Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A
<p>Effect of polycyclic aromatic hydrocarbons (PAHs) on <span class="html-italic">Ciona</span> embryogenesis. Percentage of abnormal larvae treated with different concentrations of dibenzothiophene (<b>a</b>), fluorene (<b>b</b>), and phenanthrene (<b>c</b>) from fertilized egg to swimming larva stages. Mean values of five biological replicates are presented with standard deviations. Approximately 50 embryos were examined in each experiment. Asterisks indicate significant differences (<span class="html-italic">p</span> < 0.05; Dunnett’s test).</p> "> Figure 2
<p>Effect of PAHs on <span class="html-italic">Ciona</span> metamorphosis. The ratio of tail residue diameter to body length in juveniles treated with 0.2% DMSO (negative control), 100 µM dibenzothiophene, 100 µM fluorene, or 100 µM phenanthrene from swimming larvae (20 h after fertilization) to juveniles (90 h after fertilization) stages. Mean values of five biological replicates are represented with standard deviations. Approximately 50 embryos were examined in each experiment. Asterisks indicate significant differences (<span class="html-italic">p</span> < 0.05; Dunnett’s test).</p> "> Figure 3
<p>RT-PCR analysis of <span class="html-italic">Ci-AhR</span> and <span class="html-italic">Ci-EF1α</span>. <span class="html-italic">Ci-AhR</span> mRNA expression was determined in the swimming larva (lane 1), mid body axis rotation (lane 2), and early juveniles (lane 3) stages. No amplification was detected in the no reverse transcription template (lane 4–6). <span class="html-italic">Ci-EF1α</span> was amplified as an internal control.</p> "> Figure 4
<p>Whole-mount <span class="html-italic">in situ</span> hybridization (WISH) analysis of <span class="html-italic">Ci-AhR</span> mRNA in <span class="html-italic">Ciona</span> juveniles. (<b>a</b>) <span class="html-italic">Ci-AhR</span> mRNA localization using antisense <span class="html-italic">Ci-AhR</span> probe. (<b>b</b>) WISH analysis using sense probe of <span class="html-italic">Ci-AhR</span>. No signal was detected. Magnifications of (<b>a</b>) are presented in (<b>c</b>–<b>h</b>). a, anterior; as, atrial siphon; bs, branchial sac; d, dorsal; en, endostyle; esp, esophagus; int, intestine; nc, neural complex; os, oral siphon; p, posterior; st, stomach; v, ventral. Scale bars in (<b>a</b>,<b>b</b>) and (<b>c</b>–<b>h</b>) are 500 and 100 μm, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Chemicals
2.3. Exposure Experiments
2.4. Reverse-Transcription (RT)-PCR of Ci-AhR mRNA
2.5. Whole-Mount In Situ Hybridization Analysis of Ci-AhR
3. Results
3.1. Exposure Experiments from Fertilized Eggs to Swimming Larvae
3.2. Exposure Experiments from Swimming Larvae to Early Juvenile Stages
3.3. Gene Expression of Ci-AhR during Early Metamorphosis
3.4. Localization Analysis of Ci-AhR mRNA Using WISH
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baird, W.M.; Hooven, L.A.; Mahadevan, B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen. 2005, 45, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Suess, M.J. The environmental load and cycle of polycyclic aromatic hydrocarbons. Sci. Total Environ. 1976, 6, 239–250. [Google Scholar] [CrossRef]
- Ball, A.; Truskewycz, A. Polyaromatic hydrocarbon exposure: An ecological impact ambiguity. Environ. Sci. Pollut. Res. Int. 2013, 20, 4311–4326. [Google Scholar] [CrossRef] [PubMed]
