[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Tuberculosis

Abstract

Tuberculosis (TB) is an airborne infectious disease caused by organisms of the Mycobacterium tuberculosis complex. Although primarily a pulmonary pathogen, M. tuberculosis can cause disease in almost any part of the body. Infection with M. tuberculosis can evolve from containment in the host, in which the bacteria are isolated within granulomas (latent TB infection), to a contagious state, in which the patient will show symptoms that can include cough, fever, night sweats and weight loss. Only active pulmonary TB is contagious. In many low-income and middle-income countries, TB continues to be a major cause of morbidity and mortality, and drug-resistant TB is a major concern in many settings. Although several new TB diagnostics have been developed, including rapid molecular tests, there is a need for simpler point-of-care tests. Treatment usually requires a prolonged course of multiple antimicrobials, stimulating efforts to develop shorter drug regimens. Although the Bacillus Calmette–Guérin (BCG) vaccine is used worldwide, mainly to prevent life-threatening TB in infants and young children, it has been ineffective in controlling the global TB epidemic. Thus, efforts are underway to develop newer vaccines with improved efficacy. New tools as well as improved programme implementation and financing are necessary to end the global TB epidemic by 2035.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spectrum of TB — from Mycobacterium tuberculosis infection to active (pulmonary) TB disease.
Figure 2: Global incidence of active TB disease (pulmonary and extrapulmonary).
Figure 3: Mycobacterium tuberculosis infection.
Figure 4: Imaging tools for active TB disease.
Figure 5: The global TB drug pipeline.

Similar content being viewed by others

References

  1. World Health Organization. Global Tuberculosis Report 2015 (WHO, 2015).

  2. Barry, C. E. 3rd et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009). This paper provides an overview of the spectrum of TB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Esmail, H., Barry, C. E. 3rd, Young, D. B. & Wilkinson, R. J. The ongoing challenge of latent tuberculosis. Phil. Trans. R. Soc. B 369, 20130437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marais, B. J. et al. Childhood pulmonary tuberculosis: old wisdom and new challenges. Am. J. Respir. Crit. Care Med. 173, 1078–1090 (2006).

    Article  PubMed  Google Scholar 

  5. Dye, C. Global epidemiology of tuberculosis. Lancet 367, 938–940 (2006).

    Article  PubMed  Google Scholar 

  6. Swaminathan, S. & Rekha, B. Pediatric tuberculosis: global overview and challenges. Clin. Infect. Dis. 50, S184–S194 (2010).

    Article  PubMed  Google Scholar 

  7. Havlir, D. V., Getahun, H., Sanne, I. & Nunn, P. Opportunities and challenges for HIV care in overlapping HIV and TB epidemics. JAMA 300, 423–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Getahun, H. et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur. Respir. J. 46, 1563–1576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ford, N. et al. Causes of hospital admission among people living with HIV worldwide: a systematic review and meta-analysis. Lancet HIV 2, e438–e444 (2015).

    Article  PubMed  Google Scholar 

  10. Lonnroth, K. et al. Tuberculosis control and elimination 2010-50: cure, care, and social development. Lancet 375, 1814–1829 (2010).

    Article  PubMed  Google Scholar 

  11. Jeon, C. Y. & Murray, M. B. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 5, e152 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rehm, J. et al. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC Public Health 9, 450 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bates, M. N. et al. Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch. Intern. Med. 167, 335–342 (2007).

    Article  PubMed  Google Scholar 

  14. van Leth, F., van der Werf, M. J. & Borgdorff, M. W. Prevalence of tuberculous infection and incidence of tuberculosis: a re-assessment of the Styblo rule. Bull. World Health Organ. 86, 20–26 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Onozaki, I. et al. National tuberculosis prevalence surveys in Asia, 1990–2012: an overview of results and lessons learned. Trop. Med. Int. Health 20, 1128–1145 (2015).

    Article  PubMed  Google Scholar 

  16. Tiemersma, E. W., van der Werf, M. J., Borgdorff, M. W., Williams, B. G. & Nagelkerke, N. J. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS ONE 6, e17601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vynnycky, E. & Fine, P. E. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol. Infect. 119, 183–201 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andrews, J. R. et al. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin. Infect. Dis. 54, 784–791 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hoa, N. B. et al. National survey of tuberculosis prevalence in Vietnam. Bull. World Health Organ. 88, 273–280 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dowdy, D. W., Basu, S. & Andrews, J. R. Is passive diagnosis enough? The impact of subclinical disease on diagnostic strategies for tuberculosis. Am. J. Respir. Crit. Care Med. 187, 543–551 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lienhardt, C. et al. Global tuberculosis control: lessons learnt and future prospects. Nat. Rev. Microbiol. 10, 407–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, L. et al. Tuberculosis prevalence in China, 1990–2010; a longitudinal analysis of national survey data. Lancet 383, 2057–2064 (2014).

