="html-italic">k<sub>i</sub></span> = 18,000.</p>
Full article ">Figure 12
<p>Real-time simulation platform.</p>
Full article ">Figure 13
<p>Working point setting for simulation analysis under grid voltage drop.</p>
Full article ">Figure 14
<p>HIL simulation results of simulation analysis under grid voltage drop.</p>
Full article ">Figure 15
<p>Working point setting for simulation analysis of different PLL proportional coefficients.</p>
Full article ">Figure 16
<p>Simulation results of the simulation analysis of different PLL proportional coefficients.</p>
Full article ">Figure 17
<p>Working point setting for simulation analysis of different PLL integral coefficients.</p>
Full article ">Figure 18
<p>Simulation results of simulation analysis of different PLL integral coefficients.</p>
Full article ">Figure 19
<p>Working point setting for simulation analysis under different grid line impedance.</p>
Full article ">Figure 20
<p>Simulation results of simulation analysis under different grid line impedance: (<b>a</b>) working points A and B; (<b>b</b>) working point C.</p>
Full article ">Figure 21
<p>Working point setting for simulation analysis of different <span class="html-italic">d</span>-axis current references at the grid connection point: (<b>a</b>) <span class="html-italic">I<sub>odref</sub></span> = 0.3 p.u.; (<b>b</b>) <span class="html-italic">I<sub>odref</sub></span> = 0.9 p.u.</p>
Full article ">Figure 22
<p>Simulation results of simulation analysis of different <span class="html-italic">d</span>-axis current references at the grid connection point.</p>
Full article ">
14 pages, 290 KiB  
Article
Linear Matrix Inequality-Based Design of Structured Sparse Feedback Controllers for Sensor and Actuator Networks
by Yuta Kawano, Koichi Kobayashi and Yuh Yamashita
Algorithms 2024, 17(12), 590; https://doi.org/10.3390/a17120590 - 21 Dec 2024
Viewed by 359
Abstract
A sensor and actuator network (SAN) is a control system where many sensors and actuators are connected through a communication network. In a SAN with redundant sensors and actuators, it is important to consider choosing sensors and actuators used in control design. Depending [...] Read more.
A sensor and actuator network (SAN) is a control system where many sensors and actuators are connected through a communication network. In a SAN with redundant sensors and actuators, it is important to consider choosing sensors and actuators used in control design. Depending on applications, it is also important to consider not only the choice of sensors/actuators but also that of communication channels in which some sensors/actuators are connected. In this paper, based on a linear matrix inequality (LMI) technique, we propose a design method for structured sparse feedback controllers. An LMI technique is one of the fundamental tools in systems and control theory. First, the sparse reconstruction problems for vectors and matrices are summarized. Next, two design problems are formulated, and an LMI-based solution method is proposed. Finally, two numerical examples are presented to show the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Optimization Methods for Advanced Manufacturing)
Show Figures

Figure 1

Figure 1
<p>Example of SANs, where <math display="inline"><semantics> <msub> <mi>s</mi> <mi>i</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>6</mn> <mo>}</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>a</mi> <mi>i</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>}</mo> </mrow> </semantics></math> are sensors and actuators, respectively. There are three routers.</p>
Full article ">
28 pages, 2214 KiB  
Article
Fault-Tolerant Time-Varying Formation Trajectory Tracking Control for Multi-Agent Systems with Time Delays and Semi-Markov Switching Topologies
by Huangzhi Yu, Kunzhong Miao, Zhiqing He, Hong Zhang and Yifeng Niu
Drones 2024, 8(12), 778; https://doi.org/10.3390/drones8120778 - 20 Dec 2024
Viewed by 395
Abstract
The fault-tolerant time-varying formation (TVF) trajectory tracking control problem is investigated in this paper for uncertain multi-agent systems (MASs) with external disturbances subject to time delays under semi-Markov switching topologies. Firstly, based on the characteristics of actuator faults, a failure distribution model is [...] Read more.
The fault-tolerant time-varying formation (TVF) trajectory tracking control problem is investigated in this paper for uncertain multi-agent systems (MASs) with external disturbances subject to time delays under semi-Markov switching topologies. Firstly, based on the characteristics of actuator faults, a failure distribution model is established, which can better describe the occurrence of the failures in practice. Secondly, switching the network topologies is assumed to follow a semi-Markov stochastic process that depends on the sojourn time. Subsequently, a novel distributed state-feedback control protocol with time-varying delays is proposed to ensure that the MASs can maintain a desired formation configuration. To reduce the impact of disturbances imposed on the system, the H performance index is introduced to enhance the robustness of the controller. Furthermore, by constructing an advanced Lyapunov–Krasovskii (LK) functional and utilizing the reciprocally convex combination theory, the TVF control problem can be transformed into an asymptotic stability issue, achieving the purpose of decoupling and reducing conservatism. Furthermore, sufficient conditions for system stability are obtained through linear matrix inequalities (LMIs). Eventually, the availability and superiority of the theoretical results are validated by three simulation examples. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