- Bue, B.G.; Sharr, S.; Seeb, J.E. Evidence of damage to pink salmon populations inhabiting Prince William Sound, Alaska, two generations after the Exxon Valdez oil spill. Trans. Am. Fish. Soc. 1998, 127, 35–43. [Google Scholar] [CrossRef]
- Hayakawa, K.; Nomura, M.; Nakagawa, T.; Oguri, S.; Kawanishi, T.; Toriba, A.; Kizu, R.; Sakaguchi, T.; Tamiya, E. Damage to and recovery of coastlines polluted with C-heavy oil spilled from the Nakhodka. Water Res. 2006, 40, 981–989. [Google Scholar] [CrossRef]
- Chen, K.; Tsutsumi, Y.; Yoshitake, S.; Qiu, X.; Xu, H.; Hashiguchi, Y.; Honda, M.; Tashiro, K.; Nakayama, K.; Hano, T.; et al. Alteration of development and gene expression induced by in ovo-nanoinjection of 3-hydroxybenzo[c]phenanthrene into Japanese medaka (Oryzias latipes) embryos. Aquat. Toxicol. 2017, 182, 194–204. [Google Scholar] [CrossRef]
- Collier, T.K.; Anulacion, B.F.; Arkoosh, M.R.; Dietrich, J.P.; Incardona, J.P.; Johnson, L.L.; Ylitalo, G.M.; Myers, M.S. Effects on fish of polycyclic aromatic hydrocarbons (PAHs) and naphthenic acid exposures. In Fish Physiology; Tierney, K.B., Farrell, A.P., Brauner, C.J., Mosbahi, D.S., Eds.; Academic Press: Cambridge, MA, USA, 2013; ISBN 978-0-12-398254-4. [Google Scholar]
- Mansour, C.; Guardiola, F.A.; Esteban, M.A.; Mosbahi, D.S. Combination of polycyclic aromatic hydrocarbons and temperature exposure: In vitro effects on immune response of European clam (Ruditapes decussatus). Fish Shellfish Immun. 2017, 67, 110–118. [Google Scholar] [CrossRef]
- Sarkar, A.; Bhagat, J.; Sarker, M.S.; Gaitonde, D.C.S.; Sarker, S. Evaluation of the impact of bioaccumulation of PAH from the marine environment on DNA integrity and oxidative stress in marine rock oyster (Saccostrea cucullata) along the Arabian sea coast. Ecotoxicology 2017, 26, 1105–1116. [Google Scholar] [CrossRef]
- Vrinda, S.; Abdulaziz, A.; Abhilash, K.S.; Jasmin, C.; Kripa, V.; Singh, I.S.B. Neuroendocrine and immunotoxicity of polyaromatic hydrocarbon, chrysene in crustacean post larvae. Ecotoxicology 2019, 28, 964–972. [Google Scholar] [CrossRef]
- Lister, K.N.; Lamare, M.D.; Burritt, D.J. Dietary pollutants induce oxidative stress, altering maternal antioxidant provisioning and reproductive output in the temperate sea urchin Evechinus chloroticus. Aquat. Toxicol. 2016, 177, 106–115. [Google Scholar] [CrossRef]
- Lister, K.N.; Lamare, M.D.; Burritt, D.J. Maternal antioxidant provisioning mitigates pollutant-induced oxidative damage in embryos of the temperate sea urchin Evechinus chloroticus. Sci. Rep. 2017, 7, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellas, J.; Saco-Alvarez, L.; Nieto, O.; Beiras, R. Ecotoxicological evaluation of polycyclic aromatic hydrocarbons using marine invertebrate embryo-larval bioassays. Mar. Pollut. Bull. 2008, 57, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Pillai, M.C.; Vines, C.A.; Wikramanayake, A.H.; Cherr, G.N. Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a beta-catenin dependent pathway. Toxicology 2003, 186, 93–108. [Google Scholar] [CrossRef]
- Sekiguchi, T.; Yachiguchi, K.; Kiyomoto, M.; Ogiso, S.; Wada, S.; Tabuchi, Y.; Hong, C.-S.; Srivastav, A.K.; Archer, S.D.J.; Pointing, S.B.; et al. Molecular mechanism of the suppression of larval skeleton by polycyclic aromatic hydrocarbons in early development of sea urchin Hemicentrotus Pulcherrimus. Fish. Sci. 2018, 84, 1073–1079. [Google Scholar] [CrossRef]
- Suzuki, N.; Ogiso, S.; Yachiguchi, K.; Kawabe, K.; Makino, F.; Toriba, A.; Kiyomoto, M.; Sekiguchi, T.; Tabuchi, Y.; Kondo, T.; et al. Monohydroxylated polycyclic aromatic hydrocarbons influence spicule formation in the early development of sea urchins (Hemicentrotus pulcherrimus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015, 171, 55–60. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Charles, G.D.; Bartels, M.J.; Zacharewski, T.R.; Gollapudi, B.B.; Freshour, N.L.; Carney, E.W. Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay. Toxicol. Sci. 2000, 55, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, K.; Onoda, Y.; Tachikawa, C.; Hosoi, S.; Yoshita, M.; Chung, S.W.; Kizu, R.; Toriba, A.; Kameda, T.; Tang, N. Estrogenic/antiestrogenic activities of polycyclic aromatic hydrocarbons and their monohydroxylated derivatives by yeast two-hybrid assay. J. Health Sci. 2007, 53, 562–570. [Google Scholar] [CrossRef] [Green Version]
- Rubin, H. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: A bio-historical perspective with updates. Carcinogenesis 2001, 22, 1903–1930. [Google Scholar] [CrossRef] [Green Version]
- Esser, C.; Rannug, A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev. 2015, 67, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Kawajiri, K.; Fujii-Kuriyama, Y. The aryl hydrocarbon receptor: A multifunctional chemical sensor for host defense and homeostatic maintenance. Exp. Anim. 2017, 66, 75–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehal, P.; Satou, Y.; Campbell, R.K.; Chapman, J.; Degnan, B.; De Tomaso, A.; Davidson, B.; Di Gregorio, A.; Gelpke, M.; Goodstein, D.M.; et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 2002, 298, 2157–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satou, Y.; Nakamura, R.; Yu, D.; Yoshida, R.; Hamada, M.; Fujie, M.; Hisata, K.; Takeda, H.; Satoh, N. A nearly complete genome of Ciona intestinalis Type A (C. robusta) reveals the contribution of inversion to chromosomal evolution in the genus Ciona. Genome Biol. Evol. 2019, 11, 3144–3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, C.; Lemaire, L.A.; Wang, W.; Yoon, P.H.; Choi, Y.A.; Parsons, L.R.; Matese, J.C.; Wang, W.; Levine, M.; Chen, K. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature 2019, 571, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Ueno, K.; Yonezawa, K.; Mineta, K.; Hotta, K.; Satou, Y.; Yamada, L.; Ogasawara, M.; Takahashi, H.; Nakajima, A.; et al. CIPRO 2.5: Ciona intestinalis protein database, a unique integrated repository of large-scale omics data, bioinformatic analyses and curated annotation, with user rating and reviewing functionality. Nucleic Acids Res. 2011, 39, D807–D814. [Google Scholar] [CrossRef]
- Gandhi, S.; Razy-Krajka, F.; Christiaen, L.; Stolfi, A. CRISPR knockouts in Ciona embryos. Adv. Exp. Med. Biol. 2018, 1029, 141–152. [Google Scholar] [CrossRef]
- Sasakura, Y. Germline transgenesis in Ciona. Adv. Exp. Med. Biol. 2018, 1029, 109–119. [Google Scholar] [CrossRef]
- Yoshida, K.; Treen, N. TALEN-based knockout system. Adv. Exp. Med. Biol. 2018, 1029, 131–139. [Google Scholar] [CrossRef]
- Four-Dimensional Ascidian Body Atlas 2. Available online: https://www.bpni.bio.keio.ac.jp/chordate/faba2/ja/top.html (accessed on 20 December 2019).
- Ogasawara, M.; Sasaki, A.; Metoki, H.; Shin-i, T.; Kohara, Y.; Satoh, N.; Satou, Y. Gene expression profiles in young adult Ciona intestinalis. Dev. Genes Evol. 2002, 212, 173–185. [Google Scholar] [CrossRef]
- Satou, Y.; Satoh, N. Genomewide surveys of developmentally relevant genes in Ciona intestinalis. Dev. Genes Evol. 2003, 213, 211–212. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, S.; Ogasawara, M. Compartmentalized expression patterns of pancreatic- and gastric-related genes in the alimentary canal of the ascidian Ciona intestinalis: Evolutionary insights into the functional regionality of the gastrointestinal tract in Olfactores. Cell Tissue Res. 2017, 370, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.; Satou, K.; Orito, W.; Ogasawara, M. Ordered expression pattern of Hox and ParaHox genes along the alimentary canal in the ascidian juvenile. Cell Tissue Res. 2016, 365, 65–75. [Google Scholar] [CrossRef]
- Ogasawara, M.; Satoh, N.; Shimada, Y.; Wang, Z.; Tanaka, T.; Noji, S. Rapid and stable buffer exchange system using InSitu Chip suitable for multicolor and large-scale whole-mount analyses. Dev. Genes Evol. 2006, 216, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Chiba, S.; Sasaki, A.; Nakayama, A.; Takamura, K.; Satoh, N. Development of Ciona intestinalis juveniles (through 2nd ascidian stage). Zoolog Sci. 2004, 21, 285–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, M.E.; Karchner, S.I.; Merson, R.R. Diversity as opportunity: insights from 600 million years of AHR evolution. Curr. Opin. Toxicol. 2017, 2, 58–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Han, J.; Kim, H.J.; Hagiwara, A.; Lee, J.S. Identification of 28 cytochrome P450 genes from the transcriptome of the marine rotifer Brachionus plicatilis and analysis of their expression. Comp. Biochem. Physiol. D Genomics Proteomics 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Liu, D.; Pan, L.; Cai, Y.; Li, Z.; Miao, J. Response of detoxification gene mRNA expression and selection of molecular biomarkers in the clam Ruditapes philippinarum exposed to benzo[a]pyrene. Environ. pollut. 2014, 189, 1–8. [Google Scholar] [CrossRef]
- Imai, K.S.; Hino, K.; Yagi, K.; Satoh, N.; Satou, Y. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: Towards a comprehensive understanding of gene networks. Development 2004, 131, 4047–4058. [Google Scholar] [CrossRef] [Green Version]
- Goldstone, J.V.; Goldstone, H.M.; Morrison, A.M.; Tarrant, A.; Kern, S.E.; Woodin, B.R.; Stegeman, J.J. Cytochrome P450 1 genes in early deuterostomes (tunicates and sea urchins) and vertebrates (chicken and frog): Origin and diversification of the CYP1 gene family. Mol. Biol. Evol. 2007, 24, 2619–2631. [Google Scholar] [CrossRef]
- Du, J.; Liao, C.; Zhou, H.; Diao, X.; Li, Y.; Zheng, P.; Wang, F. Gene cloning and expression analysis of AhR and CYP4 from Pinctada martensii after exposed to pyrene. Ecotoxicology 2015, 24, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Powell-Coffman, J.A.; Jin, Y. The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development 2004, 131, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Juricek, L.; Coumoul, X. The aryl hydrocarbon receptor and the nervous system. Int. J. Mol. Sci. 2018, 19, 2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, H.; Zhai, Z.; Powell-Coffman, J.A. The Caenorhabditis elegans AHR-1 transcription complex controls expression of soluble guanylate cyclase genes in the URX neurons and regulates aggregation behavior. Dev. Biol. 2006, 298, 606–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekiguchi, T.; Akitaya, H.; Nakayama, S.; Yazawa, T.; Ogasawara, M.; Suzuki, N.; Hayakawa, K.; Wada, S. Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A. Int. J. Environ. Res. Public Health 2020, 17, 1340. https://doi.org/10.3390/ijerph17041340
Sekiguchi T, Akitaya H, Nakayama S, Yazawa T, Ogasawara M, Suzuki N, Hayakawa K, Wada S. Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A. International Journal of Environmental Research and Public Health. 2020; 17(4):1340. https://doi.org/10.3390/ijerph17041340
Chicago/Turabian StyleSekiguchi, Toshio, Hiroshi Akitaya, Satoshi Nakayama, Takashi Yazawa, Michio Ogasawara, Nobuo Suzuki, Kazuichi Hayakawa, and Shuichi Wada. 2020. "Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A" International Journal of Environmental Research and Public Health 17, no. 4: 1340. https://doi.org/10.3390/ijerph17041340
APA StyleSekiguchi, T., Akitaya, H., Nakayama, S., Yazawa, T., Ogasawara, M., Suzuki, N., Hayakawa, K., & Wada, S. (2020). Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A. International Journal of Environmental Research and Public Health, 17(4), 1340. https://doi.org/10.3390/ijerph17041340