    Article  PubMed  Google Scholar 

  23. World Health Organization. Drug-Resistant TB Surveillance and Response. Supplement to Global TB Report 2014 (WHO, 2014).

  24. Zhao, Y. et al. National survey of drug-resistant tuberculosis in China. N. Engl. J. Med. 366, 2161–2170 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Udwadia, Z. F., Amale, R. A., Ajbani, K. K. & Rodrigues, C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis. 54, 579–581 (2012).

    Article  PubMed  Google Scholar 

  26. Jenkins, H. E. et al. Assessing spatial heterogeneity of multidrug-resistant tuberculosis in a high-burden country. Eur. Respir. J. 42, 1291–1301 (2013).

    Article  PubMed  Google Scholar 

  27. Zelner, J. L. et al. Identifying hotspots of multidrug resistant tuberculosis transmission using spatial and molecular genetic data. J. Infect. Dis. 213, 287–294 (2016).

    Article  PubMed  Google Scholar 

  28. Kendall, E. A., Fofana, M. O. & Dowdy, D. W. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir. Med. 3, 963–972 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dowdy, D. W., Golub, J. E., Chaisson, R. E. & Saraceni, V. Heterogeneity in tuberculosis transmission and the role of geographic hotspots in propagating epidemics. Proc. Natl Acad. Sci. USA 109, 9557–9562 (2012). This study suggests that high-incidence hotspots might have an important role in propagating TB epidemics.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Firdessa, R. et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg. Infect. Dis. 19, 460–463 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reed, M. B. et al. Major Mycobacterium tuberculosis lineages associate with patient country of origin. J. Clin. Microbiol. 47, 1119–1128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Warner, D. F., Koch, A. & Mizrahi, V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol. 23, 14–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Reed, M. B. et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Gagneux, S. et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 2869–2873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Albanna, A. S. et al. Reduced transmissibility of East African Indian strains of Mycobacterium tuberculosis. PLoS ONE 6, e25075 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fenner, L. et al. Mycobacterium tuberculosis transmission in a country with low tuberculosis incidence: role of immigration and HIV infection. J. Clin. Microbiol. 50, 388–395 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee, R. S. et al. Population genomics of Mycobacterium tuberculosis in the Inuit. Proc. Natl Acad. Sci. USA 112, 13609–13614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Behr, M. A. et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523 (1999). This study shows the ongoing evolution of BCG strains since their original derivation.

    Article  CAS  PubMed  Google Scholar 

  41. Lewis, K. N. et al. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette–Guerin attenuation. J. Infect. Dis. 187, 117–123 (2003).

    Article  PubMed  Google Scholar 

  42. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. & Stover, C. K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdallah, A. M. et al. Type VII secretion — mycobacteria show the way. Nat. Rev. Microbiol. 5, 883–891 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Simeone, R. et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 8, e1002507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pai, M. et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin. Microbiol. Rev. 27, 3–20 (2014). This is a comprehensive review of the literature on IGRAs for LTBI diagnosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arend, S. M. et al. Tuberculin skin testing and in vitro T cell responses to ESAT-6 and culture filtrate protein 10 after infection with Mycobacterium marinum or M. kansasii. J. Infect. Dis. 186, 1797–1807 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J. et al. Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol. Evol. 7, 856–870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morrison, J., Pai, M. & Hopewell, P. C. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect. Dis. 8, 359–368 (2008).

    Article  PubMed  Google Scholar 

  49. Cobat, A. et al. Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis. J. Exp. Med. 206, 2583–2591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rangaka, M. X. et al. Predictive value of interferon-γ release assays for incident active tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 45–55 (2012). This systematic review shows the limited predictive value of all existing LTBI diagnostic tests.

    Article  CAS  PubMed  Google Scholar 

  51. Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol. 16, 57–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Watford, W. T., Wright, J. R., Hester, C. G., Jiang, H. & Frank, M. M. Surfactant protein A regulates complement activation. J. Immunol. 167, 6593–6600 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ferguson, J. S., Voelker, D. R., McCormack, F. X. & Schlesinger, L. S. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate–lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 163, 312–321 (1999).

