Changes in Lipid Profiles with the Progression of Pregnancy in Black Women
<p>(<b>A</b>) The 3D dimensionality reduction models showing overall differences in lipidome profiles with the progression of pregnancy. (<b>A1</b>)—unsupervised principal component score plot. (<b>A2</b>)—partial least square discriminant analysis score plot. One score represents one sample. Timepoints T<sub>1</sub> (red), T<sub>2</sub> (green), and T<sub>3</sub> (blue). (<b>B</b>)—Bar graphs showing significant differences in the levels of lipids at three timepoints using mixed-effects models: (<b>B1</b>)—An overall increase in total lipid levels was observed with the progression of pregnancy (FDR-adj <span class="html-italic">p</span> = 8.05 × 10<sup>−9</sup>. (<b>B2</b>)—Total phospholipid levels increased (FDR-adj <span class="html-italic">p</span> = 4.53 × 10<sup>−9</sup>). (<b>B3</b>)—Total Sphingolipids also increased with the progression of pregnancy (FDR-adj <span class="html-italic">p</span> = 0.000714). (<b>B4</b>)—Total glycerolipids increased with the progression of pregnancy (FDR-adj <span class="html-italic">p</span> = 4.38 × 10<sup>−10</sup>). (<b>B5</b>)—Total sterol lipid levels increased at timepoint 3 (FDR-adj <span class="html-italic">p</span> = 0.0326). (<b>B6</b>)—Total non-esterified fatty acids showed a trend of decrease at T2 and increase at T3 timepoints with the progression of pregnancy (FDR-adj <span class="html-italic">p</span> = 0.0742) (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, # <span class="html-italic">p</span> < 0.1).</p> "> Figure 2
<p>(<b>A</b>)—(<b>A1</b>) The 3D OPLS DA score plot (OPLS DA) on left showing differences in lipidome profiles at timepoints T<sub>1</sub> (red) and T<sub>2</sub>(green). (<b>A2</b>) OPLS DA S-plot showing reliable lipid markers with high magnitude and significance; red represents higher at T<sub>1</sub> and green represents higher at T<sub>2</sub>. (<b>B</b>)—(<b>B1</b>) The 3D OPLS DA score plot (OPLS DA) on left showing differences in lipidome profiles at timepoints T<sub>1</sub> (red) and T<sub>3</sub> (blue). (<b>B2</b>) OPLS DA S-plot showing reliable lipid markers with high magnitude and significance; red represents higher at T<sub>1</sub> and blue represents higher at T<sub>3</sub>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.1.1. Inclusion and Exclusion Criteria
2.1.2. Self-Reported Questionnaire
2.1.3. Plasma Samples
2.2. Lipidome Analysis
2.2.1. Sample Extraction for Lipidome Analysis
2.2.2. Lipidome Profiles
2.2.3. Lipid Peak Finding, Identification, and Quantitation
2.3. Statistical Analysis
2.4. Maternal Characteristics
3. Results
3.1. Total Lipid Levels and Major Classes of Lipids Increase with Progression of Pregnancy
3.2. Triglyceride and Diglyceride Levels Increase and Monoglyceride Levels Decrease with the Progression of Pregnancy
3.3. Some Free Unsaturated and Saturated Sphingosine Bases’ Levels Decrease with Progression of Pregnancy
3.4. Free Cholesterol Levels Increase and Very Long-Chain Cholesterol Esters’ Levels Decrease with Progression of Pregnancy
3.5. Acylcarnitines and Hydroxy Acylcarnitines Showed a Decrease in Levels with the Advancement of Pregnancy