Figure 1
<p>Tracking errors of <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math> with TVCDs and external disturbances from <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> s to <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> s. (<b>a</b>) Proposed method; (<b>b</b>) Cheng’s method in [<a href="#B11-drones-08-00778" class="html-bibr">11</a>].</p>
Full article ">Figure 2
<p>Curves of formation performance evaluation with TVCDs and external disturbances from <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> s to <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> s. (<b>a</b>) Proposed method; (<b>b</b>) Cheng’s method in [<a href="#B11-drones-08-00778" class="html-bibr">11</a>].</p>
Full article ">Figure 3
<p>Tracking errors of <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math> with actuator faults under semi-Markov switching topologies.</p>
Full article ">Figure 4
<p>Curves of formation performance evaluation with actuator faults under semi-Markov switching topologies. (<b>a</b>) Proposed method; (<b>b</b>) Miao’s method in [<a href="#B29-drones-08-00778" class="html-bibr">29</a>]; (<b>c</b>) Shen’s method in [<a href="#B44-drones-08-00778" class="html-bibr">44</a>].</p>
Full article ">Figure 5
<p>Topologies structure diagram of MAS (<a href="#FD2-drones-08-00778" class="html-disp-formula">2</a>).</p>
Full article ">Figure 6
<p>Topologies switching.</p>
Full article ">Figure 7
<p>Trajectory tracking 3D diagram.</p>
Full article ">Figure 8
<p>Trajectories on eastern, northern, and vertical position and velocity.</p>
Full article ">Figure 9
<p>Curves of tracking formation performance.</p>
Full article ">
18 pages, 1555 KiB  
Article
State Observer for Time Delay Systems Applied to SIRS Compartmental Epidemiological Model for COVID-19
by Raúl Villafuerte-Segura, Jorge A. Hernández-Ávila, Gilberto Ochoa-Ortega and Mario Ramirez-Neria
Mathematics 2024, 12(24), 4004; https://doi.org/10.3390/math12244004 - 20 Dec 2024
Viewed by 506
Abstract
This manuscript presents a Luenberger-type state observer for a class of nonlinear systems with multiple delays. Sufficient conditions are provided to ensure practical stability of the error dynamics. The exponential decay of the observation error dynamics is guaranteed through the use of Lyapunov–Krasovskii [...] Read more.
This manuscript presents a Luenberger-type state observer for a class of nonlinear systems with multiple delays. Sufficient conditions are provided to ensure practical stability of the error dynamics. The exponential decay of the observation error dynamics is guaranteed through the use of Lyapunov–Krasovskii functionals and the feasibility of linear matrix inequalities (LMIs). Additionally, a time delay SIRS compartmental epidemiological model is introduced, where the time delays correspond to the transition rates between compartments. The model considers that a portion of the recovered population becomes susceptible again after a period that follows its recovery. Three time delays are considered, representing the exchange of individuals between the following compartments: τ1,2,3, the time it takes for an individual to recover from the disease, the time it takes for an individual to lose immunity to the disease, and the incubation period associated to the disease. It is shown that the effective reproduction number of the model depends on the rate at which the susceptible population becomes infected and, after a period of incubation, starts to be infectious, and the fraction of the infectious that recovers after a a certain period of time. An estimation problem is then addressed for the resulting delay model. The observer is capable of estimating the compartmental populations of Susceptible S(t) and Recovered R(t) based solely on the real data available, which correspond to the Infectious population Ir(t). The Ir(t) data used for the state estimation are from a 55-day period of the pandemic in Mexico, reported by the World Health Organization (WHO), before vaccination. Full article
(This article belongs to the Special Issue Advanced Control Systems and Engineering Cybernetics)
Show Figures