    CAS  PubMed  Google Scholar 

  54. Russell, D. G. Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol. Rev. 240, 252–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Houben, D. et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell. Microbiol. 14, 1287–1298 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Simeone, R., Majlessi, L., Enninga, J. & Brosch, R. Perspectives on mycobacterial vacuole-to-cytosol translocation: the importance of cytosolic access. Cell. Microbiol. 18, 1070–1077 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Russell, D. G. The ins and outs of the Mycobacterium tuberculosis-containing vacuole. Cell. Microbiol. 18, 1065–1069 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc. Natl Acad. Sci. USA 98, 5752–5757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178, 3143–3152 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Pandey, A. K. et al. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog. 5, e1000500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manzanillo, P. S., Shiloh, M. U., Portnoy, D. A. & Cox, J. S. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11, 469–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaufmann, S. H. & Dorhoi, A. Molecular determinants in phagocyte–bacteria interactions. Immunity 44, 476–491 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Schaible, U. E. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med. 9, 1039–1046 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Behar, S. M., Divangahi, M. & Remold, H. G. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?. Nat. Rev. Microbiol. 8, 668–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Divangahi, M., King, I. L. & Pernet, E. Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends Immunol. 36, 307–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Janssen, W. J. et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 184, 547–560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wolf, A. J. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205, 105–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Samstein, M. et al. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife 2, e01086 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chackerian, A. A., Alt, J. M., Perera, T. V., Dascher, C. C. & Behar, S. M. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun. 70, 4501–4509 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sonnenberg, P. et al. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J. Infect. Dis. 191, 150–158 (2005).

    Article  PubMed  Google Scholar 

  73. Lazar-Molnar, E. et al. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc. Natl Acad. Sci. USA 107, 13402–13407 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Barber, D. L., Mayer-Barber, K. D., Feng, C. G., Sharpe, A. H. & Sher, A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J. Immunol. 186, 1598–1607 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Lin, P. L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Antonelli, L. R. et al. Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest. 120, 1674–1682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marakalala, M. J. et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22, 531–538 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Comas, I. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42, 498–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Corbett, E. L., Marston, B., Churchyard, G. J. & De Cock, K. M. Tuberculosis in sub-Saharan Africa: opportunities, challenges, and change in the era of antiretroviral treatment. Lancet 367, 926–937 (2006).

    Article  PubMed  Google Scholar 

  80. Tameris, M. D. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381, 1021–1028 (2013). This large trial shows that MVA85A vaccine had no efficacy against TB or M. tuberculosis infection in infants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abel, L., El-Baghdadi, J., Bousfiha, A. A., Casanova, J. L. & Schurr, E. Human genetics of tuberculosis: a long and winding road. Phil. Trans. R. Soc. B 369, 20130428 (2014). This is a comprehensive review of host genetics of TB.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tobin, D. M. et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148, 434–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lalvani, A., Behr, M. A. & Sridhar, S. Innate immunity to TB: a druggable balancing act. Cell 148, 389–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Thwaites, G. E. et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N. Engl. J. Med. 351, 1741–1751 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Bustamante, J., Boisson-Dupuis, S., Abel, L. & Casanova, J. L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 26, 454–470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Daniels, M. & Hill, A. B. Chemotherapy of pulmonary tuberculosis in young adults; an analysis of the combined results of three Medical Research Council trials. Br. Med. J. 1, 1162–1168 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nebenzahl-Guimaraes, H., Jacobson, K. R., Farhat, M. R. & Murray, M. B. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 69, 331–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Solomon, H. et al. Integration of published information into a resistance-associated mutation database for Mycobacterium tuberculosis. J. Infect. Dis. 211, S50–S57 (2015).

    Article  Google Scholar 

  89. Pankhurst, L. J. et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir. Med. 4, 49–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walker, T. M. et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect. Dis. 15, 1193–1202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bradley, P. et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6, 10063 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Dominguez, J. et al. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement. Int. J. Tuberc. Lung Dis. 20, 24–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Menzies, D., Gardiner, G., Farhat, M., Greenaway, C. & Pai, M. Thinking in three dimensions: a web-based algorithm to aid the interpretation of tuberculin skin test results. Int. J. Tuberc. Lung Dis. 12, 498–505 (2008). This paper describes an online calculator to interpret TST and IGRA results ( http://www.tstin3d.com ).

    CAS  PubMed  Google Scholar 

  94. Farhat, M., Greenaway, C., Pai, M. & Menzies, D. False-positive tuberculin skin tests: what is the absolute effect of BCG and non-tuberculous mycobacteria? Int. J. Tuberc. Lung Dis. 10, 1192–1204 (2006).

    CAS  PubMed  Google Scholar 

  95. Pai, M. & Sotgiu, G. Diagnostics for latent tuberculosis infection: incremental, not transformative progress. Eur. Respir. J. 47, 704–706 (2016).

    Article  PubMed  Google Scholar 

  96. Pai, M., Riley, L. W. & Colford, J. M. Jr. Interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review. Lancet Infect. Dis. 4, 761–776 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Sorensen, A. L., Nagai, S., Houen, G., Andersen, P. & Andersen, A. B. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 63, 1710–1717 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Andersen, P., Munk, M. E., Pollock, J. M. & Doherty, T. M. Specific immune-based diagnosis of tuberculosis. Lancet 356, 1099–1104 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Sester, M. et al. Interferon-γ release assays for the diagnosis of active tuberculosis: a systematic review and meta-analysis. Eur. Respir. J. 37, 100–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Pande, T., Pai, M., Khan, F. A. & Denkinger, C. M. Use of chest radiography in the 22 highest tuberculosis burden countries. Eur. Respir. J. 46, 1816–1819 (2015).