3.6. Total Choline-Containing Lipids Increase with Progression of Pregnancy
3.7. Lysolipid Levels Decrease with Progression of Pregnancy
3.8. Levels of Important Polyunsaturated Fatty Acids Decreased from T1 to T2 and Increased from T2 to T3
3.9. Effect on Ratios of Different Lipid Classes and Specific Lipids during Pregnancy
3.10. Potential Lipid Signatures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lain, K.Y.; Catalano, P.M. Metabolic changes in pregnancy. Clin. Obstet. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef]
- Grimes, S.B.; Wild, R. Effect of Pregnancy on Lipid Metabolism and Lipoprotein Levels. In Endotext; Copyright © 2000–2022; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Manuck, T.A. Racial and ethnic differences in preterm birth: A complex, multifactorial problem. Semin. Perinatol. 2017, 41, 511–518. [Google Scholar] [CrossRef]
- Njoku, A.; Evans, M.; Nimo-Sefah, L.; Bailey, J. Listen to the Whispers before They Become Screams: Addressing Black Maternal Morbidity and Mortality in the United States. Healthcare 2023, 11, 438. [Google Scholar] [CrossRef]
- Lydic, T.A.; Goo, Y.H. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin. Transl. Med. 2018, 7, 4. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, S.M.; Kwon, G.E.; Kim, B.J.; Koo, J.N.; Oh, I.H.; Kim, S.M.; Shin, S.; Kim, W.; Joo, S.K.; et al. Maternal dyslipidemia and altered cholesterol metabolism in early pregnancy as a risk factor for small for gestational age neonates. Sci. Rep. 2021, 11, 21066. [Google Scholar] [CrossRef]
- Adank, M.C.; Benschop, L.; Kors, A.W.; Peterbroers, K.R.; Smak Gregoor, A.M.; Mulder, M.T.; Schalekamp-Timmermans, S.; Roeters Van Lennep, J.E.; Steegers, E.A.P. Maternal lipid profile in early pregnancy is associated with foetal growth and the risk of a child born large-for-gestational age: A population-based prospective cohort study: Maternal lipid profile in early pregnancy and foetal growth. BMC Med. 2020, 18, 276. [Google Scholar] [CrossRef]
- Woollett, L.A.; Catov, J.M.; Jones, H.N. Roles of maternal HDL during pregnancy. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 2022, 1867, 159106. [Google Scholar] [CrossRef]
- LaBarre, J.L.; Puttabyatappa, M.; Song, P.X.K.; Goodrich, J.M.; Zhou, L.; Rajendiran, T.M.; Soni, T.; Domino, S.E.; Treadwell, M.C.; Dolinoy, D.C.; et al. Maternal lipid levels across pregnancy impact the umbilical cord blood lipidome and infant birth weight. Sci. Rep. 2020, 10, 14209. [Google Scholar] [CrossRef]
- Misra, V.K.; Trudeau, S.; Perni, U. Maternal serum lipids during pregnancy and infant birth weight: The influence of prepregnancy BMI. Obesity (Silver Spring) 2011, 19, 1476–1481. [Google Scholar] [CrossRef]
- Aung, M.T.; Ashrap, P.; Watkins, D.J.; Mukherjee, B.; Rosario, Z.; Vélez-Vega, C.M.; Alshawabkeh, A.N.; Cordero, J.F.; Meeker, J.D. Maternal lipidomic signatures in relation to spontaneous preterm birth and large-for-gestational age neonates. Sci. Rep. 2021, 11, 8115. [Google Scholar] [CrossRef] [PubMed]