Figure 1

Figure 1
<p>Flowchart of the first process: tuning of model parameters <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mo>,</mo> <mspace width="4pt"/> <mi>γ</mi> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>τ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>τ</mi> <mn>2</mn> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mspace width="4pt"/> <msub> <mi>τ</mi> <mn>3</mn> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Block diagram of the second process: estimation of compartmental populations <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Simulation employing the state observer (<a href="#FD29-mathematics-12-04004" class="html-disp-formula">29</a>) and SIRS epidemiological model with three time delays (<a href="#FD17-mathematics-12-04004" class="html-disp-formula">17</a>) using a solution step size <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> day.</p>
Full article ">Figure 4
<p>Simulation employing the state observer (<a href="#FD26-mathematics-12-04004" class="html-disp-formula">26</a>)–(<a href="#FD28-mathematics-12-04004" class="html-disp-formula">28</a>) and real data of <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math><span class="html-italic">Infectious</span> recorded by the WHO using a solution step size <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> day.</p>
Full article ">
17 pages, 1773 KiB  
Article
Robust Distributed Observers for Simultaneous State and Fault Estimation over Sensor Networks
by Dingguo Liang, Yunxiao Ren, Yuezu Lv and Silong Wang
Sensors 2024, 24(23), 7589; https://doi.org/10.3390/s24237589 - 27 Nov 2024
Viewed by 498
Abstract
This paper focuses on simultaneous estimation of states and faults for a linear time-invariant (LTI) system observed by sensor networks. Each sensor node is equipped with an observer, which uses only local measurements and local interaction with neighbors for monitoring. The observability of [...] Read more.
This paper focuses on simultaneous estimation of states and faults for a linear time-invariant (LTI) system observed by sensor networks. Each sensor node is equipped with an observer, which uses only local measurements and local interaction with neighbors for monitoring. The observability of said observer is analyzed where non-local observability of a sensor node is required in terms of the system state and faults. The distributed observers present features of H performance to constrain the influence of disturbances on the estimation errors, for which the global design condition is transformed into a linear matrix inequality (LMI). The LMI is proven to be solvable given collective observability of the system and a suitable H performance index. Moreover, in the case that no disturbances exist, fully distributed observers with adaptive gains are designed to asymptotically estimate the states and faults without using any global information from the network. Finally, the effectiveness of the proposed methods is verified through case studies on a spacecraft’s attitude control system. Full article
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of distributed observer design.</p>
Full article ">Figure 2
<p>Communication topology of the sensor networks.</p>
Full article ">Figure 3
<p>The attitude angles <math display="inline"><semantics> <msup> <mi>x</mi> <mn>1</mn> </msup> </semantics></math>, <math display="inline"><semantics> <msup> <mi>x</mi> <mn>2</mn> </msup> </semantics></math>, and <math display="inline"><semantics> <msup> <mi>x</mi> <mn>3</mn> </msup> </semantics></math> and their estimations in each sensor.</p>
Full article ">Figure 4
<p>The time-varying faults <math display="inline"><semantics> <msup> <mi>f</mi> <mn>1</mn> </msup> </semantics></math>, <math display="inline"><semantics> <msup> <mi>f</mi> <mn>2</mn> </msup> </semantics></math>, and <math display="inline"><semantics> <msup> <mi>f</mi> <mn>3</mn> </msup> </semantics></math> and their estimations in each sensor.</p>
Full article ">Figure 5
<p>The values of <math display="inline"><semantics> <msub> <mi>α</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>α</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>α</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 6
<p>The attitude angular velocities <math display="inline"><semantics> <msup> <mi>x</mi> <mn>1</mn> </msup> </semantics></math>, <math display="inline"><semantics> <msup> <mi>x</mi> <mn>2</mn> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi>x</mi> <mn>3</mn> </msup> </semantics></math> and their estimations in each sensor.</p>
Full article ">Figure 7
<p>The time-varying faults <math display="inline"><semantics> <msup> <mi>f</mi> <mn>1</mn> </msup> </semantics></math>, <math display="inline"><semantics> <msup> <mi>f</mi> <mn>2</mn> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi>f</mi> <mn>3</mn> </msup> </semantics></math> and their estimations in each sensor.</p>
Full article ">
27 pages, 1679 KiB  
Article
T–S Fuzzy Observer-Based Output Feedback Lateral Control of UGVs Using a Disturbance Observer
by Seunghoon Lee, Sounghwan Hwang and Han Sol Kim
Drones 2024, 8(11), 685; https://doi.org/10.3390/drones8110685 - 19 Nov 2024
Cited by 1 | Viewed by 628
Abstract
This paper introduces a novel observer-based fuzzy tracking controller that integrates disturbance estimation to improve state estimation and path tracking in the lateral control systems of Unmanned Ground Vehicles (UGVs). The design of the controller is based on linear matrix inequality (LMI) conditions [...] Read more.
This paper introduces a novel observer-based fuzzy tracking controller that integrates disturbance estimation to improve state estimation and path tracking in the lateral control systems of Unmanned Ground Vehicles (UGVs). The design of the controller is based on linear matrix inequality (LMI) conditions derived from a Takagi–Sugeno fuzzy model and a relaxation technique that incorporates additional null terms. The state observer is developed to estimate both the vehicle’s state and external disturbances, such as road curvature. By incorporating the disturbance observer, the proposed approach effectively mitigates performance degradation caused by discrepancies between the system and observer dynamics. The simulation results, conducted in MATLAB and a commercial autonomous driving simulator, demonstrate that the proposed control method substantially enhances state estimation accuracy and improves the robustness of path tracking under varying conditions. Full article
Show Figures