    Article  PubMed  Google Scholar 

  101. Esmail, H. et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-d-glucose positron emission and computed tomography. Nat. Med. http://dx.doi.org/10.1038/nm.4161 (2016).

  102. Kik, S. V., Denkinger, C. M., Chedore, P. & Pai, M. Replacing smear microscopy for the diagnosis of tuberculosis: what is the market potential? Eur. Respir. J. 43, 1793–1796 (2014).

    Article  PubMed  Google Scholar 

  103. World Health Organization. WHO monitoring of Xpert MTB/RIF roll-out. WHOhttp://www.who.int/tb/areas-of-work/laboratory/mtb-rif-rollout/en/ (2015).

  104. Albert, H. et al. Development, roll-out, and impact of Xpert MTB/RIF for tuberculosis: what lessons have we learnt, and how can we do better? Eur. Respir. J. 48, 516–525 (2016). This is a comprehensive review on the development, roll-out and effect of the Xpert MTB/RIF assay and the lessons learnt from the experience.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Steingart, K. et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst. Rev. 1, CD009593 (2014).

    Google Scholar 

  106. Boehme, C. C. et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Boehme, C. C. et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377, 1495–1505 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Detjen, A. K. et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir. Med. 3, 451–461 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. World Health Organization. Policy update: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system for the diagnosis of pulmonary and extrapulmonary TB in adults and children. WHOhttp://www.stoptb.org/wg/gli/assets/documents/WHO%20Policy%20Statement%20on%20Xpert%20MTB-RIF%202013%20pre%20publication%2022102013.pdf (2013).

  110. Getahun, H., Harrington, M., O'Brien, R. & Nunn, P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. Lancet 369, 2042–2049 (2007).

    Article  PubMed  Google Scholar 

  111. Peter, J. G. et al. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet 387, 1187–1197 (2016).

    Article  PubMed  Google Scholar 

  112. World Health Organization. The Use of Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis and Screening of Active Tuberculosis in People Living with HIV: Policy Update (WHO, 2015).

  113. Swaminathan, S. & Ramachandran, G. Challenges in childhood tuberculosis. Clin. Pharmacol. Ther. 98, 240–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Raizada, N. et al. Enhancing TB case detection: experience in offering upfront Xpert MTB/RIF testing to pediatric presumptive TB and DR TB cases for early rapid diagnosis of drug sensitive and drug resistant TB. PLoS ONE 9, e105346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sachdeva, K. S. et al. The potential impact of up-front drug sensitivity testing on India's epidemic of multi-drug resistant tuberculosis. PLoS ONE 10, e0131438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sachdeva, K. S. et al. Use of Xpert MTB/RIF in decentralized public health settings and its effect on pulmonary TB and DR-TB case finding in India. PLoS ONE 10, e0126065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. UNITAID. Tuberculosis: Diagnostics Technology and Market Landscape 4th edn (WHO, 2015). This is a comprehensive landscape assessment of TB diagnostic technologies.

  118. Theron, G. et al. Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383, 424–435 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Churchyard, G. J. et al. Xpert MTB/RIF versus sputum microscopy as the initial diagnostic test for tuberculosis: a cluster-randomised trial embedded in South African roll-out of Xpert MTB/RIF. Lancet Glob. Health 3, e450–e457 (2015).

    Article  PubMed  Google Scholar 

  120. World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. WHOhttp://apps.who.int/iris/bitstream/10665/249154/1/9789241511186-eng.pdf (2016).

  121. World Health Organization. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs: policy guidance. WHOhttp://www.who.int/tb/areas-of-work/laboratory/WHOPolicyStatementSLLPA.pdf?ua%2520=%25201 (2016).

  122. World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB): policy statement. WHOhttp://www.who.int/tb/features_archive/policy_statement.pdf (2008).

  123. Pai, M. & Schito, M. Tuberculosis diagnostics in 2015: landscape, priorities, needs, and prospects. J. Infect. Dis. 211, S21–S28 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Denkinger, C. M., Kik, S. V. & Pai, M. Robust, reliable and resilient: designing molecular tuberculosis tests for microscopy centers in developing countries. Expert Rev. Mol. Diagn. 13, 763–767 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Denkinger, C. M., Nicolau, I., Ramsay, A., Chedore, P. & Pai, M. Are peripheral microscopy centres ready for next generation molecular tuberculosis diagnostics? Eur. Respir. J. 42, 544–547 (2013).