- Carnethon, M.R.; Pu, J.; Howard, G.; Albert, M.A.; Anderson, C.A.M.; Bertoni, A.G.; Mujahid, M.S.; Palaniappan, L.; Taylor, H.A., Jr.; Willis, M.; et al. Cardiovascular Health in African Americans: A Scientific Statement from the American Heart Association. Circulation 2017, 136, e393–e423. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.T.; El-Atat, F. Metabolic syndrome in African Americans: Implications for preventing coronary heart disease. Clin. Cardiol. 2007, 30, 161–164. [Google Scholar] [CrossRef]
- Ferdinand, K.C. Dyslipidemia treatment in African-Americans: Should race be a factor? Future Lipidol. 2006, 1, 653–658. [Google Scholar] [CrossRef]
- Saadat, N.; Lydic, T.A.; Misra, D.P.; Dailey, R.; Walker, D.S.; Giurgescu, C. Lipidome Profiles Are Related to Depressive Symptoms and Preterm Birth Among African American Women. Biol. Res. Nurs. 2020, 22, 354–361. [Google Scholar] [CrossRef]
- Zullig, T.; Trotzmuller, M.; Kofeler, H.C. Lipidomics from sample preparation to data analysis: A primer. Anal. Bioanal. Chem. 2020, 412, 2191–2209. [Google Scholar] [CrossRef]
- Rist, M.J.; Roth, A.; Frommherz, L.; Weinert, C.H.; Kruger, R.; Merz, B.; Bunzel, D.; Mack, C.; Egert, B.; Bub, A.; et al. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS ONE 2017, 12, e0183228. [Google Scholar] [CrossRef]
- Jove, M.; Mate, I.; Naudi, A.; Mota-Martorell, N.; Portero-Otin, M.; De la Fuente, M.; Pamplona, R. Human Aging Is a Metabolome-related Matter of Gender. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 578–585. [Google Scholar] [CrossRef]
- Patterson, R.E.; Ducrocq, A.J.; McDougall, D.J.; Garrett, T.J.; Yost, R.A. Comparison of blood plasma sample preparation methods for combined LC-MS lipidomics and metabolomics. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2015, 1002, 260–266. [Google Scholar] [CrossRef]
- Delekta, P.C.; Shook, J.C.; Lydic, T.A.; Mulks, M.H.; Hammer, N.D. Staphylococcus aureus Utilizes Host-Derived Lipoprotein Particles as Sources of Fatty Acids. J. Bacteriol. 2018, 200, 1110–1128. [Google Scholar] [CrossRef]
- Lydic, T.A.; Busik, J.V.; Reid, G.E. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J. Lipid Res. 2014, 55, 1797–1809. [Google Scholar] [CrossRef] [PubMed]
- Douglas Bates, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar]
- Wickham, H.; Wickham, H. Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- MacDorman, M.F.; Thoma, M.; Declcerq, E.; Howell, E.A. Racial and Ethnic Disparities in Maternal Mortality in the United States Using Enhanced Vital Records, 2016–2017. Am. J. Public Health 2021, 111, 1673–1681. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, F.; Li, S. Metabolic Adaptations in Pregnancy: A Review. Ann. Nutr. Metab. 2017, 70, 59–65. [Google Scholar] [CrossRef]
- Armistead, B.; Johnson, E.; VanderKamp, R.; Kula-Eversole, E.; Kadam, L.; Drewlo, S.; Kohan-Ghadr, H.-R. Placental Regulation of Energy Homeostasis During Human Pregnancy. Endocrinology 2020, 161, bqaa076. [Google Scholar] [CrossRef] [PubMed]