Figure 1

Figure 1
<p>Graphical representation of the UGV path-following control system.</p>
Full article ">Figure 2
<p>The time responses of the state estimation error (Theorem 2: blue solid line, Theorem 3: red dashed line).</p>
Full article ">Figure 3
<p>The time responses of the disturbance and the estimated disturbance (disturbance: blue solid line, estimated disturbance: red dashed line).</p>
Full article ">Figure 4
<p>The time responses of the output vectors (Theorem 2: blue solid line, Theorem 3: red dashed line).</p>
Full article ">Figure 5
<p>Path-tracking results from MATLAB simulations. Target path (gray thick line), vehicle paths (Theorem 2: red solid line, Theorem 3: yellow dashed line).</p>
Full article ">Figure 6
<p>The time responses of the disturbance (blue solid line) and estimated disturbance (red dashed line).</p>
Full article ">Figure 7
<p>The state responses of the lateral control system (Theorem 2: blue solid line, Theorem 3: red dashed line).</p>
Full article ">Figure 8
<p>Path-tracking results from Commercial Simulator, MORAI. Target path (gray thick line), UGV paths (red dashed line).</p>
Full article ">Figure 9
<p>The time responses of steering angle.</p>
Full article ">Figure 10
<p>The time responses of output variables.</p>
Full article ">
22 pages, 1389 KiB  
Article
Leader-Following Output Feedback H Consensus of Fractional-Order Multi-Agent Systems with Input Saturation
by Hong-Shuo Xing, Driss Boutat and Qing-Guo Wang
Fractal Fract. 2024, 8(11), 667; https://doi.org/10.3390/fractalfract8110667 - 15 Nov 2024
Viewed by 624
Abstract
This paper investigates the leader-following H consensus of fractional-order multi-agent systems (FOMASs) under input saturation via the output feedback. Based on the bounded real lemma for FOSs, the sufficient conditions of H consensus for FOMASs are provided in [...] Read more.
This paper investigates the leader-following H consensus of fractional-order multi-agent systems (FOMASs) under input saturation via the output feedback. Based on the bounded real lemma for FOSs, the sufficient conditions of H consensus for FOMASs are provided in α0,1 and 1,2, respectively. Furthermore, the iterative linear matrix inequalities (ILMIs) approaches are applied for solving quadratic matrix inequalities (QMIs). The ILMI algorithms show a method to derive initial values and transform QMIs into LMIs. Mathematical tools are employed to transform the input saturation issue into optimal solutions of LMIs for estimating stable regions. The ILMI algorithms avoid the conditional constraints on matrix variables during the LMIs’ construction and reduce conservatism. The approach does not disassemble the entire MASs by transformations to the Laplacian matrix, instead adopting a holistic analytical perspective to obtain gain matrices. Finally, numerical examples are conducted to validate the efficiency of the approach. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