    Article  PubMed  Google Scholar 

  126. Creswell, J. et al. Results from early programmatic implementation of Xpert MTB/RIF testing in nine countries. BMC Infect. Dis. 14, 2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Raizada, N. et al. Feasibility of decentralised deployment of Xpert MTB/RIF test at lower level of health system in India. PLoS ONE 9, e89301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wells, W. A. et al. Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action. Lancet Infect. Dis. 13, 449–458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sweeney, T. E., Braviak, L., Tato, C. M. & Khatri, P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir. Med. 4, 213–224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xie, H. et al. Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat. Chem. 4, 802–809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lessem, E & HIV i-Base/Treatment Action Group. The tuberculosis diagnostics pipeline. Pipeline Reporthttp://pipelinereport.org/2016/tb-diagnostics (2016).

  133. Gardiner, J. L. & Karp, C. L. Transformative tools for tackling tuberculosis. J. Exp. Med. 212, 1759–1769 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. [No authors listed.] Global routine vaccination coverage, 2014. Wkly Epidemiol. Rec. 90, 617–623 (2015).

  135. Zwerling, A. et al. The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS Med. 8, e1001012 (2011). This paper describes the BCG World Atlas policies and practices ( http://www.bcgatlas.org ).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Mangtani, P. et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin. Infect. Dis. 58, 470–480 (2014).

    Article  PubMed  Google Scholar 

  137. Roy, A. et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 349, g4643 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Trunz, B. B., Fine, P. & Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367, 1173–1180 (2006).

    Article  PubMed  Google Scholar 

  139. Barreto, M. L. et al. Evidence of an effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: second report of the BCG-REVAC cluster-randomised trial. Vaccine 29, 4875–4877 (2011).

    Article  PubMed  Google Scholar 

  140. [No authors listed.] Fifteen year follow up of trial of BCG vaccines in south India for tuberculosis prevention. Tuberculosis Research Centre (ICMR), Chennai. Indian J. Med. Res. 110, 56–69 (1999).

  141. Abubakar, I. et al. Systematic review and meta-analysis of the current evidence on the duration of protection by Bacillus Calmette–Guerin vaccination against tuberculosis. Health Technol. Assess. 17, 1–372 (2013). This is a comprehensive overview of studies on the protection offered by BCG vaccination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ellis, R. D. et al. Innovative clinical trial designs to rationalize TB vaccine development. Tuberculosis (Edinb.) 95, 352–357 (2015).

    Article  CAS  Google Scholar 

  143. AERAS. TB vaccine research and development: a business case for investment. AERAShttp://www.aeras.org/pdf/TB_RD_Business_Case_Draft_3.pdf (2014).

  144. Knight, G. M. et al. Impact and cost-effectiveness of new tuberculosis vaccines in low- and middle-income countries. Proc. Natl Acad. Sci. USA 111, 15520–15525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. World Health Organization. Guidelines on the Management of Latent Tuberculosis Infection (WHO, 2014).

  146. Landry, J. & Menzies, D. Preventive chemotherapy. Where has it got us? Where to go next? Int. J. Tuberc. Lung Dis. 12, 1352–1364 (2008).

    CAS  PubMed  Google Scholar 

  147. World Health Organization. Guidelines for Treatment of Tuberculosis 4th edn (WHO, 2010).

  148. Nahid, P. et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin. Infect. Dis. 63, e147–e195 (2016). These are the most recent TB treatment guidelines, which are focused on drug-sensitive TB.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Saukkonen, J. J. et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am. J. Respir. Crit. Care Med. 174, 935–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Volmink, J. & Garner, P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst. Rev. 4, CD003343 (2007).

    Google Scholar 

  151. O'Donnell, M. R. et al. Re-inventing adherence: toward a patient-centered model of care for drug-resistant tuberculosis and HIV. Int. J. Tuberc. Lung Dis. 20, 430–434 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Dheda, K., Barry, C. E. 3rd & Maartens, G. Tuberculosis. Lancet 387, 1211–1126 (2016).

    Article  PubMed  Google Scholar 

  153. Dheda, K. et al. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet Respir. Med. 2, 321–338 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Fox, G. J. et al. Surgery as an adjunctive treatment for multidrug-resistant tuberculosis: an individual patient data metaanalysis. Clin. Infect. Dis. 62, 887–895 (2016).

    Article  PubMed  Google Scholar 

  155. Calligaro, G. L., Moodley, L., Symons, G. & Dheda, K. The medical and surgical treatment of drug-resistant tuberculosis. J. Thorac Dis. 6, 186–195 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. World Health Organization. The shorter MDR-TB regimen. WHOhttp://www.who.int/tb/Short_MDR_regimen_factsheet.pdf (2016). These are the new guidelines from the WHO on the shorter MDR-TB regimen.

  157. Pietersen, E. et al. Long-term outcomes of patients with extensively drug-resistant tuberculosis in South Africa: a cohort study. Lancet 383, 1230–1239 (2014).

