At Early Rheumatoid Arthritis Stage, the Infectious Spectrum Is Driven by Non-Familial Factors and Anti-CCP Immunization
<p>Flow chart analysis.</p> "> Figure 2
<p>Infectious incidence in the anamnesis and in the previous year at RA onset when comparing eRA patients with healthy controls (<b>left</b>), familial from sporadic eRA patients (<b>middle</b>), and eRA with an elevated immunization status against CCP (<b>left</b>). (<b>A</b>) Infections in the anamnesis of eRA patients. (<b>B</b>) Infections reported in the previous year of eRA. (<b>C</b>) The interplay between herpes reactivation and oral tract infections. Data are presented as log10 (<span class="html-italic">p</span>-value) with a significant threshold fixed at <span class="html-italic">p</span> <math display="inline"><semantics> <mrow> <mo>≤</mo> </mrow> </semantics></math> 0.01 corresponding to the false discovery rate post hoc. Abbreviations: eRA: early rheumatoid arthritis; Cont: healthy controls; aCCP: anti-citrullinated peptide antibodies; Fam: eRA with familial cases of RA; Spo: sporadic eRA without familial cases reported; CMU: women <span class="html-italic">Chlamydia</span>, <span class="html-italic">Mycoplasma</span>, and <span class="html-italic">Ureoplasma</span> species carriage; V-URI: viral-suspected upper respiratory infections; B-URI: bacterial-suspected upper respiratory infections treated with antibiotics; HSV: herpes simplex; UTI: urinary tract infections.</p> "> Figure 3
<p><b>Number of infectious events and duration per event in the previous year at RA onset.</b> (<b>A</b>) Comparison between eRA patients with healthy controls. (<b>B</b>) Comparison between familial and sporadic eRA patients. (<b>C</b>) Comparison between eRA patients having or not having an elevated immunization status against CCP at onset. Data are presented as log10 (<span class="html-italic">p</span>-value) with a significant threshold fixed at <span class="html-italic">p</span> <math display="inline"><semantics> <mrow> <mo>≤</mo> </mrow> </semantics></math> 0.01 corresponding to the false discovery rate post hoc. Abbreviations: eRA: early rheumatoid arthritis; aCCP: anti-citrullinated peptide antibodies; Fam: eRA with familial cases of RA; Spo: sporadic eRA without familial cases reported; V-URI: viral-suspected upper respiratory infections; B-URI: bacterial-suspected upper respiratory infections treated with antibiotics; HSV: herpes simplex; UTI: urinary tract infections.</p> "> Figure 4
<p>Heat map of Spearman correlation between infectious events and clinical features of RA in four subgroups at early (e)RA. (<b>A</b>) Familial eRA; (<b>B</b>) sporadic eRA; (<b>C</b>) eRA patients having an elevated immunization status against CCP; D: eRA patients with a negative or low immunization against CCP. <span class="html-italic">p</span>-values are indicated and considered significant when <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>The link of RA indices and infections in eRAfam and eRAaCCP subgroups (Kruscal–Wallis median test). (<b>a</b>) eRAfam subgroup: the number of swollen joints (68 joint count) was lower in patients with TB in their history when compared with those without this infection (Chi-square = 3.93, df = 1, <span class="html-italic">p</span> = 0.05). (<b>b</b>) eRAfam subgroup: the serum RF level was lower in patients with TB in their history when compared with those without this infection (Chi-square = 4.73, df = 1, <span class="html-italic">p</span> = 0.03). (<b>c</b>) eRAfam subgroup: the ESR was lower in patients with pneumonia in their history when compared with those without this infection (Chi-square = 3.81, df = 1, <span class="html-italic">p</span> = 0.05). (<b>d</b>) eRAaCCP subgroup: the number of swollen joints (68 joint count) was lower in patients with TB in their history when compared with those without this infection (Chi-square = 5.34, df = 1, <span class="html-italic">p</span> = 0.02). (<b>e</b>) eRAaCCP subgroup: the HAQ value was lower in patients with TB in their history when compared with those without this infection (Chi-square = 9.33, df = 1, <span class="html-italic">p</span> = 0.002). (<b>f</b>) eRAaCCP subgroup: the ESR was lower in patients with TB in their history when compared with those without this infection (Chi-square = 4.21, df = 1, <span class="html-italic">p</span> = 0.04).</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Tatarstan’s Cohort
2.2. Infection Spectrum
2.3. Statistical Tests
3. Results
3.1. Infectious History in Patient’s History in Early RA Patients
3.2. Infectious Incidence, Spectrum, and Associations in the Previous Year
3.3. Infectious Number, Duration, Spectrum, and Associations in the Previous Year
3.4. Interplay of Infections and RA Indices in eRA
4. Discussion
- Local mucosal processes caused by the viral infection—epithelial damage and cell loss, breakdown of mucin by viral neuraminidase, increased receptor availability on epithelial cells due to the promotion of augmented bacterial adherence, inhibition of phagocyte function and neutrophil NET functioning, abnormal expression of antimicrobial host defense peptides, and launching of local immunological processes [47,48,49].
- Microbiome structure modulation– viral mucosal inflammation can create a suitable environment for the growth of opportunistic bacteria and lead to the expression of the receptors and, via cleavage of sialic acid, exposure of receptors to bacteria on the mucosal surface. For example, it was demonstrated that treatment with live attenuated influenza vaccines reverses normal bacterial clearance from the nasopharynx and significantly increases the bacterial carriage densities of Streptococcus pneumoniae and Staphylococcus aureus in mice [50,51].
- Viral inhibition of antibacterial defense. Viral respiratory infection leads to a rapid release of type I interferons to limit viral replication, due to the inhibition of some immune processes and to increase the risk of secondary bacterial infection [49]. In addition to the inhibition of various aspects of phagocytosis, type I IFNs decrease the production of IL-1β and IL-23, which are necessary for the polarization of TH17 cells, and decrease the production of IL-17, correlating with reduced clearance of bacteria [52]. It should be noted here that, in contrast to IFN, gamma type I interferon system responses are increased in RA in correlation with AB production [53]. Following type I IFN production, natural killer cells, but also CD4+ T-helper (TH) cells, CD8+ cytotoxic T cells, and neutrophils, start to release IFN-gamma whose action is not so uniquely inhibitory. It was demonstrated in rodent models of S pneumoniae and S aureus pneumonia that neutrophil-produced IFN-gamma was produced due to bacterial clearance [54]. However, as mentioned above, in RA there are certain problems with the adequate production of this factor.
- It is now generally accepted that rheumatoid arthritis is triggered by a latent inflammatory process in the mucous membranes, including the upper respiratory tract. From general considerations, it can be assumed that genetically determined features of the functioning of systemic immunity factors probably also determine the peculiarities of the course of local immune processes in the mucous membranes. This little-studied problem is not the subject of discussion in this article.
- The insufficient functioning of the mannose-binding lectin involved in innate immune signaling due to its gene mutation is associated with persistent St. aureus nasopharyngeal carriage [57]. As discussed above, this factor was found to be decreased in eRA due to its gene SNP.
- Higher levels of IFN gamma were associated with the successful cleansing of S. aureus from the nose during experimental colonization [59]. IFN gamma deficiency in RA was discussed above.
- The HLA-DRB1*04 RA-associated shared epitope was found to be associated with S. aureus infection in the white population [60].
- In chronic tonsillitis, low levels of mannose-binding lectin play a role (in RA, as discussed above) [67].
- Impaired phagocytosis of bacteria [68], (in RA, as discussed above).
- The inflammatory process in the mucous membranes of barrier organs leads to disruption of the microbiome structure and increased mucosal permeability to inflammatory factors and pathogens, as well as to the appearance of portions of post-translationally modified proteins (citrullinated, glycosylated) and the development of an adaptive immune response to them.