Figure 1
<p>Stability region of the system in (<a href="#FD6-fractalfract-08-00667" class="html-disp-formula">6</a>) and region of spec<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>∈</mo> <mfenced separators="" open="(" close=")"> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mfenced> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>∈</mo> <mfenced separators="" open="[" close=")"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The weighted undirected graph in example 1.</p>
Full article ">Figure 3
<p>The control input of each agent in example 1.</p>
Full article ">Figure 4
<p>The state of each agent in example 1.</p>
Full article ">Figure 5
<p>The state of each agent in example 1.</p>
Full article ">Figure 6
<p>The state of each agent in example 1.</p>
Full article ">Figure 7
<p>The state of error system in example 1.</p>
Full article ">Figure 8
<p>The weighted undirected graph in example 2.</p>
Full article ">Figure 9
<p>The control input of each agent in example 2.</p>
Full article ">Figure 10
<p>The state of each agent in example 2.</p>
Full article ">Figure 11
<p>The state of each agent in example 2.</p>
Full article ">Figure 12
<p>The state of each agent in example 2.</p>
Full article ">Figure 13
<p>The state of error system in example 2.</p>
Full article ">
18 pages, 5106 KiB  
Article
An Anti-Interference Control Algorithm for Continuum Robot Arm
by Hongwei Liu, Qianyi Meng and Junlei Wang
Actuators 2024, 13(11), 452; https://doi.org/10.3390/act13110452 - 12 Nov 2024
Viewed by 531
Abstract
The large number of joints in a continuum manipulator complicates its dynamic modeling, making model simplification inevitable for practical motion control. However, due to external disturbances and internal noise, a controller based on the simplified dynamic model often struggles to meet the desired [...] Read more.
The large number of joints in a continuum manipulator complicates its dynamic modeling, making model simplification inevitable for practical motion control. However, due to external disturbances and internal noise, a controller based on the simplified dynamic model often struggles to meet the desired dynamic performance. To address this issue, this paper proposes an anti-interference control algorithm for continuum manipulators, designed to compensate for parameter uncertainties, external disturbances, and measurement noise. At the same time, the parameters of the algorithm are obtained in the form of solvability of linear matrix inequalities (LMIs). The simulation results show that the algorithm proposed in the paper provides better transient performance and is not affected by the entire disturbance. Experimental results further confirm the effectiveness and robustness of the algorithm. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

Figure 1
<p>Continuum robotic arm.</p>
Full article ">Figure 2
<p>The structure of control algorithm.</p>
Full article ">Figure 3
<p>Transient value of <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> obtained under the condition of <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Transient values of <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> obtained under the conditions of algorithms (27) and (28).</p>
Full article ">Figure 5
<p>Results of the transient process of <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Modeling results of <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Transient of <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The transient state of <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>The transient state of <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.0001</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>System hardware.</p>
Full article ">Figure 11
<p>Experimental results of the algorithm proposed in this paper.</p>
Full article ">Figure 12
<p>Results of the algorithm proposed in [<a href="#B22-actuators-13-00452" class="html-bibr">22</a>].</p>
Full article ">
18 pages, 7099 KiB  
Article
Robust Distributed Load Frequency Control for Multi-Area Power Systems with Photovoltaic and Battery Energy Storage System
by Yunrui Lan and Mahesh S. Illindala
Energies 2024, 17(22), 5536; https://doi.org/10.3390/en17225536 - 6 Nov 2024
Viewed by 641
Abstract
The intermittent power generation of renewable energy sources (RESs) interrupts the balance between power generation and demand load due to the increased frequency fluctuation, which challenges the frequency stability analysis and control synthesis of power generation systems. This paper proposes a robust distributed [...] Read more.
The intermittent power generation of renewable energy sources (RESs) interrupts the balance between power generation and demand load due to the increased frequency fluctuation, which challenges the frequency stability analysis and control synthesis of power generation systems. This paper proposes a robust distributed load frequency control (DLFC) scheme for multi-area power systems. Firstly, a multi-area power system is constructed by integrating photovoltaic (PV) and battery energy storage systems (BESSs). Then, by employing the linear matrix inequality (LMI) technique, the sufficient condition capable of ensuring that the proposed controller satisfies H robust performance in the sense of asymptotic stability is derived. Finally, testing is conducted on a four-area renewable power system, and results verify the strong robustness of the proposed controller against load disturbance and intermittence of RESs. Full article
Show Figures