- Vahratian, A.; Misra, V.K.; Trudeau, S.; Misra, D.P. Prepregnancy body mass index and gestational age-dependent changes in lipid levels during pregnancy. Obstet. Gynecol. 2010, 116, 107–113. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Maternal lipid metabolism during normal pregnancy and its implications to fetal development. Clin. Lipidol. 2010, 5, 899–911. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr. Pharm. Biotechnol. 2014, 15, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Duttaroy, A.K.; Basak, S. Maternal Fatty Acid Metabolism in Pregnancy and Its Consequences in the Feto-Placental Development. Front. Physiol. 2021, 12, 787848. [Google Scholar] [CrossRef]
- Barrera, C.; Valenzuela, R.; Chamorro, R.; Bascuñán, K.; Sandoval, J.; Sabag, N.; Valenzuela, F.; Valencia, M.P.; Puigrredon, C.; Valenzuela, A. The impact of maternal diet during pregnancy and lactation on the fatty acid composition of erythrocytes and breast milk of Chilean women. Nutrients 2018, 10, 839. [Google Scholar] [CrossRef]
- Schoderbeck, M.; Auer, B.; Legenstein, E.; Genger, H.; Sevelda, P.; Salzer, H.; Marz, R.; Lohninger, A. Pregnancy-related changes of carnitine and acylcarnitine concentrations of plasma and erythrocytes. J. Perinat. Med. 1995, 23, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Arenas, J.; Rubio, J.C.; Martin, M.A.; Campos, Y. Biological roles of L-carnitine in perinatal metabolism. Early Hum. Dev. 1998, 53 (Suppl. S1), S43–S50. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lyu, C.; Li, M.; Rahman, M.L.; Chen, Z.; Zhu, Y.; Hinkle, S.N.; Chen, L.; Mitro, S.D.; Li, L.J.; et al. Plasma Acylcarnitines during Pregnancy and Neonatal Anthropometry: A Longitudinal Study in a Multiracial Cohort. Metabolites 2021, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Nodzenski, M.; Reisetter, A.C.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Targeted Metabolomics Demonstrates Distinct and Overlapping Maternal Metabolites Associated with BMI, Glucose, and Insulin Sensitivity During Pregnancy Across Four Ancestry Groups. Diabetes Care 2017, 40, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, K.K.; Donovan, B.M.; Fleener, D.K.; Bedell, B.; Borowski, K.S. Pregnancy-Related Changes of Amino Acid and Acylcarnitine Concentrations: The Impact of Obesity. AJP Rep. 2016, 6, e329–e336. [Google Scholar] [CrossRef] [PubMed]
- Schooneman, M.G.; Vaz, F.M.; Houten, S.M.; Soeters, M.R. Acylcarnitines: Reflecting or inflicting insulin resistance? Diabetes 2013, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fakhr, Y.; Brindley, D.N.; Hemmings, D.G. Physiological and pathological functions of sphingolipids in pregnancy. Cell. Signal. 2021, 85, 110041. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E.; Desoye, G. Maternal and fetal lipid metabolism under normal and gestational diabetic conditions. Horm. Mol. Biol. Clin. Investig. 2016, 26, 109–127. [Google Scholar] [CrossRef]
- Borkowski, K.; Newman, J.W.; Aghaeepour, N.; Mayo, J.A.; Blazenović, I.; Fiehn, O.; Stevenson, D.K.; Shaw, G.M.; Carmichael, S.L. Mid-gestation serum lipidomic profile associations with spontaneous preterm birth are influenced by body mass index. PLoS ONE 2020, 15, e0239115. [Google Scholar] [CrossRef]
- Chen, X.; Stein, T.P.; Steer, R.A.; Scholl, T.O. Individual free fatty acids have unique associations with inflammatory biomarkers, insulin resistance and insulin secretion in healthy and gestational diabetic pregnant women. BMJ Open Diabetes Res. Care 2019, 7, e000632. [Google Scholar] [CrossRef]
- Villafan-Bernal, J.R.; Acevedo-Alba, M.; Reyes-Pavon, R.; Diaz-Parra, G.A.; Lip-Sosa, D.L.; Vazquez-Delfin, H.I.; Hernandez-Muñoz, M.; Bravo-Aguirre, D.E.; Figueras, F.; Martinez-Portilla, R.J. Plasma Levels of Free Fatty Acids in Women with Gestational Diabetes and Its Intrinsic and Extrinsic Determinants: Systematic Review and Meta-Analysis. J. Diabetes Res. 2019, 2019, 7098470. [Google Scholar] [CrossRef]
- Kabaran, S.; Besler, H.T. Do fatty acids affect fetal programming? J. Health Popul. Nutr. 2015, 33, 14. [Google Scholar] [CrossRef]
- Chen, L.; Mir, S.A.; Bendt, A.K.; Chua, E.W.L.; Narasimhan, K.; Tan, K.M.-L.; Loy, S.L.; Tan, K.H.; Shek, L.P.; Chan, J.; et al. Plasma lipidomic profiling reveals metabolic adaptations to pregnancy and signatures of cardiometabolic risk: A preconception and longitudinal cohort study. BMC Med. 2023, 21, 53. [Google Scholar] [CrossRef]
Variable | Sample Total = 64 |
---|---|
Maternal Age | 27.17 ± 5.68 |
N (%) | |
Annual Household Income | |
<USD 10,000 | 24 (37.5) |
USD 10,000–19,999 | 9 (14.1) |
USD 20,000–29,999 | 15 (23.4) |
USD 30,000–39,999 | 10 (15.6) |
USD 40,000–59,999 | 4 (6.3) |
USD 60,000–79,999 | 1 (1.6) |
>USD 80,000 | 1 (1.6) |
Education | |
<High School | 8 (12.5) |
High School or GED | 32 (50.0 |
Technical/Vocational | 10 (15.6) |
Some College | 12 (18.8) |
Associate Degree | 2 (3.1) |
Bachelor’s degree | 0 (0) |
Graduate Degree | 0 (0) |
Work Status | |
Working | 32 (50.0) |
Not Working | 32 (50.0) |
Marital Status | |
Married | 9 (14.1) |
Living with Partner | 14 (21.9) |
Widowed | 0 (0) |
Divorced | 0 (0) |
Separated | 3 (4.7) |
Never Married | 37 (57.8) |
Missing | 1 (1.6) |
Lipid Classes | R2 | T1 | ±SE | T2 | ±SE | T3 | ±SE | p-Value | FDR adj |
---|---|---|---|---|---|---|---|---|---|
Phosphatidylcholine (PC) | 0.769 | 3643.167 | 208.363 | 4225.387 | 208.912 | 4529.197 | 210.058 | 3.96 × 10−8 | 3.87 × 10−7 |
Phosphatidylethanolamine (PE) | 0.578 | 262.877 | 18.166 | 380.557 | 18.249 | 453.77 | 18.422 | 6.00 × 10−20 | 5.28 × 10−18 |
very long chain PE (VLC PE) | 0.561 | 2.693 | 0.109 | 3.067 | 0.109 | 3.183 | 0.11 | 1.30 × 10−5 | 6.00 × 10−5 |
Phosphatidylglycerol (PG) | 0.388 | 0.504 | 0.046 | 0.612 | 0.047 | 0.682 | 0.047 | 3.26 × 10−3 | 7.00 × 10−3 |
Phosphatidylinositol (PI) | 0.324 | 34.521 | 4.082 | 40.24 | 4.109 | 50.286 | 4.166 | 5.34 × 10−3 | 1.09 × 10−2 |
Cardiolipin (CL) | 0.41 | 0.725 | 0.074 | 0.913 | 0.074 | 1.115 | 0.075 | 2.57 × 10−5 | 1.03 × 10−4 |
Ceramide(Cer) | 0.56 | 11.774 | 0.653 | 12.445 | 0.656 | 14.288 | 0.662 | 2.90 × 10−4 | 8.80 × 10−4 |
Hexosylceramide (HexCer) | 0.566 | 1.747 | 0.151 | 2.428 | 0.152 | 2.818 | 0.153 | 4.62 × 10−11 | 1.02 × 10−9 |
Lactosylceramide (LacCer) | 0.415 | 2.873 | 0.213 | 2.988 | 0.214 | 3.499 | 0.217 | 2.06 × 10−2 | 3.70 × 10−2 |
Sphingomyelin (SM) | 0.762 | 771.652 | 52.867 | 813.585 | 53.01 | 925.087 | 53.308 | 2.10 × 10−4 | 6.61 × 10−4 |
Sulfatide (ST) | 0.188 | 0.71 | 0.072 | 0.808 | 0.072 | 1.046 | 0.074 | 1.47 × 10−3 | 3.60 × 10−3 |
Diacylglyceride (DG) | 0.579 | 3.921 | 0.292 | 4.601 | 0.293 | 5.671 | 0.296 | 1.40 × 10−8 | 1.54 × 10−7 |