- Imperfect control of lymphocyte activity, due to SNPs of PTPN22, CTLA-4, BTLA, and some other elements of the immune response [95,96], makes it difficult to stop immune activity that is no longer needed after recovery from infection. It is also necessary to add the Treg/Th17 balance and imperfect suppressor activity of Treg cells in RA, due, in particular, to the modulation of TNF alpha [97,98,99]. According to some data, suppression of Treg cell activity and a shift in Treg/Th17 balance is fraught with the breakdown of self-tolerance, leading to the progression of RA which might be due to recurrent HSV1/2 infection [100].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arleevskaya, M.; Takha, E.; Petrov, S.; Kazarian, G.; Novikov, A.; Larionova, R.; Valeeva, A.; Shuralev, E.; Mukminov, M.; Bost, C.; et al. Causal risk and protective factors in rheumatoid arthritis: A genetic update. J. Transl. Autoimmun. 2021, 4, 100119. [Google Scholar] [CrossRef] [PubMed]
- Arleevskaya, M.I.; Aminov, R.; Brooks, W.H.; Manukyan, G.; Renaudineau, Y. Editorial: Shaping of Human Immune System and Metabolic Processes by Viruses and Microorganisms. Front. Microbiol. 2019, 10, 816. [Google Scholar] [CrossRef] [PubMed]
- Arleevskaya, M.I.; Kravtsova, O.A.; Lemerle, J.; Renaudineau, Y.; Tsibulkin, A.P. How Rheumatoid Arthritis Can Result from Provocation of the Immune System by Microorganisms and Viruses. Front. Microbiol. 2016, 7, 1296. [Google Scholar] [CrossRef] [PubMed]
- Arleevskaya, M.I.; Gabdoulkhakova, A.G.; Filina, Y.V.; Miftakhova, R.R.; Bredberg, A.; Tsybulkin, A.P. A transient peak of infections during onset of rheumatoid arthritis: A 10-year prospective cohort study. BMJ Open 2014, 4, e005254. [Google Scholar] [CrossRef] [PubMed]
- Larionova, R.V.; Arleevskaya, M.I.; Kravtsova, O.A.; Validov, S.; Renaudineau, Y. In seroconverted rheumatoid arthritis patients a multi-reactive anti-herpes IgM profile is associated with disease activity. Clin. Immunol. 2019, 200, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, H.; Helgason, J. Rheumatoid Arthritis in an Icelandic Textbook from 1782. Scand. J. Rheumatol. 1996, 25, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Weyand, C.M.; Klimiuk, P.A.; Goronzy, J.J. Heterogeneity of rheumatoid arthritis: From phenotypes to genotypes. In Springer Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 1998; Volume 20, pp. 5–22. [Google Scholar] [CrossRef]
- Arleevskaya, M.I.; Boulygina, E.A.; Larionova, R.; Validov, S.; Kravtsova, O.; Shagimardanova, E.I.; Velo, L.; Hery-Arnaud, G.; Carlé, C.; Renaudineau, Y. Anti-Citrullinated Peptide Antibodies Control Oral Porphyromonas and Aggregatibacter species in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2022, 23, 12599. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Arleevskaya, M.I.; Larionova, R.V.; Shagimardanova, E.I.; Gogoleva, N.E.; Kravtsova, O.A.; Novikov, A.A.; Kazarian, G.G.; Carlé, C.; Renaudineau, Y. Predictive risk factors before the onset of familial rheumatoid arthritis: The Tatarstan cohort study. Front. Med. 2023, 10, 1227786. [Google Scholar] [CrossRef]
- Söderlin, M.K.; Bergsten, U.; Svensson, B.; BARFOT Study Group. Patient-reported events preceding the onset of rheumatoid arthritis: Possible clues to aetiology. Musculoskelet. Care 2010, 9, 25–31. [Google Scholar] [CrossRef]
- Arleevskaya, M.I.; Shafigullina, A.Z.; Filina, Y.V.; Lemerle, J.; Renaudineau, Y. Associations between Viral Infection History Symptoms, Granulocyte Reactive Oxygen Species Activity, and Active Rheumatoid Arthritis Disease in Untreated Women at Onset: Results from a Longitudinal Cohort Study of Tatarstan Women. Front. Immunol. 2017, 8, 1725. [Google Scholar] [CrossRef] [PubMed]
- Champely, S.; Ekstrom, C.; Dalgaard, P.; Gill, J.; Weibelzahl, S.; Anandkumar, A.; Ford, C.; Volcic, R.; De Rosario, H. pwr: Basic Functions for Power Analysis CRAN Date/Publication—2020-03-17 12:10:02 UTC. Available online: https://github.com/heliosdrm/pwr (accessed on 19 March 2024).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Kolassa, J.E.; Jankowski, S. MultNonParam: Multivariate Nonparametric Methods. Available online: https://CRAN.R-project.org/package=MultNonParam (accessed on 19 March 2024).
- Augusto, D.G.; Murdolo, L.D.; Chatzileontiadou, D.S.; Sabatino, J.J., Jr.; Yusufali, T.; Peyser, N.D.; Butcher, X.; Kizer, K.; Guthrie, K.; Murray, V.W.; et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 2023, 620, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Kesson, A.M. Management of Neonatal Herpes Simplex Virus Infection. Pediatr. Drugs 2001, 3, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N. Infection of herpes simplex virus (HSV) and Epstein-Barr virus (EBV) in acute tonsillitis–histopathological as-sessment by optical and electron microscopic observation of biopsy specimens of tonsils. Nihon Jibiinkoka Gakkai Kaiho 2001, 104, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Rusan, M.; Klug, T.E.; Henriksen, J.J.; Ellermann-Eriksen, S.; Fuursted, K.; Ovesen, T. The role of viruses in the pathogenesis of peritonsillar abscess. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2335–2343. [Google Scholar] [CrossRef] [PubMed]
- Chayavichitsilp, P.; Buckwalter, J.V.; Krakowski, A.C.; Friedlander, S.F. Herpes simplex. Pediatr Rev. 2009, 30, 119–129, quiz 130. [Google Scholar] [CrossRef] [PubMed]
- Grinde, B. Herpesviruses: Latency and reactivation–viral strategies and host response. J. Oral Microbiol. 2013, 5, 22766. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, J.; Shukla, D. Viral entry mechanisms: Cellular and viral mediators of herpes simplex virus entry. FEBS J. 2009, 276, 7228–7236. [Google Scholar] [CrossRef]
- Bottini, N.; Firestein, G.S. Epigenetics in Rheumatoid Arthritis: A Primer for Rheumatologists. Curr. Rheumatol. Rep. 2013, 15, 372. [Google Scholar] [CrossRef]
- Kang, Y.M.; Kim, S.Y.; Kang, J.H.; Han, S.W.; Nam, E.J.; Kyung, H.S.; Park, J.Y.; Kim, I.S. Light up-regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. Arthritis Rheum. 2007, 56, 1106–1117. [Google Scholar] [CrossRef]
- Shang, Y.; Guo, G.; Cui, Q.; Li, J.; Ruan, Z.; Chen, Y. The Expression and Anatomical Distribution of BTLA and Its Ligand HVEM in Rheumatoid Synovium. Inflammation 2011, 35, 1102–1112. [Google Scholar] [CrossRef]
- Jung, H.W.; La, S.J.; Kim, J.Y.; Heo, S.K.; Kim, J.Y.; Wang, S.; Kim, K.K.; Lee, K.M.; Cho, H.R.; Lee, H.W.; et al. High levels of soluble herpes virus entry mediator in sera of patients with allergic and autoimmune diseases. Exp. Mol. Med. 2003, 35, 501–508. [Google Scholar] [CrossRef]
- Nakano, K.; Asano, R.; Tsumoto, K.; Kwon, H.; Goins, W.F.; Kumagai, I.; Cohen, J.B.; Glorioso, J.C. Herpes simplex virus targeting to the EGF receptor by a gD-specific soluble bridging molecule. Mol Ther. 2005, 11, 617–626. [Google Scholar] [CrossRef]