Figure 1

Figure 1
<p>Framework of LFC with PV and BESS.</p>
Full article ">Figure 2
<p>Interconnected topology of a four-area power system with PV and BESS.</p>
Full article ">Figure 3
<p>Dynamics of frequency deviations with changing <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Φ</mi> </mrow> </semantics></math> from 1 p.u. to 0.75 p.u.</p>
Full article ">Figure 4
<p>Dynamics of frequency deviations with changing <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Φ</mi> </mrow> </semantics></math> from 1 p.u. to 0.5 p.u.</p>
Full article ">Figure 5
<p>Dynamics of frequency deviations with changing <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Φ</mi> </mrow> </semantics></math> from 1 p.u. to 0 p.u.</p>
Full article ">Figure 6
<p>Dynamics of PV system. (<b>a</b>) Solar radiation intensity <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Φ</mi> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Comparisons between proposed DLFC, PID, and no control regarding dynamics of frequency deviations in each area.</p>
Full article ">Figure 8
<p>Comparisons between proposed DLFC, PID, and no control regarding dynamics of frequency deviations for PV power capacity as 0.2 p.u.</p>
Full article ">Figure 9
<p>Comparisons between proposed DLFC, PID, and no control regarding dynamics of frequency deviations for PV power capacity as 0.4 p.u.</p>
Full article ">Figure 10
<p>Comparisons between proposed DLFC, PID, and no control regarding dynamics of frequency deviations for PV power capacity as 1 p.u.</p>
Full article ">Figure 11
<p>Comparisons between proposed DLFC, PID, and no control regarding dynamics of frequency deviations for margin of <math display="inline"><semantics> <mrow> <mo>∆</mo> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> as 0.1.</p>
Full article ">Figure 12
<p>Comparisons between proposed DLFC, PID, and no control regarding dynamics of frequency deviations for margin of <math display="inline"><semantics> <mrow> <mo>∆</mo> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> as 0.15.</p>
Full article ">Figure 13
<p>Comparisons between proposed DLFC, PID, and no control regarding dynamics of frequency deviations for margin of <math display="inline"><semantics> <mrow> <mo>∆</mo> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> as 0.2.</p>
Full article ">Figure 14
<p>Dynamics of frequency deviations for margin of <math display="inline"><semantics> <mrow> <mo>∆</mo> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> = 0.1, 0.15, and 0.2.</p>
Full article ">
15 pages, 326 KiB  
Article
Non-Fragile Sampled Control Design for an Interconnected Large-Scale System via Wirtinger Inequality
by Volodymyr Lynnyk and Branislav Rehák
Axioms 2024, 13(10), 702; https://doi.org/10.3390/axioms13100702 - 10 Oct 2024
Viewed by 584
Abstract
A control design for a linear large-scale interconnected system composed of identical subsystems is presented in this paper. The control signal of all subsystems is sampled. For different subsystems, the sampling times are not identical. Nonetheless, it is assumed that a bound exists [...] Read more.
A control design for a linear large-scale interconnected system composed of identical subsystems is presented in this paper. The control signal of all subsystems is sampled. For different subsystems, the sampling times are not identical. Nonetheless, it is assumed that a bound exists for the maximal sampling time. The control algorithm is designed using the Wirtinger inequality, and the non-fragile control law is proposed. The size of the linear matrix inequalities to be solved by the proposed control algorithm is independent of the number of subsystems composing the overall system. Hence, the algorithm is computationally effective. The results are illustrated by two examples. The first example graphically illustrates the function of the proposed algorithm while the second one compares with a method for stabilizing a large-scale system obtained earlier, thus illustrating the improved capabilities of the presented algorithm. Full article
(This article belongs to the Special Issue Advances in Mathematical Methods in Optimal Control and Applications)
Show Figures