    Article  PubMed  Google Scholar 

  158. Udwadia, Z. F. MDR, XDR, TDR tuberculosis: ominous progression. Thorax 67, 286–288 (2012).

    Article  PubMed  Google Scholar 

  159. Alsultan, A. & Peloquin, C. A. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs 74, 839–854 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Jindani, A. et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med. 371, 1599–1608 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dorman, S. E. et al. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 180, 273–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. World Health Organization. Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis — 2011 Update (WHO, 2011).

  163. Gillespie, S. H. et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 371, 1577–1587 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Merle, C. S. et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 371, 1588–1598 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Lee, M. et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N. Engl. J. Med. 367, 1508–1518 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Tiberi, S. et al. Ertapenem in the treatment of multidrug-resistant tuberculosis: first clinical experience. Eur. Respir. J. 47, 333–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Cox, E. & Laessig, K. FDA approval of bedaquiline — the benefit–risk balance for drug-resistant tuberculosis. N. Engl. J. Med. 371, 689–691 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Zumla, A. et al. Tuberculosis treatment and management — an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir. Med. 3, 220–234 (2015).

    Article  PubMed  Google Scholar 

  169. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Matsumoto, M. et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 3, e466 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Brigden, G. et al. Principles for designing future regimens for multidrug-resistant tuberculosis. Bull. World Health Organ. 92, 68–74 (2014).

    Article  PubMed  Google Scholar 

  172. Stop TB Partnership's Working Group on New Drugs. Drug pipeline. New TB Drugshttp://www.newtbdrugs.org/pipeline.php (2016). This is a regularly updated webpage resource on the new TB drug pipeline.

  173. IFPMA. TB Drug Accelerator Program. IFPMAhttp://partnerships.ifpma.org/partnership/tb-drug-accelerator-program (2012).

  174. Getahun, H., Gunneberg, C., Granich, R. & Nunn, P. HIV infection-associated tuberculosis: the epidemiology and the response. Clin. Infect. Dis. 50, S201–S207 (2010).

    Article  PubMed  Google Scholar 

  175. Suthar, A. B. et al. Antiretroviral therapy for prevention of tuberculosis in adults with HIV: a systematic review and meta-analysis. PLoS Med. 9, e1001270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Temprano Anrs Study Group. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N. Engl. J. Med. 373, 808–822 (2015).

    Article  CAS  Google Scholar 

  177. Samandari, T. et al. 6-Month versus 36-month isoniazid preventive treatment for tuberculosis in adults with HIV infection in Botswana: a randomised, double-blind, placebo-controlled trial. Lancet 377, 1588–1598 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Lawn, S. D., Myer, L., Edwards, D., Bekker, L. G. & Wood, R. Short-term and long-term risk of tuberculosis associated with CD4 cell recovery during antiretroviral therapy in South Africa. AIDS 23, 1717–1725 (2009).

    Article  PubMed  Google Scholar 

  179. Gupta, R. K. et al. Impact of human immunodeficiency virus and CD4 count on tuberculosis diagnosis: analysis of city-wide data from Cape Town, South Africa. Int. J. Tuberc. Lung Dis. 17, 1014–1022 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Lawn, S. D. et al. Reducing deaths from tuberculosis in antiretroviral treatment programmes in sub-Saharan Africa. AIDS 26, 2121–2133 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Getahun, H. et al. Development of a standardized screening rule for tuberculosis in people living with HIV in resource-constrained settings: individual participant data meta-analysis of observational studies. PLoS Med. 8, e1000391 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  182. World Health Organization. Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource-constrained settings. WHOhttp://whqlibdoc.who.int/publications/2011/9789241500708_eng.pdf (2010).

  183. Getahun, H., Chaisson, R. E. & Raviglione, M. Latent Mycobacterium tuberculosis infection. N. Engl. J. Med. 373, 1179–1180 (2015).

    PubMed  Google Scholar 

  184. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations of a public health approach. WHOhttp://apps.who.int/iris/bitstream/10665/208825/1/9789241549684_eng.pdf?ua=1 (2016).

  185. Denkinger, C. M. et al. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur. Respir. J. 44, 435–446 (2014).

    Article  PubMed  Google Scholar 

  186. Havlir, D. V. et al. Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N. Engl. J. Med. 365, 1482–1491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Blanc, F. X. et al. Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N. Engl. J. Med. 365, 1471–1481 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Abdool Karim, S. S. et al. Integration of antiretroviral therapy with tuberculosis treatment. N. Engl. J. Med. 365, 1492–1501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Manosuthi, W. et al. Time to initiate antiretroviral therapy between 4 weeks and 12 weeks of tuberculosis treatment in HIV-infected patients: results from the TIME study. J. Acquir. Immune Defic. Syndr. 60, 377–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Mfinanga, S. G. et al. Early versus delayed initiation of highly active antiretroviral therapy for HIV-positive adults with newly diagnosed pulmonary tuberculosis (TB-HAART): a prospective, international, randomised, placebo-controlled trial. Lancet Infect. Dis. 14, 563–571 (2014).