- Nakamura, N.; Shimaoka, Y.; Tougan, T.; Onda, H.; Okuzaki, D.; Zhao, H.; Fujimori, A.; Yabuta, N.; Nagamori, I.; Tanigawa, A.; et al. Isolation and Expression Profiling of Genes Upregulated in Bone Marrow-Derived Mononuclear Cells of Rheumatoid Arthritis Patients. DNA Res. 2006, 13, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.-F.; Wan, L.; Lin, H.-C.; Huang, C.-M.; Chen, S.-Y.; Liu, S.-C.; Tsai, F.-J. Association of rheumatoid arthritis risk with EGFR genetic polymorphisms in Taiwan’s Han Chinese population. Rheumatol. Int. 2011, 32, 2301–2306. [Google Scholar] [CrossRef]
- Yuan, F.L.; Li, X.; Lu, W.G.; Sun, J.M.; Jiang, D.L.; Xu, R.S. Epidermal growth factor receptor (EGFR) as a therapeutic target in rheu-matoid arthritis. Clin. Rheumatol. 2013, 32, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Summerfield, J.A.; Ryder, S.; Sumiya, M.; Thursz, M.; Gorchein, A.; Monteil, M.A.; Turner, M.W. Mannose binding protein gene mutations associated with unusual and severe infections in adults. Lancet 1995, 345, 886–889. [Google Scholar] [CrossRef]
- Seppänen, M.; Lokki, M.-L.; Lappalainen, M.; Hiltunen-Back, E.; Rovio, A.T.; Kares, S.; Hurme, M.; Aittoniemi, J. Mannose-binding lectin 2 gene polymorphism in recurrent herpes simplex virus 2 infection. Hum. Immunol. 2009, 70, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Put, S.; Schoonooghe, S.; Devoogdt, N.; Schurgers, E.; Avau, A.; Mitera, T.; D’huyvetter, M.; De Baetselier, P.; Raes, G.; Lahoutte, T.; et al. SPECT Imaging of Joint Inflammation with Nanobodies Targeting the Macrophage Mannose Receptor in a Mouse Model for Rheumatoid Arthritis. J. Nucl. Med. 2013, 54, 807–814. [Google Scholar] [CrossRef]
- Jacobsen, S.; Madsen, H.O.; Klarlund, M.E.T.T.E.; Jensen, T.R.I.N.E.; Skjødt, H.E.N.R.I.K.; Jensen, K.E.; Svejgaard, A.; Garred, P.; TIRA Group. The influence of mannose binding lectin polymorphisms on disease outcome in early polyarthritis. J. Rheumatol. 2001, 28, 935–942. [Google Scholar]
- Saevarsdottir, S.; Vikingsdottir, T.; Vikingsson, A.; Manfredsdottir, V.; Geirsson, A.J.; Valdimarsson, H. Low mannose binding lectin predicts poor prognosis in patients with early rheumatoid arthritis. A prospective study. J. Rheumatol. 2001, 28, 728–734. [Google Scholar] [PubMed]
- Olsen, N.; Sokka, T.; Seehorn, C.L.; Kraft, B.; Maas, K.; Moore, J.; Aune, T.M. A gene expression signature for recent onset rheumatoid arthritis in peripheral blood mononuclear cells. Ann. Rheum. Dis. 2004, 63, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Ip, W.K.; Lau, Y.L.; Chan, S.Y.; Mok, C.C.; Chan, D.; Tong, K.K.; Lau, C.S. Mannose-binding lectin and rheumatoid arthritis in southern Chinese. Arthritis Rheum. 2000, 43, 1679–1687. [Google Scholar] [CrossRef]
- Khanna, K.M.; Bonneau, R.H.; Kinchington, P.R.; Hendricks, R.L. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 2003, 18, 593–603. [Google Scholar] [CrossRef]
- Khanna, K.M.; Lepisto, A.J.; Decman, V.; Hendricks, R.L. Immune control of herpes simplex virus during latency. Curr. Opin. Immunol. 2004, 16, 463–469. [Google Scholar] [CrossRef]
- Egan, K.P.; Wu, S.; Wigdahl, B.; Jennings, S.R. Immunological control of herpes simplex virus infections. J. NeuroVirology 2013, 19, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Minami, M.; Kita, M.; Yan, X.Q.; Yamamoto, T.; Iida, T.; Sekikawa, K.; Iwakura, Y.; Imanishi, J. Role of IFN-gamma and tumor necrosis factor-alpha in herpes simplex virus type 1 infection. J. Interferon Cytokine Res. 2002, 22, 671–676. [Google Scholar] [CrossRef]
- Davis, J.M.; Knutson, K.L.; Strausbauch, M.A.; Green, A.B.; Crowson, C.S.; Therneau, T.M.; Matteson, E.L.; Gabriel, S.E. Immune response profiling in early rheumatoid arthritis: Discovery of a novel interaction of treatment response with viral immunity. Arthritis Res. Ther. 2013, 15, R199. [Google Scholar] [CrossRef]
- Motamedifar, M.; Sarvari, J.; Ebrahimpour, A.; Emami, A. Symptomatic Reactivation of HSV Infection Correlates with Decreased Serum Levels of TNF-α. Iran J. Immunol. 2015, 12, 27–34. [Google Scholar]
- Moss, D.J.; Klestov, A.; Burrows, S.; Kane, R.G. A comparison of Epstein-Barr virus-specific T-cell immunity in rheumatoid arthritis and osteoarthritis patients. Aust. J. Exp. Biol. Med. Sci. 1983, 61 Pt 5, 509–516. [Google Scholar] [CrossRef]
- Gaston, J.S.; Rickinson, A.B.; Yao, Q.Y.; Epstein, M.A. The abnormal cytotoxic T cell response to Epstein-Barr virus in rheumatoid arthritis is correlated with disease activity and occurs in other arthropathies. Ann. Rheum. Dis. 1986, 45, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Toussirot, E.; Wendling, D.; Tiberghien, P.; Luka, J.; Roudier, J. Decreased T cell precursor frequencies to Epstein-Barr virus glycoprotein Gp110 in peripheral blood correlate with disease activity and severity in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2000, 59, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Ahmed-Hassan, H.; Sisson, B.; Shukla, R.K.; Wijewantha, Y.; Funderburg, N.T.; Li, Z.; Hayes, D.; Demberg, T.; Liyanage, N.P.M. Innate Immune Responses to Highly Pathogenic Coronaviruses and Other Significant Respiratory Viral Infections. Front. Immunol. 2020, 11, 1979. [Google Scholar] [CrossRef] [PubMed]
- McCullers, J.A. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat. Rev. Microbiol. 2014, 12, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Prasso, J.E.; Deng, J.C. Postviral Complications: Bacterial Pneumonia. Clin. Chest Med. 2017, 38, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.J.; McCullers, J.A.; Klugman, K.P. Live attenuated influenza vaccine enhances colonization of Streptococcus pneumoniae and Staphylococcus aureus in mice. mBio 2014, 5, e01040-13. [Google Scholar] [CrossRef] [PubMed]
- Hanada, S.; Pirzadeh, M.; Carver, K.Y.; Deng, J.C. Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Front. Immunol. 2018, 9, 2640. [Google Scholar] [CrossRef] [PubMed]
- Kudva, A.; Scheller, E.V.; Robinson, K.M.; Crowe, C.R.; Choi, S.M.; Slight, S.R.; Khader, S.A.; Dubin, P.J.; Enelow, R.I.; Kolls, J.K.; et al. Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J Immunol. 2011, 186, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Delgado, J.E.; Bastián-Hernandez, Y.; Macias-Segura, N.; Santiago-Algarra, D.; Castillo-Ortiz, J.D.; Alemán-Navarro, A.L.; Martínez-Tejada, P.; Enciso-Moreno, L.; Garcia-De Lira, Y.; Olguín-Calderón, D.; et al. Type I Interferon Gene Response Is Increased in Early and Established Rheumatoid Arthritis and Correlates with Autoantibody Production. Front Immunol. 2017, 8, 285. [Google Scholar] [CrossRef]
- Gomez, J.C.; Yamada, M.; Martin, J.R.; Dang, H.; Brickey, W.J.; Bergmeier, W.; Dinauer, M.C.; Doerschuk, C.M. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia. Am. J. Respir. Cell Mol. Biol. 2015, 52, 349–364. [Google Scholar] [CrossRef]
- Arleevskaya, M.I.; Gabdoulkhakova, A.G.; Filina, J.V.; Zabotin, A.I.; Tsibulkin, A.P. Mononuclear Phagocytes in Rheumatoid Arthritis Patients and their Relatives-Family Similarity. Open Rheumatol. J. 2011, 5, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Olsson, L.M.; Lindqvist, A.-K.; Källberg, H.; Padyukov, L.; Burkhardt, H.; Alfredsson, L.; Klareskog, L.; Holmdahl, R. A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis Res. Ther. 2007, 9, R98. [Google Scholar] [CrossRef] [PubMed]
- Vuononvirta, J.; Toivonen, L.; Gröndahl-Yli-Hannuksela, K.; Barkoff, A.M.; Lindholm, L.; Mertsola, J.; Peltola, V.; He, Q. Nasopha-ryngeal bacterial colonization and gene polymorphisms of mannose-binding lectin and toll-like receptors 2 and 4 in infants. PLoS ONE 2011, 6, e26198. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.J.; Feldman, J.L.; Beech, J.; Shields, K.M.; Stover, J.A.; Trepicchio, W.L.; Larsen, G.; Foxwell, B.M.J.; Brennan, F.M.; Feldmann, M.; et al. Molecular Profile of Peripheral Blood Mononuclear Cells from Patients with Rheumatoid Arthritis. Mol. Med. 2007, 13, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.L.; Muthukrishnan, G.; Chong, C.; Beavis, A.; Eade, C.R.; Wood, M.P.; Deichen, M.G.; Cole, A.M. Host innate inflammatory factors and staphylococcal protein A influence the duration of human Staphylococcus aureus nasal carriage. Mucosal Immunol. 2016, 9, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- DeLorenze, G.N.; Nelson, C.L.; Scott, W.K.; Allen, A.S.; Ray, G.T.; Tsai, A.-L.; Quesenberry, C.P.; Fowler, V.G. Polymorphisms in HLA Class II Genes Are Associated With Susceptibility to Staphylococcus aureus Infection in a White Population. J. Infect. Dis. 2015, 213, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Dieperink, S.S.; Glintborg, B.; Oestergaard, L.B.; Nørgaard, M.; Benfield, T.; Mehnert, F.; Petersen, A.; Hetland, M.L. Risk factors for Staphylococcus aureus bacteremia in patients with rheumatoid arthritis and incidence compared with the general population: Protocol for a Danish nationwide observational cohort study. BMJ Open 2019, 9, e030999. [Google Scholar] [CrossRef] [PubMed]
- Ataee, R.A.; Kashefi, R.; Alishiri, G.H.; Esmaieli, D. Assay of Blood and Synovial Fluid of Patients with Rheumatoid Arthritis for Staphylococcus aureus Enterotoxin D: Absence of Bacteria But Presence of Its Toxin. Jundishapur J. Microbiol. 2015, 8, e28395. [Google Scholar] [CrossRef]
- Utz, P.J.; Genovese, M.C.; Robinson, W.H. Unlocking the “PAD” lock on rheumatoid arthritis. Ann. Rheum. Dis. 2004, 63, 330–332. [Google Scholar] [CrossRef]
- Kim, V.; Criner, G.J. Chronic Bronchitis and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2013, 187, 228–237. [Google Scholar] [CrossRef]
- Saltanova, Z.E. Chronic tonsillitis, etiological and pathogenetic aspects of the development of metatonsillar complications. Vestn Otorinolaringol. 2015, 80, 65–70. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Bondareva, G.P.; Antonova, N.A.; Chumakov, P.L. Immunomorphological features of chronic tonsillitis. Vestn Otorinolaringol. 2013, 3, 12–16. (In Russian) [Google Scholar]
- Klug, T.E.; Henriksen, J.-J.; Rusan, M.; Fuursted, K.; Krogfelt, K.A.; Ovesen, T.; Struve, C. Antibody development to Fusobacterium necrophorum in patients with peritonsillar abscess. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Ahearn, C.P.; Gallo, M.C.; Murphy, T.F. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog. Dis. 2017, 75, ftx042. [Google Scholar] [CrossRef]
- Wang, B.; Dileepan, T.; Briscoe, S.; Hyland, K.A.; Kang, J.; Khoruts, A.; Cleary, P.P. Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc. Natl. Acad. Sci. USA 2010, 107, 5937–5942. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, S.; Li, H.; Zhu, L.; Wang, Y. Inhibition of the TGF-β/Smads signaling pathway attenuates pulmonary fibrosis and induces anti-proliferative effect on synovial fibroblasts in rheumatoid arthritis. Int. J. Clin. Exp. Pathol. 2019, 12, 1835–1845. [Google Scholar] [PubMed]
- Lee, Y.H.; Bae, S.C. Association between circulating transforming growth factor-β1 level and polymorphisms in systemic lupus erythematosus and rheumatoid arthritis: A meta-analysis. Cell Mol. Biol. 2017, 63, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhao, J.; Lou, A.; Huang, Q.; OuYang, Q.; Zhu, J.; Fan, M.; He, Y.; Ren, H.; Yang, M. Transforming growth factor β1 promotes fibroblast-like synoviocytes migration and invasion via TGF-β1/Smad signaling in rheumatoid arthritis. Mol. Cell Biochem. 2019, 459, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Gideon, H.P.; Flynn, J.L. Latent tuberculosis: What the host “sees”? Immunol. Res. 2011, 50, 202–212. [Google Scholar] [CrossRef]
- Carmona, L.; Hernández-García, C.; Vadillo, C.; Pato, E.; Balsa, A.; González-Alvaro, I.; Belmonte, M.A.; Tena, X.; Sanmartí, R.; EMECAR Study Group. Increased risk of tuberculosis in patients with rheumatoid arthritis. J. Rheumatol. 2003, 30, 1436–1439. [Google Scholar]
- Bekale, R.B.; Du Plessis, S.M.; Hsu, N.J.; Sharma, J.R.; Sampson, S.L.; Jacobs, M.; Meyer, M.; Morse, G.D.; Dube, A. Mycobacterium Tuberculosis and Interactions with the Host Immune System: Opportunities for Nanoparticle Based Immunotherapeutics and Vaccines. Pharm Res. 2018, 36, 8. [Google Scholar] [CrossRef]
- Sia, J.K.; Georgieva, M.; Rengarajan, J. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells. J Immunol Res. 2015, 2015, 747543. [Google Scholar] [CrossRef]
- Gupta, N.; Kumar, R.; Agrawal, B. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells. Front. Immunol. 2018, 9, 709. [Google Scholar] [CrossRef]
- Perry, S.; Chang, A.H.; Sanchez, L.; Yang, S.; Haggerty, T.D.; Parsonnet, J. The immune response to tuberculosis infection in the setting of Helicobacter pylori and helminth infections. Epidemiol. Infect. 2013, 141, 1232–1243. [Google Scholar] [CrossRef]
- Segal, L.N.; Clemente, J.C.; Li, Y.; Ruan, C.; Cao, J.; Danckers, M.; Morris, A.; Tapyrik, S.; Wu, B.G.; Diaz, P.; et al. Anaerobic Bacterial Fermentation Products Increase Tuberculosis Risk in Antiretroviral-Drug-Treated HIV Patients. Cell Host Microbe 2017, 21, 530–537.e4. [Google Scholar] [CrossRef] [PubMed]
- Aravindan, P.P. Host genetics and tuberculosis: Theory of genetic polymorphism and tuberculosis. Lung India 2019, 36, 244–252. [Google Scholar]
- Fernández-Mestre, M.; Villasmil, Á.; Takiff, H.; Fuentes Alcala, Z. NRAMP1 and VDR Gene Polymorphisms in Susceptibility to Tuberculosis in Venezuelan Population. Dis. Markers 2015, 2015, 860628. [Google Scholar] [CrossRef]
- Correa, M.A.; Canhamero, T.; Borrego, A.; Katz, I.S.; Jensen, J.R.; Guerra, J.L.; Cabrera, W.H.; Starobinas, N.; Fernandes, J.G.; Ribeiro, O.G.; et al. Slc11a1 (Nramp-1) gene modulates immune-inflammation genes in macrophages during pristane-induced arthritis in mice. Inflamm. Res. 2017, 66, 969–980. [Google Scholar] [CrossRef]
- Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; et al. Tuberculosis. Nat. Rev. Dis. Primers 2016, 2, 16076. [Google Scholar] [CrossRef]
- Satti, I.; McShane, H. Current approaches toward identifying a correlate of immune protection from tuberculosis. Expert Rev. Vaccines 2018, 18, 43–59. [Google Scholar] [CrossRef]
- Namasivayam, S.; Sher, A.; Glickman, M.S.; Wipperman, M.F. The Microbiome and Tuberculosis: Early Evidence for Cross Talk. mBio 2018, 9, e01420-18. [Google Scholar] [CrossRef]
- Nash, A.A. T Cells and the Regulation of Herpes Simplex Virus Latency and Reactivation. J. Exp. Med. 2000, 191, 1455–1458. [Google Scholar] [CrossRef]
- Borysiewicz, L.K.; Graham, S.; Hickling, J.K.; Mason, P.D.; Sissons, J.G.P. Human cytomegalovirus-specific cytotoxic T cells: Their precursor frequency and stage specificity. Eur. J. Immunol. 1988, 18, 269–275. [Google Scholar] [CrossRef]
- Posavad, C.M.; Huang, M.L.; Barcy, S.; Koelle, D.M.; Corey, L. Long Term Persistence of Herpes Simplex Virus-Specific CD8+ CTL in Persons with Frequently Recurring Genital Herpes. J. Immunol. 2000, 165, 1146–1152. [Google Scholar] [CrossRef]
- van Lint, A.L.; Kleinert, L.; Clarke, S.R.; Stock, A.; Heath, W.R.; Carbone, F.R. Latent infection with herpes simplex virus is associated with ongoing CD8+ T-cell stimulation by parenchymal cells within sensory ganglia. J Virol. 2005, 79, 14843–14851. [Google Scholar] [CrossRef]
- Deshpande, S.P.; Kumaraguru, U.; Rouse, B.T. Dual Role of B Cells in Mediating Innate and Acquired Immunity to Herpes Simplex Virus Infections. Cell. Immunol. 2000, 202, 79–87. [Google Scholar] [CrossRef]
- Youinou, P.; Jamin, C.; PERS, J.O.; Berthou, C.; Saraux, A.; Renaudineau, Y. B lymphocytes are required for development and treatment of autoimmune diseases. Ann. N. Y. Acad. Sci. 2005, 1050, 19–33. [Google Scholar] [CrossRef]
- Gazeau, P.; Devauchelle-Pensec, V.; Pochard, P.; Pers, J.-O.; Saraux, A.; Renaudineau, Y.; Cornec, D. Abatacept efficacy in rheumatoid arthritis is dependent upon baseline blood B-cell levels. Rheumatology 2015, 55, 1138–1140. [Google Scholar] [CrossRef]
- Heo, S.-K.; Ju, S.-A.; Lee, S.-C.; Park, S.-M.; Choe, S.-Y.; Kwon, B.; Kwon, B.S.; Kim, B.-S. LIGHT enhances the bactericidal activity of human monocytes and neutrophils via HVEM. J. Leukoc. Biol. 2005, 79, 330–338. [Google Scholar] [CrossRef]
- Arleevskaya, M.I.; Larionova, R.V.; Brooks, W.H.; Bettacchioli, E.; Renaudineau, Y. Toll-Like Receptors, Infections, and Rheumatoid Arthritis. Clin. Rev. Allergy Immunol. 2020, 58, 172–181. [Google Scholar] [CrossRef]
- Plenge, R.M. Recent progress in rheumatoid arthritis genetics: One step towards improved patient care. Curr. Opin. Rheumatol. 2009, 21, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Oki, M.; Watanabe, N.; Owada, T.; Oya, Y.; Ikeda, K.; Saito, Y.; Matsumura, R.; Seto, Y.; Iwamoto, I.; Nakajima, H. A functional poly-morphism in B and T lymphocyte attenuator is associated with susceptibility to rheumatoid arthritis. Clin. Dev. Immunol. 2011, 2011, 305656. [Google Scholar] [CrossRef] [PubMed]
- Kahmini, F.R.; Shahgaldi, S.; Azimi, M.; Mansourabadi, A.H. Emerging therapeutic potential of regulatory T (Treg) cells for rheumatoid arthritis: New insights and challenges. Int. Immunopharmacol. 2022, 108, 108858. [Google Scholar] [CrossRef] [PubMed]
- Pérol, L.; Lindner, J.M.; Caudana, P.; Nunez, N.G.; Baeyens, A.; Valle, A.; Sedlik, C.; Loirat, D.; Boyer, O.; Créange, A.; et al. Loss of immune tolerance to IL-2 in type 1 diabetes. Nat. Commun. 2016, 7, 13027. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.; Niegowska, M.; Eames, H.L.; Almuttaqi, H.; Arru, G.; Erre, G.L.; Passiu, G.; Khoyratty, T.E.; van Grinsven, E.; Udalova, I.A.; et al. Antibody response to homologous epitopes of Epstein-Barr virus, Mycobacterium avium subsp. paratuberculosis and IRF5 in patients with different connective tissue diseases and in mouse model of antigen-induced arthritis. J. Transl. Autoimmun. 2020, 3, 100048. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.X.; Lei, S.S.; Xu, L.; Wu, S.; Gu, H.P.; Du, Y.; Zhao, T.; Xie, G.Q.; Fan, Y.S.; Pan, X.P.; et al. Herpes simplex virus type I-infected disorders alter the balance between Treg and Th17 cells in recurrent herpes labialis patients. Int. J. Immunopathol. Pharmacol. 2020, 34, 2058738420933099. [Google Scholar] [CrossRef] [PubMed]
- Parton, C.; Ussher, J.M.; Perz, J. Mothers’ experiences of wellbeing and coping while living with rheumatoid arthritis: A qual-itative study. BMC Womens Health 2022, 22, 185. [Google Scholar] [CrossRef] [PubMed]
- Al Juffali, L.; Almalag, H.M.; Alswyan, N.; Almutairi, J.; Alsanea, D.; Alarfaj, H.F.; Alarfaj, A.S.; Abouzaid, H.H.; Omair, M.A. The Patient Activation Measure in Patients with Rheumatoid Arthritis: A Systematic Review and Cross-Sectional Interview-Based Survey. Patient Prefer. Adherence 2022, 16, 2845–2865. [Google Scholar] [CrossRef] [PubMed]
- Almalag, H.M.; Almuhareb, A.M.; Alsharafi, A.A.; Alhawassi, T.M.; Alghamdi, A.A.; Alarfaj, H.; Omair, M.A.; Alomari, B.A.; Alblowi, M.S.; Abouzaid, H.H.; et al. Relationship between different anti-rheumatic drug therapies and complementary and alternative medicine in patients with rheumatoid arthritis: An interview based cross-sectional study. Saudi Pharm. J. 2021, 29, 462–466. [Google Scholar] [CrossRef]
- Wæhrens, E.E.; Bliddal, H.; Danneskiold-Samsøe, B.; Lund, H.; Fisher, A.G. Differences between questionnaire- and interview-based measures of activities of daily living (ADL) ability and their association with observed ADL ability in women with rheumatoid arthritis, knee osteoarthritis, and fibromyalgia. Scand. J. Rheumatol. 2012, 41, 95–102. [Google Scholar] [CrossRef]
- Björk, M.; Thyberg, I.; Valtersson, E.; Östlund, G.; Stenström, B.; Sverker, A. Foot Barriers in Patients With Early Rheumatoid Arthritis: An Interview Study Among Swedish Women and Men. Arthritis Care Res. 2018, 70, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
Controls | eRA | |||||
---|---|---|---|---|---|---|
All | Fam | Spo | * aCCP > 3 ULN | * aCCP Neg/Low | ||
Age, years, median, IQR | 48 (33) | 50.5 (50.5) | 49 (49) | 51 (51) | 52 (20) | 49 (20) |
Gender: female/male (female %) | 382/16 (96) | 192/3 (98.5) | 89/2 (97.8) | 70/1 (98.6) | 65/2 (97.0) | 41/0 (100) |
Fam/Spor (%) | 91/71 (56.2) | 43/24 (64.2) | 23/18 (56.1) | |||
DAS28-ESR, score median (IQR), high/moderate/low, % | 5.2 (45) | 4.7 (48) | 5.5 (44) | 5.5 (47) 54.5/38.2/7.3 | 5.1 (34) 48.6/48.6/2.8 | |
HAQ, score, median (IQR) | 1.38 (33) | 1.16 (25) | 1.88 (38) | 1.2 (100) | 1.88 (74) | |
ESR, mm/hour median (IQR) | 34 (23) | 32 (28) | 33 (22) | 34 (24) | 30 (25) | |
CRP, mg/mL median (IQR) | 8.57 (20) | 10.0 (24) | 7.0 (14.5) | 12.0 (25) | 7.0 (10.5) | |
RF median (IQR) | 56.8 (76.5) | 41.6 (55.5) | 60.0 (65) | 64.0 (24) | 32.0 (57) | |
RF pos/neg (%) | 109/29 (79%) | 51/20 (71.8) | 39/22 (63.9) | 53/14 (79.1) | 28/13 (68.3) | |
aCCP median (IQR) | 116.1 (238.5) | 139.1 (401) | 113.0 (397.5) | 506.0 (645) | ||
aCCP pos/neg (%) | 123/27 (82.0) | 79/3 (96.3) | 58/5 (92.1) |
Infection | Criteria of the Diagnosis | Questionnaire | Clinical Confirmation | ||
---|---|---|---|---|---|
Yes/No | Number | Episode Duration | Yes/No | ||
No infections during last year | Declared by the individual, no clinical manifestation of any infection within the last year. | Yes | - | - | - |
Acute upper respiratory tract infection symptoms (URI) of multiple and unspecified site (ICD10 *: X J06) | URI symptoms: catarrhal phenomena; not accompanied by itchy skin rashes in the form of urticaria, angioedema; gradually developing with a prodromal period in the form of increasing symptoms of malaise (intoxication-like feelings, low-grade fever, headache, myalgia, arthralgia); lasting 3–14 days (in cases not complicated by secondary bacterial infections); developed as a result of contact with an infected persons, as well as after general and local cooling, overheating, or emotional/mental and physical stress (but not after known contact with the individual allergens or potential allergens or while receiving either of the drug); treatment carried out with antiviral and, optionally, antipyretic drugs (but not antihistamines). | Yes | Yes | Yes | No |
Herpes simplex type I/II virus (HSV) infection exacerbations (B00, A60) | HSV infection was evaluated by questioning about typical clinical manifestations (blisters mainly on the lip and nose mucosa after hypothermia events, lack of sleep, mental stress, the effect of local antiviral therapy). In solitary cases of herpetic stomatitis or keratitis, or atypical dermal or mucosal localization of the blisters, the diagnosis was verified by the ear, nose, and throat (ENT) doctor, dentist, dermatologist, or oculist based on the clinical, laboratory (serology), and instrumental examination. In case of genital infections, the frequency and duration of HSV exacerbation events was assessed by a gynecologist. | Yes | Yes | Yes | Yes except blister |
Herpes zoster (B02) | In all cases, the diagnosis was made by a general practitioner based on the clinical, laboratory (serology), and instrumental examination, and further confirmed by a specialist in infectious diseases. | Yes | - | - | Yes |
Tonsillitis/sinusitis/bronchitis/otitis (acute and exacerbations of the chronic) (H60–H95, J00–J05, J42, J20) | The diagnosis was made by a general practitioner who treated the patient in uncomplicated cases. With a more severe/protracted episode, and in all cases of exacerbation of the chronic infectious focus, the diagnosis was verified by an ENT doctor. The use of antihistaminic drugs was an exclusion criterion. | Yes | Yes | Yes | Yes |
Pneumonia ever in life (before RA onset) (J18) | In all cases, the diagnosis was made by a general practitioner and confirmed in the therapeutic department of a regional hospital for treatment. | Yes | Yes | Yes | Yes |
Upper and lower urinary tract infections (acute and exacerbations of the chronic one) (N30, N34.0–34.2, N10, N11) | In all cases, the diagnosis was made by a general practitioner and was confirmed by the urologist who has examined and treated the patient. | Yes | Yes | Yes | Yes |
Oral and odontical infections (K05) | Stomatitis; periodontitis was assessed by a dentist. | Yes | Yes | Yes | Yes |
Skin and soft tissue infections (L00–L99) | Pyoderma, streptoderma, erysipelas, or carbuncle/furuncle was assessed by a dermatologist or a surgeon (in case of surgical opening of carbuncle/furuncle). | Yes | Yes | Yes | Yes |
Tuberculosis in anamnesis (A15–A19) | TB infection in anamnesis verified by TB specialist based on the clinical, laboratory (serology, Quantiferon assay), and instrumental examination. | Yes | - | - | Yes |
Chlamydia, mycoplasma, ureaplasma infection at pregnancy (A60, A63.8, A49.3) | As a laboratory diagnosis of chlamydia, mycoplasma, ureaplasma infection is mandatory for all pregnant women and when planning pregnancy, we also considered asymptomatic carriage of these infections in the laboratory test data. Infectious episodes were assessed by appropriate specialists (gynecologists, ENT doctors, pulmonologists). | Yes | - | - | Yes |
Infections | Controls | eRAall | eRAfam | eRAspo | & aCCP > 3 ULN eRA | & aCCP neg/low eRA |
---|---|---|---|---|---|---|
Ever in life | ||||||
Pneumonia | 54/336 (13.8) | 31/94 (27.8) | 13/58 (18.3) | 12/30 (28.6) | 9/46 (16.4) | 9/18 (33.3) |
eRAfam vs. spo p = 0.1 ** 1-β = 0.2 (80%) | aCCP high vs. neg/low p = 0.04 1-β = 0.3 (70%) | |||||
vs. Controls p = | 0.002 1-β = 0.7 (30%) | 0.2 1-β = 0.1 (90%) | 0.006 1-β = 0.6 (40%) | 0.3 1-β = 0.06 (94%) | 0.003 1-β = 0.7 (30%) | |
Herpes zoster | 5/391 (1.3) | 5/163 (3.0) | 1/78 (1.3) | 1/55 (1.8) | 1/58 (1.7) | 1/33 (2.9) |
eRAfam vs. spo p = 0.4 1-β = 0.04 (96%) | aCCP high vs. neg/low p = 0.3 1-β = 0.06 (94%) | |||||
vs. Controls p = | 0.08 1-β = 0.2 (80%) | 0.5 1-β = 0.03 (97%) | 0.4 1-β = 0.04 (96%) | 0.4 1-β = 0.04 (96%) | 0.2 1-β = 0.1 (90%) | |
Tuberculosis | 1/354 (0.28) | 15/80 (15.8) | 12/45 (21.1) | 3/31 (8.8) | 7/35 (16.7) | 3/18 (14.3) |
eRAfam vs. spo p = 0.06 1-β = 0.2 (80%) | aCCP high vs. neg/low p = 0.4 1-β = 0.04 (96%) | |||||
vs. Controls p = | 0.0001 1-β = 0.9 (1%) | 0.0001 1-β = 0.9 (1%) | 0.0001 1-β = 0.9 (1%) | 0.0001 1-β = 0.9 (1%) | 0.0001 1-β = 0.9 (1%) | |
Carriage of Chlamydia, Mycoplasma, and Ureoplasma sp. | 14/65 (17.7) | 19/38 (33.3) | 11/23 (32.3) | 8/15 (34.7) | 12/22 (35.3) | 2/12 (14.3) |
eRAfam vs. spo p = 0.4 1-β = 0.04 (96%) | aCCP high vs. neg/low p = 0.07 1-β = 0.2 (80%) | |||||
vs. Controls p = | 0.02 1-β = 0.4 (96%) | 0.04 1-β = 0.3 (70%) | 0.04 1-β = 0.3 (70%) | 0.02 1-β = 0.4 (60%) | p = 0.4 1-β = 0.04 (96%) |
Infections | Controls | eRAall | eRAfam | eRAspo | & aCCP > 3 ULN eRA | & aCCP Neg/Low eRA |
---|---|---|---|---|---|---|
All infections (there were infections/year or not one infection/year) | 337/61 (84.7) | 184/11 (94.4) | 89/2 (97.8) | 66/5 (93.0) | 63/4 (94.0) | 39/2 (95.1) |
p = 0.1 * 1-β = 0.2 | p = 0.4 1-β = 0.04 | |||||
vs. Controls p = | 0.0003 1-β = 0.9 (10%) | 0.0004 1-β = 0.8 (20%) | 0.02 1-β = 0.4 (60%) | 0.02 1-β = 0.4 (60%) | 0.03 1-β = 0.3 (70%) | |
V-URI | 229/169 (57.5) | 106/89 (54,4) | 57/34 (62.6) | 39/32 (54.9) | 42/25 (62.6) | 27/14 (65.9) |
p = 0.2 1-β = 0.1 (90%) | p = 0.4 1-β = 0.04 (96%) | |||||
vs. Controls p = | 0.2 1-β = 0.1 (90%) | 0.2 1-β = 0.1 (90%) | 0.1 1-β = 0.2 (80%) | 0.2 1-β = 0.1 (90%) | 0.2 1-β = 0.1 (90%) | |
HSV1/2 infection exacerbation | 106/292 (26.6) | 76/119 (39.0) | 41/50 (54.9) | 28/43 (39.4) | 33/34 (49.3) | 17/24 (41.5) |
0.2 1-β = 0.1 (90%) | p = 0.2 1-β = 0.1 (90%) | |||||