Figure 1

Figure 1
<p>Simulation results. Upper subplot: <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> (solid line), <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </semantics></math> (dotted line), <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>5</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> (dashed line), <math display="inline"><semantics> <msub> <mi>x</mi> <mrow> <mn>5</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </semantics></math> (dash-dot line). Lower subplot: the norm of <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 972 KiB  
Article
Robust H Control for Autonomous Underwater Vehicle’s Time-Varying Delay Systems under Unknown Random Parameter Uncertainties and Cyber-Attacks
by Soundararajan Vimal Kumar and Jonghoek Kim
Appl. Sci. 2024, 14(19), 8827; https://doi.org/10.3390/app14198827 - 1 Oct 2024
Cited by 1 | Viewed by 607
Abstract
This paper investigates robust H-based control for autonomous underwater vehicle (AUV) systems under time-varying delay, model uncertainties, and cyber-attacks. Sensor and actuator cyber-attacks can cause faults in the overall AUV system. In addition, the behavior of the system can be affected [...] Read more.
This paper investigates robust H-based control for autonomous underwater vehicle (AUV) systems under time-varying delay, model uncertainties, and cyber-attacks. Sensor and actuator cyber-attacks can cause faults in the overall AUV system. In addition, the behavior of the system can be affected by the presence of complexities, such as unknown random uncertainties that occur in system modeling. In this paper, the robustness against unpredictable random uncertainties is investigated by considering unknown but norm-bounded (UBB) random uncertainties. By constructing a proper Lyapunov–Krasovskii functional (LKF) and using linear matrix inequality (LMI) techniques, new stability criteria in the form of LMIs are derived such that the AUV system is stable. Moreover, this work is novel in addressing robust H control, which considers time-varying delay, cyber-attacks, and randomly occurring uncertainties for AUV systems. Finally, the effectiveness of the proposed results is demonstrated through two examples and their computer simulations. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of AUV system in the presence of cyber-attacks and external disturbances.</p>
Full article ">Figure 2
<p>State trajectories of AUV for Theorem 1.</p>
Full article ">Figure 3
<p>Simulation results for Theorem 1. (<b>a</b>) Comparison of randomly occurring uncertainties <math display="inline"><semantics> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> </semantics></math>. (<b>b</b>) Controller (<a href="#FD2-applsci-14-08827" class="html-disp-formula">2</a>) compared with actuator attack and [<a href="#B19-applsci-14-08827" class="html-bibr">19</a>].</p>
Full article ">Figure 4
<p>Simulation results for Theorem 1. (<b>a</b>) Comparison of output y(t). (<b>b</b>) Disturbance.</p>
Full article ">Figure 5
<p>Simulation results for Theorem 3.</p>
Full article ">Figure 6
<p>State trajectories of AUV for Theorem 2.</p>
Full article ">Figure 7
<p>Simulation results for Theorem 2. (<b>a</b>) Comparison of actuator attack <math display="inline"><semantics> <mrow> <msub> <mi>χ</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) Comparison of controller (<a href="#FD2-applsci-14-08827" class="html-disp-formula">2</a>).</p>
Full article ">Figure 8
<p>Simulation results for Theorem 2. (<b>a</b>) Comparison of output y(t). (<b>b</b>) Time-varying delay <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Simulation results for Theorem 4.</p>
Full article ">
33 pages, 1560 KiB  
Article
New Event-Triggered Synchronization Criteria for Fractional-Order Complex-Valued Neural Networks with Additive Time-Varying Delays
by Haiyang Zhang, Yi Zhao, Lianglin Xiong, Junzhou Dai and Yi Zhang
Fractal Fract. 2024, 8(10), 569; https://doi.org/10.3390/fractalfract8100569 - 28 Sep 2024
Viewed by 730
Abstract
This paper explores the synchronization control issue for a class of fractional-order Complex-valued Neural Networks (FOCVNNs) with additive time-varying delays (TVDs) utilizing a sampled-data-based event-triggered mechanism (SDBETM). First, an innovative free-matrix-based fractional-order integral inequality (FMBFOII) and an improved fractional-order complex-valued integral inequality (FOCVII) [...] Read more.
This paper explores the synchronization control issue for a class of fractional-order Complex-valued Neural Networks (FOCVNNs) with additive time-varying delays (TVDs) utilizing a sampled-data-based event-triggered mechanism (SDBETM). First, an innovative free-matrix-based fractional-order integral inequality (FMBFOII) and an improved fractional-order complex-valued integral inequality (FOCVII) are proposed, which are less conservative than the existing classical fractional-order integral inequality (FOII). Secondly, an SDBETM is inducted to conserve network resources. In addition, a novel Lyapunov–Krasovskii functional (LKF) enriched with additional information regarding the fractional-order derivative, additive TVDs, and triggering instants is constructed. Then, through the integration of the innovative FOCVII, LKF, SDBETM, and other analytical methodologies, we deduce two criteria in the form of linear matrix inequalities (LMIs) to ensure the synchronization of the master–slave FOCVNNs. Finally, numerical simulations are illustrated to confirm the validity of the proposed results. Full article
Show Figures