Triacylglyceride (TG) | 0.648 | 1180.275 | 90.545 | 1473.203 | 90.897 | 1749.301 | 91.632 | 1.58 × 10−10 | 2.78 × 10−9 |
Free Cholesterol | 0.731 | 372.884 | 22.067 | 384.6 | 22.133 | 423.049 | 22.273 | 7.86 × 10−3 | 1.57 × 10−2 |
Esterified Saturated Fatty Acids | 0.473 | 409.917 | 25.249 | 468.361 | 25.388 | 510.028 | 25.677 | 9.80 × 10−4 | 2.54 × 10−3 |
Esterified Mono-Unsaturated Fatty Acids | 0.502 | 417.729 | 26.27 | 486.409 | 26.408 | 539.557 | 26.696 | 5.87 × 10−5 | 2.07 × 10−4 |
Esterified Poly-Unsaturated Fatty Acids | 0.784 | 3700.041 | 209.984 | 4191.596 | 210.502 | 4478.011 | 211.584 | 7.76 × 10−7 | 4.88 × 10−6 |
Esterified Linoleic Acid (18:2n6) | 0.781 | 941.75 | 51.078 | 1012.182 | 51.206 | 1081.395 | 51.473 | 4.40 × 10−4 | 1.24 × 10−3 |
Total Diradyl Phospholipids | 0.77 | 4029.496 | 228.964 | 4750.771 | 229.563 | 5146.391 | 230.815 | 4.18 × 10−10 | 6.13 × 10−9 |
Total Choline Lipids (PC+SM) | 0.77 | 4514.318 | 259.749 | 5117.155 | 260.43 | 5521.277 | 261.851 | 6.37 × 10−7 | 4.31 × 10−6 |
Total Amine Phospholipids (PE+PS) | 0.545 | 365.849 | 23.226 | 494.358 | 23.339 | 570.903 | 23.575 | 8.68 × 10−15 | 3.82 × 10−13 |
Total Glycolipids (PI, HexCer, LacCer, ST) | 0.925 | 274.343 | 15.714 | 281.372 | 15.727 | 295.719 | 15.756 | 2.90 × 10−3 | 6.38 × 10−3 |
Lipid Classes | R2 | T1 | ±SE | T2 | ±SE | T3 | ±SE | p-Value | FDR adj |
---|---|---|---|---|---|---|---|---|---|
Lyso phosphatidylcholine (Lyso PC) | 0.514 | 87.989 | 3.877 | 67.511 | 3.897 | 57.243 | 3.939 | 4.23 × 10−12 | 1.24 × 10−10 |
Lyso phosphatidylethanolamine (Lyso PE) | 0.551 | 25.135 | 1.285 | 23.256 | 1.291 | 21.564 | 1.304 | 0.017627 | 0.033003 |
Free d16:1 | 0.506 | 0.524 | 0.058 | 0.254 | 0.058 | 0.247 | 0.058 | 0.00000142 | 0.00000835 |
Free d18:0 | 0.261 | 0.564 | 0.061 | 0.275 | 0.061 | 0.359 | 0.062 | 0.000508 | 0.001396 |
Free d18:1 | 0.218 | 19.84 | 3.213 | 9.582 | 3.236 | 11.14 | 3.285 | 0.026302 | 0.044511 |
Free d18:2 | 0.294 | 3.7 | 0.364 | 1.755 | 0.367 | 1.968 | 0.372 | 0.0000167 | 0.0000734 |
Free d20:0 | 0.486 | 0.182 | 0.025 | 0.116 | 0.025 | 0.091 | 0.025 | 0.001278 | 0.003214 |
Free d20:1 | 0.512 | 1.651 | 0.207 | 1.066 | 0.208 | 0.949 | 0.21 | 0.001812 | 0.004196 |
d16:0-1-PO4 | 0.256 | 0.031 | 0.005 | 0.017 | 0.005 | 0.012 | 0.005 | 0.008166 | 0.015969 |
Monoacylglycerol (MG) | 0.148 | 0.155 | 0.015 | 0.063 | 0.016 | 0.043 | 0.016 | 0.000000244 | 0.00000195 |
VLC Cholesteryl Esters | 0.56 | 0.167 | 0.017 | 0.08 | 0.017 | 0.062 | 0.017 | 1.06 × 10−9 | 1.34 × 10−8 |
Acylcarnitines | 0.508 | 0.269 | 0.019 | 0.173 | 0.019 | 0.164 | 0.019 | 4.77 × 10−8 | 0.00000042 |
Hydroxy acylcarnitines | 0.262 | 0.062 | 0.01 | 0.016 | 0.01 | 0.013 | 0.01 | 0.0000515 | 0.000192 |
Total Lyso Phospholipids | 0.896 | 348.944 | 15.99 | 327.214 | 16.009 | 319.687 | 16.05 | 0.000341 | 0.001 |
Lipid Classes | R2 | T1 | ±SE | T2 | ±SE | T3 | ±SE | p-Value | FDR adj |
---|---|---|---|---|---|---|---|---|---|
Polyunsaturated non-esterified fatty acids (NEFA) | 0.262 | 96.688 | 9.402 | 66.664 | 9.469 | 93.804 | 9.606 | 0.018324 | 0.033594 |
Non-esterified Linoleic Acid (18:2n6) | 0.249 | 79.991 | 8.169 | 55.893 | 8.227 | 80.024 | 8.348 | 0.025248 | 0.043566 |
Non-esterified Arachidonic Acid (20:4n6) | 0.452 | 4.925 | 0.32 | 3.387 | 0.322 | 3.959 | 0.326 | 5.23 × 10−5 | 0.000192 |
Non-esterified Alpha-linolenic acid (ALA) (18:3n3) | 0.189 | 5.717 | 0.609 | 3.48 | 0.613 | 5.179 | 0.623 | 0.013296 | 0.025436 |
Non-esterified Eicosapentaenoic acid (EPA) (20:5n3) | 0.307 | 0.143 | 0.014 | 0.087 | 0.014 | 0.098 | 0.014 | 0.001595 | 0.003793 |
Non-esterified Docosapentaenoic acid (DPA) (22:5n3) | 0.332 | 1.069 | 0.088 | 0.636 | 0.088 | 0.737 | 0.089 | 9.94 × 10−5 | 0.000336 |
Non-esterified Docosahexaenoic acid (DHA) (22:6n3) | 0.455 | 2.389 | 0.189 | 1.465 | 0.19 | 1.675 | 0.193 | 1.90 × 10−5 | 7.94 × 10−5 |
Lipid Classes | R2 | T1 | ±SE | T2 | ±SE | T3 | ±SE | p-Value | FDR adj |
---|---|---|---|---|---|---|---|---|---|
Ratio non-esterified Arachidonic/DHA | 0.406 | 2.386 | 0.112 | 2.73 | 0.113 | 2.849 | 0.114 | 0.00077 | 0.00205 |
Ratio non-esterfied n6 Archidonic+Linoleic/n3 ALA+EPA+DPA+DHA | 0.339 | 9.941 | 0.416 | 12.16 | 0.419 | 12.152 | 0.425 | 3.06 × 10−6 | 1.58 × 10−5 |
Ratio Mono-Unsaturated/Saturated Esterified FA | 0.373 | 1.017 | 0.008 | 1.04 | 0.008 | 1.057 | 0.008 | 0.00017 | 0.00055 |
Ratio Mono-Unsaturated/Poly-Unsaturated Esterified FA | 0.29 | 0.113 | 0.004 | 0.116 | 0.004 | 0.124 | 0.004 | 0.02344 | 0.04126 |
Ratio n6 Archidonic+Linoleic/n3 EPA+DPA+DHA (Esterified) | 0.677 | 2.254 | 0.045 | 2.278 | 0.045 | 2.373 | 0.046 | 0.0042 | 0.0088 |
Ratio Arachidonic/DHA (Esterified) | 0.627 | 1.068 | 0.026 | 0.995 | 0.026 | 1.001 | 0.026 | 0.002439 | 0.0055 |
Ratio Unsaturated/Saturated NEFA | 0.121 | 2.01 | 0.079 | 1.466 | 0.08 | 1.59 | 0.081 | 1.99 × 10−6 | 1.09 × 10−5 |
Ratio Mono-Unsaturated/Saturated NEFA | 0.174 | 1.076 | 0.046 | 0.795 | 0.046 | 0.866 | 0.047 | 1.29 × 10−5 | 6.00 × 10−5 |
Ratio Poly-Unsaturated/Saturated NEFA | 0.091 | 0.934 | 0.036 | 0.671 | 0.036 | 0.724 | 0.037 | 3.78 × 10−7 | 2.77 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadat, N.; Aguate, F.; Nowak, A.L.; Hyer, S.; Lin, A.B.; Decot, H.; Koch, H.; Walker, D.S.; Lydic, T.; Padmanabhan, V.; et al. Changes in Lipid Profiles with the Progression of Pregnancy in Black Women. J. Clin. Med. 2024, 13, 2795. https://doi.org/10.3390/jcm13102795
Saadat N, Aguate F, Nowak AL, Hyer S, Lin AB, Decot H, Koch H, Walker DS, Lydic T, Padmanabhan V, et al. Changes in Lipid Profiles with the Progression of Pregnancy in Black Women. Journal of Clinical Medicine. 2024; 13(10):2795. https://doi.org/10.3390/jcm13102795
Chicago/Turabian StyleSaadat, Nadia, Fernando Aguate, Alexandra L. Nowak, Suzanne Hyer, Anna B. Lin, Hannah Decot, Hannah Koch, Deborah S. Walker, Todd Lydic, Vasantha Padmanabhan, and et al. 2024. "Changes in Lipid Profiles with the Progression of Pregnancy in Black Women" Journal of Clinical Medicine 13, no. 10: 2795. https://doi.org/10.3390/jcm13102795
APA StyleSaadat, N., Aguate, F., Nowak, A. L., Hyer, S., Lin, A. B., Decot, H., Koch, H., Walker, D. S., Lydic, T., Padmanabhan, V., Campos, G. d. l., Misra, D., & Giurgescu, C. (2024). Changes in Lipid Profiles with the Progression of Pregnancy in Black Women. Journal of Clinical Medicine, 13(10), 2795. https://doi.org/10.3390/jcm13102795