vs. Controls p = | 0.001 1-β = 0.8 (20%) | 0.0003 1-β = 0.9 (10%) | 0.01 1-β = 0.5 (50%) | 0.0001 1-β = 0.9 (10%) | 0.02 1-β = 0.4 (60%) | |
URI with antibiotics | 52/346 (13.1) | 41/154 (21.0) | 13/78 (14.3) | 21/50 (29.5) | 14/53 (20.9) | 8/33 (19.5) |
p = 0.009 1-β = 0.5 (50%) | p = 0.4 1-β = 0.04 (96%) | |||||
vs. Controls p = | 0.006 1-β = 0.6 (40%) | 0.3 1-β = 0.06 (94%) | 0.0002 1-β = 0.9 (10%) | 0.04 1-β = 0.3 (70%) | 0.1 1-β = 0.2 (80%) | |
Acute otitis | 3/395 (0.75) | 8/187 (4.1) | 4/87 (4.4) | 3/68 (4.2) | 2/65 (3.0) | 5/36 (12.2) |
p = 0.5 1-β = 0.03 (97%) | p = 0.03 1-β = 0.3 (70%) | |||||
vs. Controls p = | 0.002 1-β = 0.7 (30%) | 0.004 1-β = 0.6 (40%) | 0.008 1-β = 0.5 (50%) | 0.05 1-β = 0.3 (70%) | 0.0001 1-β = 0.9 (10%) | |
Chronic otitis exacerbation | 0/398 (0) | 5/190 (2.6) | 4/87 (4.4) | 0/71 (0) | 1/66 (1.5) | 0/41 (0.0) |
p = 0.03 1-β = 0.3 (97%) | p = 0.2 1-β = 0.1 (90%) | |||||
vs. Controls p = | 0.0007 1-β = 0.8 (20%) | 0.0001 1-β = 0.9 (10%) | Z 1-β = 0.01 (99%) | 0.007 1-β = 0.5 (50%) | Z 1-β = 0.01 (99%) | |
Acute tonsillitis | 46/352 (11.6) | 34/161 (17.4) | 15/76 (16.5) | 13/58 (18.3) | 7/60 (10.4) | 8/33 (19.5) |
p = 0.4 1-β = 0.04 (96%) | p = 0.09 1-β = 0.2 (80%) | |||||
vs. Controls p = | 0.02 1-β = 0.4 (60%) | 0.05 1-β = 0.3 (70%) | 0.06 1-β = 0.2 (80%) | 0.4 1-β = 0.04 (96%) | 0.07 1-β = 0.2 (80%) | |
Chronic tonsillitis exacerbation | 17/381 (4.3) | 34/161 (17.4) | 19/72 (20.9) | 11/60 (15.5) | 11/56 (16.4) | 5/36 (12.1) |
p = 0.1 1-β = 0.2 (80%) | p = 0.3 1-β = 0.06 (94%) | |||||
vs. Controls p = | 0.0001 1-β = 0.9 (10%) | 0.0001 1-β = 0.9 (10%) | 0.0001 1-β = 0.9 (10%) | 0.0001 1-β = 0.9 (10%) | 0.01 1-β = 0.5 (50%) | |
Acute sinusitis | 10/388 (2.6) | 8/187 (4.1) | 5/86 (5.5) | 1/70 (1.4) | 2/65 (3.0) | 2/39 (4.9) |
p = 0.09 1-β = 0.2 (80%) | p = 0.3 1-β = 0.06 (94%) | |||||
vs. Controls p = | 0.1 1-β = 0.2 (80%) | 0.07 1-β = 0.2 (80%) | 0.3 1-β = 0.6 (40%) | 0.4 1-β = 0.04 (96%) | 0.2 1-β = 0.1 (90%) | |
Chronic sinusitis exacerbation | 7/391 (1.7) | 10/185 (5.1) | 7/84 (7.7) | 2/69 (2.8) | 4/63 (6.0) | 0/41 (0.0) |
p = 0.09 1-β = 0.2 (80%) | p = 0.06 1-β = 0.2 (80%) | |||||
vs. Controls p = | 0.01 1-β = 0.5 (50%) | 0.001 1-β = 0.8 (20%) | 0.2 1-β = 0.1 (90%) | 0.02 1-β = 0.4 (60%) | 0.2 1-β = 0.1 (90%) | |
Acute bronchitis | 16/382 (4.0) | 13/182 (6.7) | 5/86 (5.5) | 5/66 (7.0) | 1/66 (1.5) | 2/39 (4.9) |
p = 0.3 1-β = 0.06 (96%) | p = 0.1 1-β = 0.2 (80%) | |||||
vs. Controls p = | 0.08 1-β = 0.2 (80%) | 0.3 1-β = 0.06 (96%) | 0.1 1-β = 0.2 (80%) | 0.2 1-β = 0.2 (80%) | 0.4 1-β = 0.4 (60%) | |
Chronic bronchitis exacerbation | 8/390 (2.0) | 17/178 (8.7) | 6/85 (6.6) | 7/64 (9.9) | 3/64 (4.5) | 3/38 (7.3) |
p = 0.2 1-β = 0.1 (90%) | p = 0.3 1-β = 0.06 (94%) | |||||
vs. Controls p = | 0.0001 1-β = 0.9 (10%) | 0.009 1-β = 0.5 (50%) | 0.0003 1-β = 0.9 (10%) | 0.1 1-β = 0.2 (80%) | 0.02 1-β = 0.4 (60%) | |
Urinary tract infection | 8/390 (2.0) | 10/185 (5.1) | 1/90 (1.1) | 7/64 (9.9) | 4/63 (6.0) | 3/38 (7.3) |
p = 0.005 1-β = 0.6 (40%) | p = 0.4 1-β = 0.04 (96%) | |||||
vs. Controls p = | 0.02 1-β = 0.4 (60%) | 0.3 1-β = 0.06 (94%) | 0.0003 1-β = 0.9 (10%) | 0.03 1-β = 0.3 (70%) | 0.02 1-β = 0.4 (60%) | |
Oral infection | 1/397 (0.25) | 5/190 (1.9) | 2/89 (2.2) | 3/68 (4.2) | 1/66 (1.5) | 2/39 (4.9) |
p = 0.2 1-β = 0.1 (90%) | p = 0.1 1-β = 0.2 (80%) | |||||
vs. Controls p = | 0.004 1-β = 0.6 (40%) | 0.02 1-β = 0.4 (60%) | 0.0004 1-β = 0.8 (20%) | 0.08 1-β = 0.01 (99%) | 0.0003 1-β = 0.9 (10%) | |
Skin infection | 8/390 (2.0) | 19/176 (9.7) | 11/80(12.1) | 5/66 (7.0) | 12/55 (17.9) | 0/41 (0.0) |
p = 0.1 1-β = 0.2 (80%) | p = 0.002 1-β = 0.7 (30%) | |||||
vs. Controls p = | 0.0001 1-β = 0.9 (10%) | 0.0001 1-β = 0.9 (10%) | 0.009 1-β = 0.5 (50%) | 0.0001 1-β = 0.9 (10%) | p = 0.2 1-β = 0.1 (90%) | |
Association of HSV reactivation and tonsillitis and respiratory infections | ||||||
HSV + V-URI | 69/329 (17.3) | 44/150 (22.7) | 23/68 (25.3) | 16/55 (22.5) | 22/45 (32.8) | 11/6 (64.7) |
p = 0.3 1-β = 0.06 (94%) | p = 0.008 1-β = 0.5 (50%) | |||||
vs. Controls p = | 0.06 1-β = 0.2 (80%) | 0.04 1-β = 0.3 (70%) | 0.3 1-β = 0.06 (94%) | 0.003 1-β = 0.5 (50%) | 0.0001 1-β = 0.9 (10%) | |
HSV + B-URI antibiotics | 15/383 (3.7) | 15/179 (7.7) | 8/83 (8.8) | 5/66 (7.0) | 7/60 (10.4) | 4/13 (23.5) |
p = 0.3 1-β = 0.06 (94%) | p = 0.08 1-β = 0.2 (80%) | |||||
vs. Controls p = | 0.02 1-β = 0.4 (60%) | 0.02 1-β = 0.4 (60%) | 0.1 1-β = 0.2 (80%) | 0.009 1-β = 0.5 (50%) | 0.0001 1-β = 0.9 (10%) | |
HSV + Acute tonsillitis | 15/383 (3.7) | 15/179 (7.7) | 6/85 (6.6) | 7/64 (9.9) | 3/64 (4.5) | 7/10 (41.2) |
p = 0.2 1-β = 0.1 (90%) | p = 0.0001 1-β = 0.9 (10%) | |||||
vs. Controls p = | 0.02 1-β = 0.4 (60%) | 0.1 1-β = 0.2 (80%) | 0.01 1-β = 0.5 (50%) | 0.4 1-β = 0.04 (96%) | p = 0.0001 1-β = 0.9 (10%) | |
HSV + Chronic tonsillitis | 5/393 (1.6) | 8/186 (4.4) | 6/85 (6.6) | 4/67 (5.6) | 0/67 (0.0) | 1/16 (5.9) |
p = 0.4 1-β = 0.05 (95%) | p = 0.02 1-β = 0.4 (60%) | |||||
vs. Controls p = | 0.01 1-β = 0.5 (50%) | 0.001 1-β = 0.8 (20%) | 0.007 1-β = 0.5 (50%) | 0.2 1-β = 0.1 (90%) | p = 0.06 1-β = 0.2 (80%) | |
HSV + Chronic bronchitis | 1/397 (0.25) | 4/190 (2.1) | 2/89 (2.2) | 2/69 (2.8) | 0/67 (0.0) | 2/15 (11.8) |
p = 0.4 1-β = 0.04 (96%) | p = 0.002 1-β = 0.7 (30%) | |||||
vs. Controls p = | 0.01 1-β = 0.5 (50%) | 0.02 1-β = 0.4 (60%) | 0.006 1-β = 0.6 (40%) | 0.3 1-β = 0.06 (94%) | p = 0.0001 1-β = 0.9 (10%) |
Infection | Controls (1) | eRAall (2) | eRAfam (3) | eRAspo (4) | & aCCP > 3 ULN eRA (5) | & aCCP low/neg eRA (6) | |
---|---|---|---|---|---|---|---|
All infections | Number/year median, quartile 1–4 (n) | 2.0; 1.0–4.0 (398) | 5.0; 3.0–8.0 (195) | 5.0; 3.0–8.0 (91) | 4.5; 3.0–10.0 (71) | 5.0; 3.0–10.0 (67) | 8.8; 7–12.3 (41) |
p = 0.2 | p = 0.4 | ||||||
vs. Controls p = | ^ 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | ||
* 1-β1–6 = | 1.0 (0%) | ||||||
Episode duration median, quartile 1–4 (n) | 6.2; 3.0–7.0 (398) | 9.2; 6.5–13.3 (195) | 9.0; 7.0–11.7 (91) | 8.7; 5.7–13.2 (71) | 8.8; 6.5–12.0 (67) | 13.6; 3–10 (41) | |
p = 0.9 | p = 0.4 | ||||||
vs. Controls p = | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | ||
1-β1–6 = | 1.0 (0%) | ||||||
V-URI | Number/year median, quartile 1–4 (n) | 2.0; 1.0–2.0 (229) | 2.0; 1.0–4.0 (106) | 3.0; 2.0–4.0 (53) | 2.0; 2.0–3.5 (39) | 3.0; 1.0–4.0 (42) | 3.0; 2.0–4.0 (27) |
p = 0.1 | p = 0.3 | ||||||
vs. Controls p = | 0.0000 | 0.0000 | 0.0000 | 0.001 | 0.002 | ||
1-β1–6 = | 0.6 (40%) | ||||||
Episode duration median, quartile 1–4 (n) | 7.0; 3.0–7.0 (229) | 7.0; 3.5–7.0 (106) | 7.0; 3.0–7.0 (53) | 7.0; 4.5–7.0 (39) | 7.0; 4.0–9.0 (42) | 7.0; 4.0–9.5 (27) | |
p = 0.9 | p = 0.8 | ||||||
vs. Controls p = | 0.6 | 0.5 | 0.7 | 0.3 | 0.07 | ||
1-β1–6 = | 1.0 (0%) | ||||||
HSV 1/2 exacerbation | Number/year median, quartile 1–4 (n) | 2.0; 1.0–3.0 (106) | 2.0; 1.0–3.0 (76) | 2.0; 1.0–4.0 (41) | 2.0; 1.0–2.2 (28) | 2.0; 1.0–4.0 (33) | 3.0; 1.0–4.0 (17) |
p = 0.2 | p = 0.2 | ||||||
vs. Controls p = | 0.5 | 0.8 | 0.2 | 0.5 | 0.06 | ||
1-β1–6 = | 0.5 (50%) | ||||||
Episode duration median, quartile 1–4 (n) | 7.0; 3.0–7.0 (106) | 7.0; 4.5–10.0 (76) | 7.0; 4.0–10.0 (41) | 7.0; 3.5–10.0 (20) | 7.0; 5.0–10.0 (33) | 7.0; 7.0–10.0 (17) | |
p = 0.6 | p = 0.3 | ||||||
vs. Controls p = | 0.09 | 0.1 | 0.1 | 0.01 | 0.01 | ||
1-β1–6 = | 1.0 (0%) | ||||||
URI with antibiotics | Number/year median, quartile 1–4 (n) | 2.0; 1.0–2.0 (52) | 2.0; 1.0–4.0 (41) | 2.0; 1.0–4.0 (14) | 1.0;1.0–4.0 (21) | 2.0; 1–12 (14) | 1.0; 1.0–6.0 (8) |
p = 0.6 | p = 0.3 | ||||||
vs. Controls p = | 0.5 | 0.02 | 0.3 | 0.1 | 0.9 | ||
1-β1–6 = | 0.3 (70%) | ||||||
Episode duration median, quartile 1–4 (n) | 7.0; 4.0–12.0 (52) | 14.0; 10.0–27.0 (41) | 14.0; 7.0–21.0 (14) | 14.0; 10.0–45.0 (21) | 10.0; 7–270 (14) | 14.0; 11.0–30.0 (8) | |
p = 0.8 | p = 0.4 | ||||||
vs. Controls p = | 0.0001 | 0.03 | 0.004 | 0.2 | 0.002 | ||
1-β1–6 = | 1.0 (0%) | ||||||
Acute tonsillitis | Number/year median, quartile 1–4 (n) | 2.0; 1.0–3.0 (46) | 2.0; 1.0–3.0 (34) | 3.0; 1.0–4.0 (15) | 2.0; 1.0–3.0 (13) | 4.0; 2–12 (7) | 7.0; 5.5–12.5 (8) |
p = 0.4 | p = 0.2 | ||||||
vs. Controls p = | 0.05 | 0.05 | 0.1 | 0.02 | 0.2 | ||
1-β1–6 = | 0.7 (30%) | ||||||
Episode duration median, quartile 1–4 (n) | 5.5; 3.0–7.0 (46) | 7.0; 7.0–14.0 (34) | 11.0; 7.0–14.0 (15) | 7.0; 4.0–10.0 (13) | 7.0; 5.5–14 (7) | 2.5; 1.5–8.5 (8) | |
p = 0.3 | p = 0.7 | ||||||
vs. Controls p = | 0.002 | 0.0006 | 0.1 | 0.2 | 0.7 | ||
1-β1–6 = | 1.0 (0%) | ||||||
Chronic tonsillitis exacerbation | Number/year median, quartile 1–4 (n) | 4.0; 3.0–12.0 (17) | 6.0; 3.0–9.0 (34) | 5.0; 1.0–6.0 (19) | 6.0; 3.0–12.0 (11) | 7.0; 5,5–14(11) | 6.0; 4.0–12.0 (# 5) |
p = 0.2 | p = 0.5 | ||||||
vs. Controls p = | 0.8 | 0.7 | 0.2 | 0.3 | 0.7 | ||
1-β1–6 = | 1.0 (0%) | ||||||
Episode duration median, quartile 1–4 (n) | 7.0; 7.0–10.0 (17) | 10.0; 7.0–14.0 (34) | 10.0; 8.0–14.0 (19) | 8.5; 4.7–14.0 (11) | 8.0; 4.7–14(11) | 12.0; 8.0–12.0 (# 5) | |
p = 0.6 | p = 0.6 | ||||||
vs. Controls p = | 0.04 | 0.06 | 0.7 | 0.7 | 0.9 | ||
1-β1–6 = | 1.0 (0%) | ||||||
Acute bronchitis | Number/year median, quartile 1–4 (n) | 2.0; 1.0–2.0 (16) | 2.0; 1.0–3.0 (13) | 3.0; 2.0–4.0 (# 5) | 2.0; 1.0–3.0 (# 5) | n = 1 | n = 2 |
vs. Controls p = | 0.1 | 0.03 | 0.2 | ||||
1-β1–4 | 0.3 (70%) | ||||||
Episode duration median, quartile 1–4 (n) | 12.5; 7.8–14.0 (16) | 14.0; 14.0–18.0(13) | 17.0; 14.0–18.0 (# 5) | 14.0; 11.0–14.7 (# 5) | |||
vs. Controls p = | 0.04 | 0.03 | 0.2 | ||||
1-β1–4 | 1.0 (0%) | ||||||
Chronic bronchitis exacerbation | Number/year median, quartile 1–4 (n) | 2.0; 1.5–3.0 (8) | 3.0; 3.0–4.0 (17) | 3.0; 2.0–3.0 (# 6) | 3.5; 1.1 (7) | n = 3 | n = 3 |
vs. Controls p = | 0.2 | 0.3 | 0.02 | ||||
1-β1–4 | 0.4 (60%) | ||||||
Episode duration median, quartile 1–4 (n) | 30.0; 15.0–45.0 (8) | 21.0; 18.0–30.0 (17) | 21.0; 18.8–24.0 (# 6) | 19.6; 5.1 (7) | |||
vs. Controls p = | 0.3 | 0.3 | 0.02 | ||||
1-β1–4 | 1.0 (0%) | ||||||
Skin infection | Number/year median, quartile 1–4 (n) | 1.0; 1.0–2.0 (8) | 1.0; 1.0–6.0 (19) | 1.0; 1.0–12.0 (11) | 4.0; 4.0–6.0 (# 5) | 1.0; 1–12 (12) | n = 0 |
vs. Controls p = | 0.9 | 0.6 | 0.002 | 0.9 | |||
1-β1–5 | 0.2 (80%) | ||||||
Episode duration median, quartile 1–4 (n) | 8.5; 7.0–14.0 (8) | 14.0; 10.0–20.0 (19) | 14.0; 12.0–21.0(11) | 10.0; 10.0–14.0 (# 5) | 13.0; 10–54 (12) | ||
vs. Controls p = | 0.3 | 0.1 | 0.9 | 0.4 | |||
1-β1–5 | 1.0 (0%) |
Cohort | Indices | N | R | t(N-2) | p-Level | * 1-β |
---|---|---|---|---|---|---|
All annual infection | ||||||
eRAfam | Annual duration of all episodes and number of swollen joints (68 joint count) | 48 | 0.31 | 2.24 | 0.03 | 0.4 (40%) |
Annual duration of all episodes and number of swollen joints (DAS28 joint count) | 49 | 0.47 | 3.67 | 0.0007 | 0.9 (10%) | |
Chronic tonsillitis exacerbation | ||||||
eRAfam | Annual number of episodes and DAS28-ESR | 13 | −0.75 | −3.8 | 0.003 | 0.8 (20%) |
Annual number of episodes and DAS28-CRP | 12 | −0.73 | −3.4 | 0.007 | 0.7 (30%) | |
Annual number of episodes and VAS | 14 | −0.55 | −2.3 | 0.04 | 0.4 (60%) | |
Annual number of episodes and HAQ | 13 | −0.69 | −3.1 | 0.009 | 0.7 (30%) | |
Annual duration of all episodes and DAS28-CRP | 12 | −0.58 | −2.3 | 0.05 | 0.4 (60%) | |
Annual duration of all episodes and VAS | 14 | −0.69 | −3.3 | 0.006 | 0.7 (30%) | |
Annual duration of all episodes and HAQ | 13 | −0.69 | −3.2 | 0.009 | 0.7 (30%) | |
Annual duration of all episodes and number of tender joints (68 joint count) | 12 | −0.63 | −2.6 | 0.03 | 0.5 (50%) | |
& eRA aCCP high | Annual duration of all episodes and number of tender joints (68 joint count) | 12 | −0.69 | −3.0 | 0.01 | 0.6 (40%) |
Annual duration of all episodes and VAS | 14 | −0.68 | −3.2 | 0.007 | 0.7 (30%) | |
Annual duration of all episodes and HAQ | 13 | −0.57 | −2.3 | 0.04 | 0.4 (60%) | |
HSV exacerbations | ||||||
& eRA aCCP low/neg | One episode duration and DAS28-ESR | 14 | 0.65 | 2.9 | 0.01 | 0.6 (40%) |
Annual duration of all episodes and CRP | 13 | 0.83 | 4.9 | 0.0004 | 0.9 (10%) | |
Annual number of episodes and CRP | 13 | 0.77 | 3.9 | 0.002 | 0.8 (20%) | |
One episode duration and CRP | 13 | 0.81 | 4.5 | 0.0008 | 0.9 (10%) | |
V-URI | ||||||
eRAspo | One episode duration and ESR | 34 | 0.35 | 2.1 | 0.04 | 0.4 (60%) |
URIab | ||||||
eRAspo | Annual duration of all episodes and number of tender joints (68 joint count) | 12 | −0.77 | −3.8 | 0.004 | 0.8 (20%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arleevskaya, M.I.; Novikov, A.A.; Valeeva, A.R.; Korovina, M.O.; Serdiuk, I.L.; Popov, V.A.; Carlé, C.; Renaudineau, Y. At Early Rheumatoid Arthritis Stage, the Infectious Spectrum Is Driven by Non-Familial Factors and Anti-CCP Immunization. J. Clin. Med. 2024, 13, 2796. https://doi.org/10.3390/jcm13102796
Arleevskaya MI, Novikov AA, Valeeva AR, Korovina MO, Serdiuk IL, Popov VA, Carlé C, Renaudineau Y. At Early Rheumatoid Arthritis Stage, the Infectious Spectrum Is Driven by Non-Familial Factors and Anti-CCP Immunization. Journal of Clinical Medicine. 2024; 13(10):2796. https://doi.org/10.3390/jcm13102796
Chicago/Turabian StyleArleevskaya, Marina I., Andrej A. Novikov, Anna R. Valeeva, Marina O. Korovina, Igor L. Serdiuk, Vladimir A. Popov, Caroline Carlé, and Yves Renaudineau. 2024. "At Early Rheumatoid Arthritis Stage, the Infectious Spectrum Is Driven by Non-Familial Factors and Anti-CCP Immunization" Journal of Clinical Medicine 13, no. 10: 2796. https://doi.org/10.3390/jcm13102796
APA StyleArleevskaya, M. I., Novikov, A. A., Valeeva, A. R., Korovina, M. O., Serdiuk, I. L., Popov, V. A., Carlé, C., & Renaudineau, Y. (2024). At Early Rheumatoid Arthritis Stage, the Infectious Spectrum Is Driven by Non-Familial Factors and Anti-CCP Immunization. Journal of Clinical Medicine, 13(10), 2796. https://doi.org/10.3390/jcm13102796