    Article  PubMed  Google Scholar 

  191. Uthman, O. A. et al. Optimal timing of antiretroviral therapy initiation for HIV-infected adults with newly diagnosed pulmonary tuberculosis: a systematic review and meta-analysis. Ann. Intern. Med. 163, 32–39 (2015).

    Article  PubMed  Google Scholar 

  192. Yan, S. et al. Early versus delayed antiretroviral therapy for HIV and tuberculosis co-infected patients: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 10, e0127645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Torok, M. E. et al. Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV) — associated tuberculous meningitis. Clin. Infect. Dis. 52, 1374–1383 (2011).

    Article  PubMed  Google Scholar 

  194. Dodd, P. J., Gardiner, E., Coghlan, R. & Seddon, J. A. Burden of childhood tuberculosis in 22 high-burden countries: a mathematical modelling study. Lancet Glob. Health 2, e453–e459 (2014).

    Article  PubMed  Google Scholar 

  195. Dodd, P. J., Sismanidis, C. & Seddon, J. A. Global burden of drug-resistant tuberculosis in children: a mathematical modelling study. Lancet Infect. Dis. 16, 1193–1201 (2016).

    Article  PubMed  Google Scholar 

  196. Perez-Velez, C. M. & Marais, B. J. Tuberculosis in children. N. Engl. J. Med. 367, 348–361 (2012).

    Article  CAS  PubMed  Google Scholar 

  197. World Health Organization. Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children 2nd edn (WHO, 2014).

  198. Bauer, M., Leavens, A. & Schwartzman, K. A systematic review and meta-analysis of the impact of tuberculosis on health-related quality of life. Qual. Life Res. 22, 2213–2235 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Singla, N., Singla, R., Fernandes, S. & Behera, D. Post treatment sequelae of multi-drug resistant tuberculosis patients. Indian J. Tuberc. 56, 206–212 (2009).

    PubMed  Google Scholar 

  200. Dheda, K. et al. Early treatment outcomes and HIV status of patients with extensively drug-resistant tuberculosis in South Africa: a retrospective cohort study. Lancet 375, 1798–1807 (2010).

    Article  PubMed  Google Scholar 

  201. TB CARE I. International Standards for Tuberculosis Care. WHOhttp://www.who.int/tb/publications/ISTC_3rdEd.pdf (2014). This publication describes the International Standards for TB Care.

  202. Das, J. et al. Use of standardised patients to assess quality of tuberculosis care: a pilot, cross-sectional study. Lancet Infect. Dis. 15, 1305–1313 (2015). This paper describes the first use of simulated patients to assess quality of TB care.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Satyanarayana, S. et al. Quality of tuberculosis care in India: a systematic review. Int. J. Tuberc. Lung Dis. 19, 751–763 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. McDowell, A. & Pai, M. Treatment as diagnosis and diagnosis as treatment: empirical management of presumptive tuberculosis in India. Int. J. Tuberc. Lung Dis. 20, 536–543 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Satyanarayana, S. et al. Use of standardised patients to assess antibiotic dispensing for tuberculosis by pharmacies in urban India: a cross-sectional study. Lancet Infect. Dis. http://dx.doi.org/10.1016/S1473-3099(16)30215-8 (2016).

  206. Wells, W. A., Uplekar, M. & Pai, M. Achieving systemic and scalable private sector engagement in tuberculosis care and prevention in Asia. PLoS Med. 12, e1001842 (2015). This paper reviews recent experiences in engaging the private sector for TB care and control.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Dowdy, D. W., Azman, A. S., Kendall, E. A. & Mathema, B. Transforming the fight against tuberculosis: targeting catalysts of transmission. Clin. Infect. Dis. 59, 1123–1129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Frieden, T. R., Fujiwara, P. I., Washko, R. M. & Hamburg, M. A. Tuberculosis in New York City — turning the tide. N. Engl. J. Med. 333, 229–233 (1995).

    Article  CAS  PubMed  Google Scholar 

  209. Suarez, P. G. et al. The dynamics of tuberculosis in response to 10 years of intensive control effort in Peru. J. Infect. Dis. 184, 473–478 (2001).

    Article  CAS  PubMed  Google Scholar 

  210. Comstock, G. W. & Philip, R. N. Decline of the tuberculosis epidemic in Alaska. Public Health Rep. 76, 19–24 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. World Health Organization. The End TB strategy. Global strategy and targets for tuberculosis prevention, care and control after 2015. WHOhttp://www.who.int/tb/post2015_TBstrategy.pdf?ua%20=%201 (2015).

  212. Uplekar, M. et al. WHO's new End TB strategy. Lancet 385, 1799–1801 (2015). This paper describes the new End TB Strategy by the WHO.