Figure 1

Figure 1
<p>State trajectories of FOMs <inline-formula><mml:math id="mm252"><mml:semantics><mml:mrow><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> and FOSs <inline-formula><mml:math id="mm253"><mml:semantics><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> (<inline-formula><mml:math id="mm254"><mml:semantics><mml:mrow><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>=</mml:mo><mml:mover accent="true"><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover></mml:mrow></mml:semantics></mml:math></inline-formula>).</p>
Full article ">Figure 2
<p>Control input <italic>u</italic>(<italic>t</italic>).</p>
Full article ">Figure 3
<p>State trajectories of error <inline-formula><mml:math id="mm255"><mml:semantics><mml:mrow><mml:mi>e</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> (<inline-formula><mml:math id="mm256"><mml:semantics><mml:mrow><mml:mi>e</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="fraktur">e</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>).</p>
Full article ">Figure 4
<p>The event-triggered and sampled release instants and intervals.</p>
Full article ">Figure 5
<p>State trajectories of FOMs <inline-formula><mml:math id="mm257"><mml:semantics><mml:mrow><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> and FOSs <inline-formula><mml:math id="mm258"><mml:semantics><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> (<inline-formula><mml:math id="mm259"><mml:semantics><mml:mrow><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>=</mml:mo><mml:mover accent="true"><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover></mml:mrow></mml:semantics></mml:math></inline-formula>).</p>
Full article ">Figure 6
<p>Control input <italic>u</italic>(<italic>t</italic>).</p>
Full article ">Figure 7
<p>State trajectories of error <inline-formula><mml:math id="mm260"><mml:semantics><mml:mrow><mml:mi>e</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> (<inline-formula><mml:math id="mm261"><mml:semantics><mml:mrow><mml:mi>e</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="fraktur">e</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>).</p>
Full article ">Figure 8
<p>The event-triggered and sampled release instants and intervals.</p>
Full article ">Figure 9
<p>State trajectories of FOMs <inline-formula><mml:math id="mm262"><mml:semantics><mml:mrow><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> and FOSs <inline-formula><mml:math id="mm263"><mml:semantics><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> (<inline-formula><mml:math id="mm264"><mml:semantics><mml:mrow><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>=</mml:mo><mml:mover accent="true"><mml:mi mathvariant="fraktur">z</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover></mml:mrow></mml:semantics></mml:math></inline-formula>).</p>
Full article ">Figure 10
<p>Control input <italic>u</italic>(<italic>t</italic>).</p>
Full article ">Figure 11
<p>State trajectories of error <inline-formula><mml:math id="mm265"><mml:semantics><mml:mrow><mml:mi>e</mml:mi><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> (<inline-formula><mml:math id="mm266"><mml:semantics><mml:mrow><mml:mi>e</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="fraktur">e</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>).</p>
Full article ">Figure 12
<p>The event-triggered and sampled release instants and intervals.</p>
Full article ">
Back to TopTop