    Article  PubMed  Google Scholar 

  213. Lienhardt, C. et al. Translational research for tuberculosis elimination: priorities, challenges, and actions. PLoS Med. 13, e1001965 (2016). This paper reviews the biggest research priorities for TB.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387, 2312–2322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hawn, T. R. et al. Tuberculosis vaccines and prevention of infection. Microbiol. Mol. Biol. Rev. 78, 650–671 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Fletcher, H. A. et al. T-Cell activation is an immune correlate of risk in BCG vaccinated infants. Nat. Commun. 7, 11290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. World Health Organization. Systematic Screening for Active Tuberculosis. Principles and Recommendations (WHO, 2013).

  218. Steingart, K. R. et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis. 6, 570–581 (2006).

    Article  PubMed  Google Scholar 

  219. Cruciani, M. et al. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J. Clin. Microbiol. 42, 2321–2325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ling, D. I., Zwerling, A. & Pai, M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur. Respir. J. 32, 1165–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.P. is a recipient of a Canada Research Chair award from the Canadian Institutes of Health Research (CIHR), and acknowledges grant support from the CIHR and the Bill & Melinda Gates Foundation. He also holds a TMA Pai Endowment Chair from Manipal University, India. M.A.B. acknowledges grant support from the CIHR, the Public Health Agency of Canada and the US National Institutes of Health (NIH). D.D. acknowledges grant support from the NIH, CIHR, US Centers for Disease Control and Prevention, US Agency for International Development and the Bill & Melinda Gates Foundation. K.D. acknowledges grant support from the European Developing Clinical Trials Partnership, the South African Medical Research Council and the South African National Research Foundation. M.D. is supported by the CIHR Foundation Grant (FDN-143273) as well as a CIHR New Investigator Award. C.C.B. acknowledges grant support for Foundation for Innovative New Diagnostics (FIND) from several governments (Australia, the Netherlands, the United Kingdom and Switzerland), the Bill & Melinda Gates Foundation and the NIH. A.G. is a full-time employee of Aeras, which has received current or past grant support from the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the Dutch Ministry of Foreign Affairs (DGIS), the Australian Agency for International Development (AusAID), the Global Health Innovative Technology (GHIT) Fund, the US FDA and the US National Institute of Allergy and Infectious Diseases (NIAID) of the NIH. S.S. is a full-time employee of the Indian Council of Medical Research (ICMR), a Government of India agency. M.S. is a full-time employee of TB Alliance, which has received current or past grant support from AusAID, the Bill & Melinda Gates Foundation, DFID, DGIS, the European Commission (EC), GHIT, the Indonesia Health Fund, NIAID/NIH, UNITAID, the US Agency for International Development (USAID) and the FDA. D.M. acknowledges grant support from CIHR.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.P.); Epidemiology (D.D.); Mechanisms/pathophysiology (M.A.B. and M.D.); Diagnosis, screening and prevention (M.P., C.C.B., M.A.B. and A.G.); Management (D.M., M.S., K.D., H.G. and S.S.); Quality of life (M.P., K.D. and M.R.), Outlook (M.R.); Overview of Primer (M.P.). M.P. and M.A.B. contributed equally to this work.

Corresponding author

Correspondence to Madhukar Pai.

Ethics declarations

Competing interests

M.P. declares no financial conflicts. He serves as a consultant for the Bill & Melinda Gates Foundation, and on advisory committees of Foundation for Innovative New Diagnostics (FIND) and TB Alliance. M.A.B. receives royalties for an antigen used in one of the IGRA tests (QuantiFERON) but did not contribute to this section of the document. He serves on the Vaccine Advisory Committee for Aeras. K.D. has obtained speaker fees at industry-sponsored symposia and grants from FIND, eNose Company, Statens Serum Institut and bioMeriux, and grants and personal fees from ALERE, Oxford Immunotec, Cellestis (now Qiagen), Cepheid, Antrum Biotec and Hain Lifescience. In addition, K.D. has a patent Characterisation of novel tuberculosis specific urinary biomarkers pending, a patent A smart mask for monitoring cough-related infectious diseases pending and a patent Device for diagnosing EPTB issued. C.C.B. is employed by FIND, a not-for-profit organization driving the development and delivery of new diagnostics for tuberculosis (TB). FIND has contractual relationships with >20 in vitro diagnostic companies, several of which are mentioned in the article. M.R. declares no financial conflicts. He serves as observer on the Board of Directors of the TB Alliance and as External Clinical Research Expert for the US National Institute of Allergy and Infectious Diseases (NIAID) HIV/AIDS Clinical Trials Network Strategic Working Group, NIH. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, M., Behr, M., Dowdy, D. et al. Tuberculosis. Nat Rev Dis Primers 2, 16076 (2016). https://doi.org/10.1038/nrdp.2016.76

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2016.76

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology