Dietary Polyphenols Effects on Focal Adhesion Plaques and Metalloproteinases in Cancer Invasiveness
<p>Polyphenols classification. The figure was created with BioRender.com (accessed on 12 January 2024).</p> "> Figure 2
<p>Representation of the effects of polyphenols on Focal Adhesion Plaques (FAPs) components and MMPs. MMPs, integrins and intracellular proteins cited in the text (Talin, Kindlin, Vinculin, Paxillin, FAK) are reported in the figure. The inhibition arc indicates a negative activity on FAPs’ components and MMPs exerted by the polyphenols reported in the boxes and described in the text. The figure was created with BioRender.com (accessed on 12 January 2024). Abbreviations: 4-HC, 4-Hydroxycoumarin; CAPE, Caffeic acid phenethyl ester; ECM, extracellular matrix; EGCG, Epigallocatechin-3-gallate; FC, Farnesiferol C; MMPs, matrix metalloproteinases; OTA, Ochratoxin A.</p> ">
Abstract
:1. Introduction
2. Focal Adhesion Plaques (FAPs): Structure and Functions
2.1. Integrins: Key Proteins in FAPs Formation
2.2. Intracellular Proteins Involved in Signal Transduction and Their Scaffolding Role
3. Matrix Metalloproteinases and Their Role in the Invasion Process
4. Polyphenols
4.1. Flavonoids: Classification and Description
4.2. Non-Flavonoids: Classification and Description
5. Effects of Polyphenols on FAPs and MMPs
5.1. Effects of Polyphenols on Integrins and Cadherins
5.2. Effects of Polyphenols on FAP Intracellular Proteins
5.3. Effects of Polyphenols on Cytoskeleton
5.4. Effects of Polyphenols on MMPs
Polyphenol | In Vitro Model | In Vivo Model | Effect on FAP | Ref. |
---|---|---|---|---|
Flavonoids | ||||
Flavonols | ||||
Quercetin | Human pancreatic cancer cell lines (PATU-8988) (20–40–80–160 µM) | ↓ Invasion and metastasis ↓ STAT3 signaling pathway ↓ IL-6-induced EMT and MMP secretion | [175] | |
Human medulloblastoma cell line (DAOY); human hepatoma cell line (HepG2); human melanoma cell lines (A375, A2058) (20–40–60–80 µM) | ↓ Migration and invasion ↓ Activation of c-Met and downstream molecules ↓ FAS | [177] | ||
Human pancreatic cancer cell line (MiaPaCa-2) and skin tumor cell line (A431) (10–20–50–100 µM) | ↓ EGFR tyrosine kinase activity and its signal pathway ↓ MMP-9/-2 enzymatic activity ↓ FAK protein phosphorylation | [173] | ||
Human oral squamous cell carcinoma cell line (SAS) (25–50-100–200–400 µM) | ↓ Migration and invasion ↓ MMP-9/-2 enzymatic activity ↓ FAK, p-ERK1/2 | [176] | ||
Kaempferol | Human renal cell adenocarcinoma cell line (786-O) and human proximal tubule epithelial cell line (HK-2) (25–50–75–100 µM) | SCID mice i.v. inoculated with 1 × 106 786-O cells and treated with 2–10 mg/kg of kaempferol by oral gavage | ↓ Cell invasion and migration ↓ MMP-2 expression ↓ FAK phosphorylation ↓ PI3K/Akt pathway ↓ Tumor mass in mice | [174] |
Flavan-3-ols | ||||
Epigallocatechin-3-gallate (EGCG) | Human benign prostate hyperplasia cell line (BPH-1) (from 1 to 100 µM) | ↓ Cell migration ↓ Actin cytoskeleton organization and paxillin distribution ↓ Focal adhesion proteins | [222] | |
Human pancreatic cancer cell lines (AsPC-1, BxPC-3) (25–40–75–80–100 µM) | ↓ Cell adhesion ↓ FAK and IGF-1R activation | [153] | ||
Human tongue squamous cell carcinoma cell line (SCC-9) (5–10–15–20 µM) | BALB/c nu/nu mice s.c. inoculated with 1 × 107 SCC-9 cells and treated with 10–20 mg/kg of EGCG by oral gavage | ↓ Cell invasion and motility ↓ Cell–matrix interaction ↓ MMP-2 expression and activity ↓ FAK phosphorylation ↓ NF-κB and Snail-1 levels ↓ u-PA expression ↓ PMA-induced MMP-9 expression ↓ Tumor mass in mice | [230] | |
Human breast cancer cell line (MCF-7), human melanoma cell line (A375) and human fibrosarcoma cell line (HT-1080) (5–10–20–40 µM) | ↓ MMP-2 enzymatic activity and mRNA levels ↓ MT1-MMP expression ↓ Binding with the extracellular proteins (vitronectin and fibronectin) ↓ Integrin receptor expression ↓ FAK expression ↓ ERK phosphorylation ↓ VEGF expression | [154] | ||
Flavones | ||||
Apigenin | Human pancreatic cancer cell lines (PC3-M, C4-2B, DU145) (10–25–50 µM) | ↓ Cell motility ↑ Filopodia and matrix attachment ↓ Actin structures formation during migration ↓ FAK/Src activation | [179] | |
Human pancreatic cancer cell lines (BxPC-3, MIAPaCa-2) (50 µM) | ↓ NNK-induced pancreatic cellular proliferation ↓ NNK-induced FAK phosphorylation ↓ NNK-induced ERK activation | [180] | ||
Human melanoma cell lines (A2058, A375) (10–20–50 µM) | ↓ Integrin subunits expression ↓ ERK phosphorylation ↓ Cell migration | [156] | ||
Human ovarian cancer cell line (A2780) (20–40 µM) | ↓ Cell migration and invasion ↓ Actin organization and focal adhesion formation ↓ FAK phosphorylation and expression | [178] | ||
Luteolin | Human pancreatic cancer cell line (MiaPaCa-2) and skin tumor cell line (A431) (10–20–50–100 µM) | ↓ EGFR tyrosine kinase activity ↓ MMP-9/-2 secretion ↓ FAK phosphorylation and expression levels | [173] | |
Anthocyanins | ||||
Mulberry Anthocyanins, Cyanidin 3-rutinoside and Cyanidin 3-glucoside | Highly metastatic human lung carcinoma cell line (A549) (25–50–100 mM) | ↓ MMP-2 ↓ u-PA ↑ TIMP-2 ↑ plasminogen activator inhibitor (PAI) | [231] | |
Mulberry Anthocyanins (MACs) | C57BL/6 mice inoculated via a right groinal injection with melanoma B16-F1 cells and treated with food administration of PBS plus 1–2 or 3% of MACs | ↓ MMP-2/-9 expression | [232] | |
Cyanidin-3-O-sambubioside | Human breast cancer cell line (MDA-MB-231) (1–10–30 µM) | ↓ p-Akt and MMP-9 activity and expression level | [181] | |
Delphinidin | Human breast cancer cell line (MCF-7) (15–30–60–90 µM) | ↓ MMP-9 gene transcriptional activity by blocking the activation of NF-κB through MAPK signaling pathways | [182] | |
Black Rice Anthocyanins | Human breast cancer cell lines (MCF-7, MDA-MB-453) (100–200–300–400–500 µM) | ↓ Interaction between HER-2 and FAK, FAK and cSrc, cSrc and p130 Cas, and FAK and p130 Cas ↓ Phosphorylation of FAK, cSrc and p130 Cas | [183] | |
Blueberry Extract | Human breast cancer cell lines (HCC38, HCC1937, MDA-MB-231) (10–20–40–80 µM) | Inhibition of MMP-1 and plasminogen activator inhibitor-1 secretion ↑ u-PA secretion ↓ MMP-9 and PI3K/Akt/NF-κB pathway | [184] | |
Flavanones | ||||
Naringenin | Human lung cancer cell line (A549) (25–50–100–200–300 µM) | ↓ MMP-2/-9 enzymatic activity | [233] | |
Human prostate cancer cell line (PC-3) (25–50–100–200–300 µM) | ↓ Cell migration and invasion ↓ u-PA, SNAI1, SNAI2 and TWIST1 activity ↑ E-cadherin | [159] | ||
Naringin | Human cervical cancer cell line (HeLa) and human lung cancer cell line (A549) (400–3200 µM) | ↓ EGFR and ERK phosphorylation levels | [185] | |
ApcMin/+ mice treated with 150 mg/kg of naringin by gavage | Modulation of the activity of GSK-3β and inhibition of β-catenin expression in intestinal adenomatous cells | [158] | ||
Naringenin and Naringin | Human hepatocellular carcinoma cell lines (HepG2, Huh-7, HA22T, BNLCL2) (25–50–100 µM) | ↓ MMP-9 transcription by inhibiting AP-1 and NF-κB activity ↓ ERK and JNK signaling pathways | [186] | |
Naringenin and Hesperetin | Human pancreatic cancer cell lines (Panc-1, MiaPaCa2) (1–5–10–20 µM) | BALB/c nude mice s.c. inoculated with 107 Panc-1 cells and treated with 10–30 mg/kg of naringenin and hesperetin alone and in combination | ↓ FAK phosphorylation ↓ p38 signaling pathway | [187] |
Naringenin and Tamoxifen | Human breast cancer cell line (MCF-7) (Tamoxifen 0.001–50 µM, Naringenin 1–1000 µM) | ↓ MMP-2/-9 expression levels | [234] | |
Isoflavones | ||||
Genistein | Human pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-2) (60 µM) | ↓ FAK phosphorylation | [188] | |
Human hepatocellular carcinoma cell line (MHCC97-H) (5–10–20 µM) | Male athymic BALB/c nu/nu mice s.c. inoculated with MHCC97-H cells and treated i.p. with 50 mg/kg of genistein | ↓ FAK expression and phosphorylation | [189] | |
Human prostate cancer cell line (PC3-M) (1–10.000 nM) | Male athymic BALB/C mice (orthotopic implantation of PC3-M cells) treated with 100–200 mg/kg of genistein administered with food | ↓ FAK phosphorylation ↓ HSP27 phosphorylation ↓ MMP-2 induction and cell invasion by blocking p38 phosphorylation | [190] | |
Human prostate cancer cell lines (PC-3, PC3-M, DU-145) (1–50 µM) | ↓ MMPs activity ↓ Cell invasion ↓ p38 activation | [191] | ||
Non-flavonoids | ||||
Coumarins | ||||
4-Hydroxycoumarin (4-HC) | Murine melanoma cell line (B16-F10) (500 µM) | ↓ β-paxillin mRNA expression levels ↓ FAK phosphorylation ↓ Lung metastasis ↓ ARM-1 | [193] | |
4-Methylumbelliferone (4-MU) | Human esophageal squamous carcinoma cell line (OSC1) (300 µM) | ↓ Filopodia and focal adhesion formation | [235] | |
Osthole | Human glioma cells (U251, HS683) (1–10–30 µM) | ↓ MMP-13 expression levels ↓ FAK phosphorylation ↓ Cell motility | [192] | |
Umbelliprenin | BALB/c mice s.c. inoculated with 1 × 105 colorectal cancer cells CT26 and treated i.p. daily with 12.5 mg/kg of umbelliprenin | ↑ IFN-γ levels ↓ IL-4 levels ↑ E-cadherin levels ↓ Ki-67 levels ↓ MMP-9/-2 expression levels ↓ VEGF levels ↓ Lung and liver metastasis | [160] | |
Auraptene | Human ovarian cancer cell line (A2780) and human cervical cancer cell line (HeLa) (0.78125–1.5625–3.125–6.25–12.5–25–50–100 μM) | ↓ Invasion and migration ↓ MMP-2/-9 enzymatic activity | [236] | |
Angelol-A | Human cervical cancer cell line (SiHa and HeLa) and human proximal tubular (PTC) cell line (HK2) (40–80–120–160–200 µM) | ↓ MMP-2 and VEGF-A expression by ↑ expression of miR-29a-3p (that targets the VEGFA-3′ UTR) | [237] | |
Curcuminoids | ||||
Curcumin | Mouse–Rat hybrid retina ganglion cell line (N18) (7.5–15 µM) | ↓ PKC, FAK, NF-κB p65 and Rho A protein levels ↓ ERK1/2, MKK7, COX-2 and ROCK1 ↓ MMP-2 and MMP-9 | [199] | |
Human colon cancer cell lines from NCI-60 panel (HCT-116, HT-29, HCT-15, HCC-2998, Colo205, Km-12, SW-620) (10–20–30–40–50 µM) | SCID mice inoculated in the spleen with 1 × 106 HCT-116 cells and treated with 1 g/kg of curcumin administered daily by gastric intubation | ↓ Sp-1 transcriptional activity and Sp-1 regulated genes (ADAM10, CALM1, EPHB2, HDAC4 and SEPP1) ↓ Inhibition of FAK phosphorylation ↓ CD24 expression ↑ E-cadherin expression | [161] | |
Mouse neuroblastoma cell line (N18) and Rat glioma cell line (C6) (2.5–5–10–25–50 µM) | ↓ Formation of filopodia on the intracellular surface ↓ MMP-2 and MMP-9 enzymatic activity ↓ Protein levels of FAK, pFAK, Rac1 and Cdc42 | [200] | ||
Human tongue squamous cell carcinoma cell line (Cal-27) (11.5 µM) | ↓ Phosphorylation of several kinases (TNK2, FRK, AXL, MAPK12) and phosphatases (PTPN6, PTPRK and INPPL1) | [201] | ||
Curcumin plus visible light | Human bladder carcinoma cell lines (RT112, UMUC-3) (0.27–0.54–1.08 µM) | ↓ FAK phosphorylation ↓ Integrin expression | [162] | |
Curcumin and Wikstroflavone B (WFB) | Four human NPC cell lines (CNE1, CNE2, HONE1, C666-1) (20–40–60–80–100 µM CUR, 100–200–300–400 µM WFB) | ↓ Cell migration, invasion, colony formation and viability by modulating several proteins (Survivin, cyclin D1, p53 and p21, MMP-2, MMP-9, STAT3 and FAK) | [203] | |
Phenolic acids | ||||
Caffeic Acid 3,4-Dihydroxyphenethyl Ester (CADPE) | Human gastric carcinoma cell lines (MGC-803, HGC-27, AGS) and human breast carcinoma cell line (MDA-MB-231) (1–5–10–25–50 µmol/L) | ↓ PMA-induced increase in MMP-9 activity ↓ c-fos and AP-1 nuclear factor activity ↓ PMA-induced FAK, ERK and MEK phosphorylation | [205] | |
Caffeic Acid Phenethyl Ester (CAPE) | Human fibrosarcoma cell line (HT1080) (20–50–80–100 µM) | ↓ MMP-2/-9 enzymatic activity ↓ MMPs mRNA levels | [238] | |
Human hepatocellular carcinoma cell line (SK-Hep1) (6.25–12.5–25 µM) | ↓ MMP-2/-9 activity ↓ NF-κB DNA-binding activity | [239] | ||
Human tongue squamous carcinoma cell line (SCC-9) (5–10-20–40 µM) | ↓ FAK phosphorylation ↓ p38 and c-jun signaling pathways ↓ MMP-2 activity | [204] | ||
Human hypopharyngeal squamous cell carcinoma (SNU-1041) (4 µM) | ↓ EMT progression ↑ E-cadherin expression ↓ FAK phosphorylation ↓ Paxillin expression | [164] | ||
Gallic Acid (GA) | Human prostate cancer cell line (PC-3) (25–50–100–150 µM) | ↓ MMP-2/-9 activity ↓ GRB2, PKC, NF-κB p65, JNK, ERK1/2, p38, p-Akt ↑ PI3K and Akt inhibition of FAK and Rho-A mRNA levels ↑ TIMP-1 gene levels | [207] | |
Methyl Gallate (MG) | Rat glioma cell line (C6) (0.1–0.5–1–5–10–20 µg/mL) | ↓ Cell viability, invasion and migration ↓ Akt phosphorylation levels ↓ ERK1/2 phosphorylation ↓ Paxillin phosphorylation and focal adhesion turnover | [208] | |
Ferulic Acid (FA) | Immortalized rat cell line (HSC-T6) (1–3–10–30–100–300 µM) | ↓ α-1 collagen and fibronectin expression ↓ SMAD activity ↓ FAK activity | [206] | |
PT93 (a novel caffeic acid amide derivate) | Human malignant glioblastoma cell lines (T98G, U87, U251) and normal mouse neuron cells (HT22) (1–3–10–30–100–200–300 µM) | ↓ MMP-2/-9 activity | [240] | |
Bornyl cis-4-Hydroxycinnamate | Human melanoma cell lines (A2058, A375) (1–3–6–12–18–24–32–36 µM) | ↓ MMP-2 and MMP-9 expression through inhibition of FAK/PI3K/Akt/mTOR, MAPK and GRB2 signaling pathways ↓ EMT progression | [163] | |
Ellagic Acid (EA) | Mouse melanoma cell line (B16-F10) (15–30 µM) | ↑ p53 accumulation ↑ PTEN phosphatase activity ↓ Akt activity | [209] | |
Ethanolis extract of Ocinum sanctum leaves (EEOS) | Head and neck squamous cell carcinoma cell lines (HN4, HN12, HN30, HN31) (0.05–0.1–0.2–0.4–0.8 mg/mL) | ↓ MMP-2/-9 activity | [251] | |
Extracts of Crataegus berries, leaves, and flowers compounds | Human glioblastoma cell line (U87MG) (100–250-500 µg/mL) | ↓ FAK and Akt phosphorylation | [210] | |
Chloropyramine-cinnamic acid hybrids | Human breast cancer cell line (MDA-MB-231) (5–10–20 µM) | ↓ FAK Y925 phosphorylation ↓ Focal adhesion formation | [211] | |
Plasma anthocyanins and their metabolites | Human pancreatic cancer cell lines (PANC-1, AsPC-1) | ↓ β1- and β4-integrins and intercellular adhesion molecule-1 ↓ NF-κB p65 and FAK activity | [172] | |
Lignans | ||||
Magnolol | Human breast cancer cell line (MDA-MB-231) (10-20-30 μM) | Female (nu/nu) mice s.c. inoculated with MDA-MB-231 (6 × 106) or MCF-7 (4 × 106) cells and treated i.p. with 40 mg/kg of magnolol four times a week | ↓ MMP-2/-9 activity ↓ NF-κB activity ↓ p65 and p-IKB activity | [212] |
Human cholangiocarcinoma cell line (MZ-ChA-1) (10–20-30–40 μM) | ↓ MMP-2/-7/-9 levels | [241] | ||
Human colorectal adenocarcinoma cell lines (HCT116, SW480) (2.5–5–10 μM) | ↑ Epithelial markers (E-cadherin, ZO-1, claudin) ↓ Mesenchymal markers (N-cadherin, TWIST-1, Slug and Snail) | [166] | ||
Human glioblastoma cell lines (U87MG, LN229) (20–40–60 μM) | BALB/cAnN.C-Foxn1nu/CrlNarl nude mice (105 LN229-Luc2 cells implanted in the right cerebral hemisphere) treated i.p. with 20 mg/kg/day of magnolol for 10 days | ↓ Focal adhesion formation ↓ N-cadherin expression | [167] | |
Human prostate cancer cell line (PC-3) (2.5–5–10–20 μM) | ↓ Cell migration by attenuating MMP-2/-9 expression | [242] | ||
Honokiol | Human non-small-cell lung carcinoma cell line (H1299) (2.5–5–7.5–10 μM) | ↓ Cell migration ↓ Cell invasion ↓ MMP-2/-9 activity | [243] | |
Nordihydroguaiaretic acid (NDGA) | Human prostate cancer cell line (PC-3) (10–20 μM) | Nude mice s.c. or i.v. inoculated with 5 × 106 PC-3 or luc-PC-3 cells and treated i.v. with 50–100 mg/kg of NDGA | ↓ Cell migration by suppressing NRP1 expression ↓ FAK signaling pathway | [213] |
Stilbenes | ||||
Resveratrol | Human colon cancer cell lines (HCT116, RKO) (1–2–5 μM) | ↓ EMT progression, NF-κB nuclear translocation and paxillin expression by targeting the β1-integrin receptor | [170] | |
Human colon cancer cell lines (HCT116, SW480) (5 μM) | ↓ FAK activity ↓ Cytoskeletal proteins | [214] | ||
Human colon cancer cell line (HT29) (50–100–150 μM) | ↓ Talin expression ↓ FAK phosphorylation | [215] | ||
Human breast cancer cell line (MDA-MB-231) (1–10–25–50–100 μM) | ↓ Cell migration ↓ Focal adhesion formation ↓ FAK phosphorylation ↑ Filopodia formation | [216] | ||
Human colon cancer cell lines (HCT116, RKO, SW480) (5 μM) | ↓ NF-κB pathway ↓ FAK activity ↓ Vimentin production ↓ Slug nuclear factor activity ↑ E-cadherin expression | [171] | ||
Resveratrol and Pterostilbene | Human cervical cancer cell lines (HeLa, CaSki, SiHa) (6.5–12–5–20–25–40–50–100–200 μM) | ↓ MMP-2/-9 expression | [244] | |
Pterostilbene | Human breast cancer cell line (MCF-7) (5–10–20–30 μM) | ↓ HRG-β1-mediated cell invasion, motility and cancer cell transformation through downregulation of MMP-9 activity | [245] | |
Xanthones | ||||
Mangiferin | Human breast cancer cell lines (MDA-MB-231, BT-549, MCF-7, T47D) (75–150–300 μM) | SCID female mice s.c. inoculated with 2 × 106 MDA-MB-231 cells and treated with 100 mg/kg of mangiferin by gavage | ↓ MMP-7/-9 activity ↓ EMT progression ↓ Catenin pathway ↓ Tumor weight and progression ↑ Apoptosis induction ↑ E-cadherin expression | [168] |
Human prostate cancer cell line (LNCaP) (100–200–400 μM) | ↓ TNF-α-induced MMP-9 expression by inhibition of NF-κB nuclear factor activity | [246] | ||
Human astroglioma cells (U87MG, U373MG, CRT-MG) (30–100–300 μM) | ↓ MMP-7/-9 expression ↓ EMT progression | [247] | ||
C57BL/6 male mice inoculated in footpads with B16-BL6 cells and orally treated with 50–100–200 mg/kg of mangiferin | ↓ MMP-1/-2/-9/-14 expression ↓ VLA-4/-5/-6 expression | [252] | ||
Human ovarian cancer cell lines (A2780, ES-2) (37.5–75–150–300 μM) | BALB/c female nude mice s.c. inoculated with 4 × 106 cells and treated with 20–60 mg/kg of mangiferin | ↓ MMP-2/-9 activity | [248] | |
α-Mangostin | Human pancreatic cancer cell lines (BxPC-3, MIAPaCa-2) (5–7.5–10–15 μM) | ↓ MMP-2/-9 activity ↑ E-cadherin expression | [165] | |
Gartanin | Human glioma cell line (T98G) (3–10 μM) | ↓ MMP-2/-9 activity | [249] | |
Cratoxylumxanthone C | Human lung cancer cell lines (A549), human liver cancer cell line (HepG2), human breast cancer cell line (MCF7) (7.15–15 μM) | ↓ Cell migration ↓ FAK/MMP-2 pathway | [250] |
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wozniak, M.A.; Modzelewska, K.; Kwong, L.; Keely, P.J. Focal Adhesion Regulation of Cell Behavior. Biochim. Biophys. Acta 2004, 1692, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Young, L.E.; Higgs, H.N. Focal Adhesions Undergo Longitudinal Splitting into Fixed-Width Units. Curr. Biol. 2018, 28, 2033–2045.e5. [Google Scholar] [CrossRef] [PubMed]
- Artym, V.V.; Matsumoto, K.; Mueller, S.C.; Yamada, K.M. Dynamic Membrane Remodeling at Invadopodia Differentiates Invadopodia from Podosomes. Eur. J. Cell Biol. 2011, 90, 172–180. [Google Scholar] [CrossRef]
- Cambi, A.; Chavrier, P. Tissue Remodeling by Invadosomes. Fac. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Legerstee, K.; Houtsmuller, A.B. A Layered View on Focal Adhesions. Biology 2021, 10, 1189. [Google Scholar] [CrossRef]
- Kirchner, J.; Kam, Z.; Tzur, G.; Bershadsky, A.D.; Geiger, B. Live-Cell Monitoring of Tyrosine Phosphorylation in Focal Adhesions Following Microtubule Disruption. J. Cell Sci. 2003, 116, 975–986. [Google Scholar] [CrossRef]
- Rajendran, P.; Abdelsalam, S.A.; Renu, K.; Veeraraghavan, V.; Ben Ammar, R.; Ahmed, E.A. Polyphenols as Potent Epigenetics Agents for Cancer. Int. J. Mol. Sci. 2022, 23, 11712. [Google Scholar] [CrossRef]
- Masuelli, L.; Benvenuto, M.; Focaccetti, C.; Ciuffa, S.; Fazi, S.; Bei, A.; Miele, M.T.; Piredda, L.; Manzari, V.; Modesti, A.; et al. Targeting the Tumor Immune Microenvironment with “Nutraceuticals”: From Bench to Clinical Trials. Pharmacol. Ther. 2021, 219, 107700. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
- Mishra, Y.G.; Manavathi, B. Focal Adhesion Dynamics in Cellular Function and Disease. Cell. Signal. 2021, 85, 110046. [Google Scholar] [CrossRef]
- Takada, Y.; Ye, X.; Simon, S. The Integrins. Genome Biol. 2007, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.M.; Bhattacharya, R.; deHart, G.W.; Jones, J.C.R. Transdominant Regulation of Integrin Function: Mechanisms of Crosstalk. Cell. Signal. 2010, 22, 578–583. [Google Scholar] [CrossRef]
- Geiger, B.; Spatz, J.P.; Bershadsky, A.D. Environmental Sensing through Focal Adhesions. Nat. Rev. Mol. Cell Biol. 2009, 10, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Plow, E.F.; Qin, J. Initiation of Focal Adhesion Assembly by Talin and Kindlin: A Dynamic View. Protein Sci. 2021, 30, 531–542. [Google Scholar] [CrossRef]
- Bolós, V.; Gasent, J.M.; López-Tarruella, S.; Grande, E. The Dual Kinase Complex FAK-Src as a Promising Therapeutic Target in Cancer. Onco. Targets. Ther. 2010, 3, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.C.; Zha, J.; Humphries, M.J. Connections between the Cell Cycle, Cell Adhesion and the Cytoskeleton. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2019, 374, 20180227. [Google Scholar] [CrossRef] [PubMed]
- Mamuya, F.A.; Duncan, M.K. aV Integrins and TGF-β-Induced EMT: A Circle of Regulation. J. Cell. Mol. Med. 2012, 16, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Mui, K.L.; Chen, C.S.; Assoian, R.K. The Mechanical Regulation of Integrin-Cadherin Crosstalk Organizes Cells, Signaling and Forces. J. Cell Sci. 2016, 129, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Koenig, A.; Mueller, C.; Hasel, C.; Adler, G.; Menke, A. Collagen Type I Induces Disruption of E-Cadherin-Mediated Cell-Cell Contacts and Promotes Proliferation of Pancreatic Carcinoma Cells. Cancer Res. 2006, 66, 4662–4671. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Christofori, G. EMT, the Cytoskeleton, and Cancer Cell Invasion. Cancer Metastasis Rev. 2009, 28, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, J.A.; Theibert, A.B.; Prestwich, G.D.; Murphy-Ullrich, J.E. Restructuring of Focal Adhesion Plaques by PI 3-Kinase. Regulation by PtdIns (3,4,5)-p(3) Binding to Alpha-Actinin. J. Cell Biol. 2000, 150, 627–642. [Google Scholar] [CrossRef]
- Calderwood, D.A.; Zent, R.; Grant, R.; Rees, D.J.; Hynes, R.O.; Ginsberg, M.H. The Talin Head Domain Binds to Integrin Beta Subunit Cytoplasmic Tails and Regulates Integrin Activation. J. Biol. Chem. 1999, 274, 28071–28074. [Google Scholar] [CrossRef]
- Calderwood, D.A.; Yan, B.; de Pereda, J.M.; Alvarez, B.G.; Fujioka, Y.; Liddington, R.C.; Ginsberg, M.H. The Phosphotyrosine Binding-like Domain of Talin Activates Integrins. J. Biol. Chem. 2002, 277, 21749–21758. [Google Scholar] [CrossRef]
- Ling, K.; Doughman, R.L.; Iyer, V.V.; Firestone, A.J.; Bairstow, S.F.; Mosher, D.F.; Schaller, M.D.; Anderson, R.A. Tyrosine Phosphorylation of Type Igamma Phosphatidylinositol Phosphate Kinase by Src Regulates an Integrin-Talin Switch. J. Cell Biol. 2003, 163, 1339–1349. [Google Scholar] [CrossRef]
- Priddle, H.; Hemmings, L.; Monkley, S.; Woods, A.; Patel, B.; Sutton, D.; Dunn, G.A.; Zicha, D.; Critchley, D.R. Disruption of the Talin Gene Compromises Focal Adhesion Assembly in Undifferentiated but Not Differentiated Embryonic Stem Cells. J. Cell Biol. 1998, 142, 1121–1133. [Google Scholar] [CrossRef]
- Giannone, G.; Jiang, G.; Sutton, D.H.; Critchley, D.R.; Sheetz, M.P. Talin1 Is Critical for Force-Dependent Reinforcement of Initial Integrin-Cytoskeleton Bonds but Not Tyrosine Kinase Activation. J. Cell Biol. 2003, 163, 409–419. [Google Scholar] [CrossRef]
- Di Paolo, G.; Pellegrini, L.; Letinic, K.; Cestra, G.; Zoncu, R.; Voronov, S.; Chang, S.; Guo, J.; Wenk, M.R.; De Camilli, P. Recruitment and Regulation of Phosphatidylinositol Phosphate Kinase Type 1 Gamma by the FERM Domain of Talin. Nature 2002, 420, 85–89. [Google Scholar] [CrossRef]
- Montanez, E.; Ussar, S.; Schifferer, M.; Bösl, M.; Zent, R.; Moser, M.; Fässler, R. Kindlin-2 Controls Bidirectional Signaling of Integrins. Genes Dev. 2008, 22, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Moser, M.; Legate, K.R.; Zent, R.; Fässler, R. The Tail of Integrins, Talin, and Kindlins. Science 2009, 324, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Bays, J.L.; DeMali, K.A. Vinculin in Cell-Cell and Cell-Matrix Adhesions. Cell. Mol. Life Sci. 2017, 74, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cohen, D.M.; Choudhury, D.M.; Kioka, N.; Craig, S.W. Spatial Distribution and Functional Significance of Activated Vinculin in Living Cells. J. Cell Biol. 2005, 169, 459–470. [Google Scholar] [CrossRef]
- Thievessen, I.; Thompson, P.M.; Berlemont, S.; Plevock, K.M.; Plotnikov, S.V.; Zemljic-Harpf, A.; Ross, R.S.; Davidson, M.W.; Danuser, G.; Campbell, S.L.; et al. Vinculin-Actin Interaction Couples Actin Retrograde Flow to Focal Adhesions, but Is Dispensable for Focal Adhesion Growth. J. Cell Biol. 2013, 202, 163–177. [Google Scholar] [CrossRef]
- Thievessen, I.; Fakhri, N.; Steinwachs, J.; Kraus, V.; McIsaac, R.S.; Gao, L.; Chen, B.-C.; Baird, M.A.; Davidson, M.W.; Betzig, E.; et al. Vinculin Is Required for Cell Polarization, Migration, and Extracellular Matrix Remodeling in 3D Collagen. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015, 29, 4555–4567. [Google Scholar] [CrossRef]
- Rodríguez Fernández, J.L.; Geiger, B.; Salomon, D.; Ben-Ze’ev, A. Suppression of Vinculin Expression by Antisense Transfection Confers Changes in Cell Morphology, Motility, and Anchorage-Dependent Growth of 3T3 Cells. J. Cell Biol. 1993, 122, 1285–1294. [Google Scholar] [CrossRef]
- Cohen, D.M.; Kutscher, B.; Chen, H.; Murphy, D.B.; Craig, S.W. A Conformational Switch in Vinculin Drives Formation and Dynamics of a Talin-Vinculin Complex at Focal Adhesions. J. Biol. Chem. 2006, 281, 16006–16015. [Google Scholar] [CrossRef] [PubMed]
- Pasapera, A.M.; Schneider, I.C.; Rericha, E.; Schlaepfer, D.D.; Waterman, C.M. Myosin II Activity Regulates Vinculin Recruitment to Focal Adhesions through FAK-Mediated Paxillin Phosphorylation. J. Cell Biol. 2010, 188, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, I.; Stradal, T.E.B.; Holt, M.R.; Entschladen, F.; Jockusch, B.M.; Ziegler, W.H. Vinculin Acts as a Sensor in Lipid Regulation of Adhesion-Site Turnover. J. Cell Sci. 2005, 118, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Franco, S.J.; Rodgers, M.A.; Perrin, B.J.; Han, J.; Bennin, D.A.; Critchley, D.R.; Huttenlocher, A. Calpain-Mediated Proteolysis of Talin Regulates Adhesion Dynamics. Nat. Cell Biol. 2004, 6, 977–983. [Google Scholar] [CrossRef]
- Shen, Y.; Schaller, M.D. Focal Adhesion Targeting: The Critical Determinant of FAK Regulation and Substrate Phosphorylation. Mol. Biol. Cell 1999, 10, 2507–2518. [Google Scholar] [CrossRef]
- Huveneers, S.; Danen, E.H.J. Adhesion Signaling—Crosstalk between Integrins, Src and Rho. J. Cell Sci. 2009, 122, 1059–1069. [Google Scholar] [CrossRef]
- Paoli, P.; Giannoni, E.; Chiarugi, P. Anoikis Molecular Pathways and Its Role in Cancer Progression. Biochim. Biophys. Acta 2013, 1833, 3481–3498. [Google Scholar] [CrossRef]
- Schaller, M.D.; Hildebrand, J.D.; Shannon, J.D.; Fox, J.W.; Vines, R.R.; Parsons, J.T. Autophosphorylation of the Focal Adhesion Kinase, Pp125FAK, Directs SH2-Dependent Binding of Pp60src. Mol. Cell. Biol. 1994, 14, 1680–1688. [Google Scholar] [CrossRef]
- Calalb, M.B.; Polte, T.R.; Hanks, S.K. Tyrosine Phosphorylation of Focal Adhesion Kinase at Sites in the Catalytic Domain Regulates Kinase Activity: A Role for Src Family Kinases. Mol. Cell. Biol. 1995, 15, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Ilić, D.; Furuta, Y.; Kanazawa, S.; Takeda, N.; Sobue, K.; Nakatsuji, N.; Nomura, S.; Fujimoto, J.; Okada, M.; Yamamoto, T. Reduced Cell Motility and Enhanced Focal Adhesion Contact Formation in Cells from FAK-Deficient Mice. Nature 1995, 377, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.E. Paxillin and Focal Adhesion Signalling. Nat. Cell Biol. 2000, 2, E231–E236. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Kiosses, W.B.; Rose, D.M.; Slepak, M.; Salgia, R.; Griffin, J.D.; Turner, C.E.; Schwartz, M.A.; Ginsberg, M.H. A Fragment of Paxillin Binds the Alpha 4 Integrin Cytoplasmic Domain (Tail) and Selectively Inhibits Alpha 4-Mediated Cell Migration. J. Biol. Chem. 2002, 277, 20887–20894. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.D.; Parsons, J.T. Pp125FAK-Dependent Tyrosine Phosphorylation of Paxillin Creates a High-Affinity Binding Site for Crk. Mol. Cell. Biol. 1995, 15, 2635–2645. [Google Scholar] [CrossRef] [PubMed]
- Lamorte, L.; Rodrigues, S.; Sangwan, V.; Turner, C.E.; Park, M. Crk Associates with a Multimolecular Paxillin/GIT2/Beta-PIX Complex and Promotes Rac-Dependent Relocalization of Paxillin to Focal Contacts. Mol. Biol. Cell 2003, 14, 2818–2831. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Yano, H.; Uchida, H.; Hashimoto, S.; Schaefer, E.; Sabe, H. Tyrosine Phosphorylation of Paxillin Alpha Is Involved in Temporospatial Regulation of Paxillin-Containing Focal Adhesion Formation and F-Actin Organization in Motile Cells. J. Biol. Chem. 2000, 275, 27155–27164. [Google Scholar] [CrossRef]
- Yano, H.; Uchida, H.; Iwasaki, T.; Mukai, M.; Akedo, H.; Nakamura, K.; Hashimoto, S.; Sabe, H. Paxillin Alpha and Crk-Associated Substrate Exert Opposing Effects on Cell Migration and Contact Inhibition of Growth through Tyrosine Phosphorylation. Proc. Natl. Acad. Sci. USA 2000, 97, 9076–9081. [Google Scholar] [CrossRef]
- Goldfinger, L.E.; Han, J.; Kiosses, W.B.; Howe, A.K.; Ginsberg, M.H. Spatial Restriction of Alpha4 Integrin Phosphorylation Regulates Lamellipodial Stability and Alpha4beta1-Dependent Cell Migration. J. Cell Biol. 2003, 162, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Fini, M.E.; Strissel, K.J.; Girard, M.T.; Mays, J.W.; Rinehart, W.B. Interleukin 1 Alpha Mediates Collagenase Synthesis Stimulated by Phorbol 12-Myristate 13-Acetate. J. Biol. Chem. 1994, 269, 11291–11298. [Google Scholar] [CrossRef] [PubMed]
- Unemori, E.N.; Werb, Z. Collagenase Expression and Endogenous Activation in Rabbit Synovial Fibroblasts Stimulated by the Calcium Ionophore A23187. J. Biol. Chem. 1988, 263, 16252–16259. [Google Scholar] [CrossRef] [PubMed]
- Ujfaludi, Z.; Tuzesi, A.; Majoros, H.; Rothler, B.; Pankotai, T.; Boros, I.M. Coordinated Activation of a Cluster of MMP Genes in Response to UVB Radiation. Sci. Rep. 2018, 8, 2660. [Google Scholar] [CrossRef] [PubMed]
- Werb, Z.; Hembry, R.M.; Murphy, G.; Aggeler, J. Commitment to Expression of the Metalloendopeptidases, Collagenase and Stromelysin: Relationship of Inducing Events to Changes in Cytoskeletal Architecture. J. Cell Biol. 1986, 102, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Van Wart, H.E.; Birkedal-Hansen, H. The Cysteine Switch: A Principle of Regulation of Metalloproteinase Activity with Potential Applicability to the Entire Matrix Metalloproteinase Gene Family. Proc. Natl. Acad. Sci. USA 1990, 87, 5578–5582. [Google Scholar] [CrossRef] [PubMed]
- HE, C.S.; Wilhelm, S.M.; Pentland, A.P.; Marmer, B.L.; Grant, G.A.; Eisen, A.Z.; Goldberg, G.I. Tissue Cooperation in a Proteolytic Cascade Activating Human Interstitial Collagenase. Proc. Natl. Acad. Sci. USA 1989, 86, 2632–2636. [Google Scholar] [CrossRef]
- Docherty, A.J.; Lyons, A.; Smith, B.J.; Wright, E.M.; Stephens, P.E.; Harris, T.J.; Murphy, G.; Reynolds, J.J. Sequence of Human Tissue Inhibitor of Metalloproteinases and Its Identity to Erythroid-Potentiating Activity. Nature 1985, 318, 66–69. [Google Scholar] [CrossRef]
- Goldberg, G.I.; Strongin, A.; Collier, I.E.; Genrich, L.T.; Marmer, B.L. Interaction of 92-KDa Type IV Collagenase with the Tissue Inhibitor of Metalloproteinases Prevents Dimerization, Complex Formation with Interstitial Collagenase, and Activation of the Proenzyme with Stromelysin. J. Biol. Chem. 1992, 267, 4583–4591. [Google Scholar] [CrossRef]
- Stetler-Stevenson, W.G.; Krutzsch, H.C.; Liotta, L.A. Tissue Inhibitor of Metalloproteinase (TIMP-2). A New Member of the Metalloproteinase Inhibitor Family. J. Biol. Chem. 1989, 264, 17374–17378. [Google Scholar] [CrossRef]
- Leco, K.J.; Khokha, R.; Pavloff, N.; Hawkes, S.P.; Edwards, D.R. Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) Is an Extracellular Matrix-Associated Protein with a Distinctive Pattern of Expression in Mouse Cells and Tissues. J. Biol. Chem. 1994, 269, 9352–9360. [Google Scholar] [CrossRef]
- Goździalska, A.; Wojas-Pelc, A.; Drąg, J.; Brzewski, P.; Jaśkiewicz, J.; Pastuszczak, M. Expression of Metalloproteinases (MMP-2 and MMP-9) in Basal-Cell Carcinoma. Mol. Biol. Rep. 2016, 43, 1027–1033. [Google Scholar] [CrossRef]
- Benvenuto, M.; Focaccetti, C.; Ciuffa, S.; Fazi, S.; Bei, A.; Miele, M.T.; Albonici, L.; Cifaldi, L.; Masuelli, L.; Bei, R. Polyphenols Affect the Humoral Response in Cancer, Infectious and Allergic Diseases and Autoimmunity by Modulating the Activity of T(H)1 and T(H)2 Cells. Curr. Opin. Pharmacol. 2021, 60, 315–330. [Google Scholar] [CrossRef]
- Benvenuto, M.; Albonici, L.; Focaccetti, C.; Ciuffa, S.; Fazi, S.; Cifaldi, L.; Miele, M.T.; De Maio, F.; Tresoldi, I.; Manzari, V.; et al. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2020, 21, 6635. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Marzocchella, L.; Fantini, M.; Benvenuto, M.; Masuelli, L.; Tresoldi, I.; Modesti, A.; Bei, R. Dietary Flavonoids: Molecular Mechanisms of Action as Anti- Inflammatory Agents. Recent Pat. Inflamm. Allergy Drug Discov. 2011, 5, 200–220. [Google Scholar] [CrossRef] [PubMed]
- Focaccetti, C.; Izzi, V.; Benvenuto, M.; Fazi, S.; Ciuffa, S.; Giganti, M.G.; Potenza, V.; Manzari, V.; Modesti, A.; Bei, R. Polyphenols as Immunomodulatory Compounds in the Tumor Microenvironment: Friends or Foes? Int. J. Mol. Sci. 2019, 20, 1714. [Google Scholar] [CrossRef] [PubMed]
- Schnidar, H.; Eberl, M.; Klingler, S.; Mangelberger, D.; Kasper, M.; Hauser-Kronberger, C.; Regl, G.; Kroismayr, R.; Moriggl, R.; Sibilia, M.; et al. Epidermal Growth Factor Receptor Signaling Synergizes with Hedgehog/GLI in Oncogenic Transformation via Activation of the MEK/ERK/JUN Pathway. Cancer Res. 2009, 69, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Benvenuto, M.; Fantini, M.; Masuelli, L.; De Smaele, E.; Zazzeroni, F.; Tresoldi, I.; Calabrese, G.; Galvano, F.; Modesti, A.; Bei, R. Inhibition of ErbB Receptors, Hedgehog and NF-KappaB Signaling by Polyphenols in Cancer. Front. Biosci. (Landmark Ed. 2013, 18, 1290–1310. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ju, X.; Willmarth, N.E.; Casimiro, M.C.; Ojeifo, J.; Sakamaki, T.; Katiyar, S.; Jiao, X.; Popov, V.M.; Yu, Z.; et al. Nuclear Factor-KappaB Enhances ErbB2-Induced Mammary Tumorigenesis and Neoangiogenesis in Vivo. Am. J. Pathol. 2009, 174, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- Cháirez-Ramírez, M.H.; de la Cruz-López, K.G.; García-Carrancá, A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front. Pharmacol. 2021, 12, 710304. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Thayer, J.F. Genetic Differences Associated with Dopamine and Serotonin Release Mediate Fear-Induced Bradycardia in the Human Brain. Transl. Psychiatry 2024, 14, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Vécsei, L.; Giménez-Llort, L. Emerging Translational Research in Neurological and Psychiatric Diseases: From In Vitro to In Vivo Models. Int. J. Mol. Sci. 2023, 24, 15739. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Vécsei, L. Preclinical Modeling in Depression and Anxiety: Current Challenges and Future Research Directions. Adv. Clin. Exp. Med. Off. organ Wroclaw Med. Univ. 2023, 32, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Di Fazio, C.; Mazzà, M.; Tamietto, M.; Avenanti, A. Targeting Human Glucocorticoid Receptors in Fear Learning: A Multiscale Integrated Approach to Study Functional Connectivity. Int. J. Mol. Sci. 2024, 25, 864. [Google Scholar] [CrossRef]
- Di Meo, F.; Valentino, A.; Petillo, O.; Peluso, G.; Filosa, S.; Crispi, S. Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 2564. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Zhang, X.; Jiang, Y.; Su, Q.; Li, Q.; Li, Z. Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer. Biomolecules 2021, 11, 135. [Google Scholar] [CrossRef]
- Nadile, M.; Retsidou, M.I.; Gioti, K.; Beloukas, A.; Tsiani, E. Resveratrol against Cervical Cancer: Evidence from In Vitro and In Vivo Studies. Nutrients 2022, 14, 5273. [Google Scholar] [CrossRef]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic Potential of Flavonoids in Cancer: ROS-Mediated Mechanisms. Biomed. Pharmacother. 2022, 146, 112442. [Google Scholar] [CrossRef]
- Di Carlo, G.; Mascolo, N.; Izzo, A.A.; Capasso, F. Flavonoids: Old and New Aspects of a Class of Natural Therapeutic Drugs. Life Sci. 1999, 65, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Beecher, G.R. Overview of Dietary Flavonoids: Nomenclature, Occurrence and Intake. J. Nutr. 2003, 133, 3248S–3254S. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef]
- Çetinkaya, S.; Taban Akça, K.; Süntar, I. Chapter 3—Flavonoids and Anticancer Activity: Structure–Activity Relationship. In Bioactive Natural Products; Atta-ur-Rahman, B.T.-S., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 74, pp. 81–115. ISBN 1572-5995. [Google Scholar]
- Aron, P.M.; Kennedy, J.A. Flavan-3-Ols: Nature, Occurrence and Biological Activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- Ullah, C.; Unsicker, S.B.; Fellenberg, C.; Constabel, C.P.; Schmidt, A.; Gershenzon, J.; Hammerbacher, A. Flavan-3-Ols Are an Effective Chemical Defense against Rust Infection. Plant Physiol. 2017, 175, 1560–1578. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef]
- Justesen, U.; Knuthsen, P.; Leth, T. Quantitative Analysis of Flavonols, Flavones, and Flavanones in Fruits, Vegetables and Beverages by High-Performance Liquid Chromatography with Photo-Diode Array and Mass Spectrometric Detection. J. Chromatogr. A 1998, 799, 101–110. [Google Scholar] [CrossRef]
- Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: From Biosynthesis to Health Benefits. Plants 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Vanden Berghe, D. Structure-Activity Relationship and Classification of Flavonoids as Inhibitors of Xanthine Oxidase and Superoxide Scavengers. J. Nat. Prod. 1998, 61, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.d.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, X.; Gao, J.; Guo, Y.; Huang, Z.; Du, Y. The Tomato Hoffman’s Anthocyaninless Gene Encodes a BHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures. PLoS ONE 2016, 11, e0151067. [Google Scholar] [CrossRef]
- Passeri, V.; Koes, R.; Quattrocchio, F.M. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. Front. Plant Sci. 2016, 7, 153. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef]
- Ali, H.M.; Almagribi, W.; Al-Rashidi, M.N. Antiradical and Reductant Activities of Anthocyanidins and Anthocyanins, Structure-Activity Relationship and Synthesis. Food Chem. 2016, 194, 1275–1282. [Google Scholar] [CrossRef]
- Duchowicz, P.R.; Szewczuk, N.A.; Pomilio, A.B. QSAR Studies of the Antioxidant Activity of Anthocyanins. J. Food Sci. Technol. 2019, 56, 5518–5530. [Google Scholar] [CrossRef]
- Khan, M.K.; Zill-E-Huma; Dangles, O. A Comprehensive Review on Flavanones, the Major Citrus Polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Priscilla, D.H.; Jayakumar, M.; Thirumurugan, K. Flavanone Naringenin: An Effective Antihyperglycemic and Antihyperlipidemic Nutraceutical Agent on High Fat Diet Fed Streptozotocin Induced Type 2 Diabetic Rats. J. Funct. Foods 2015, 14, 363–373. [Google Scholar] [CrossRef]
- Erlund, I. Review of the Flavonoids Quercetin, Hesperetin, and Naringenin. Dietary Sources, Bioactivities, Bioavailability, and Epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Murti, Y.; Mishra, P. Synthesis and Evaluation of Flavanones as Anticancer Agents. Indian J. Pharm. Sci. 2014, 76, 163–166. [Google Scholar]
- Ding, H.-W.; Huang, A.-L.; Zhang, Y.-L.; Li, B.; Huang, C.; Ma, T.-T.; Meng, X.-M.; Li, J. Design, Synthesis and Biological Evaluation of Hesperetin Derivatives as Potent Anti-Inflammatory Agent. Fitoterapia 2017, 121, 212–222. [Google Scholar] [CrossRef]
- Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Neuropharmacological Properties and Pharmacokinetics of the Citrus Flavonoids Hesperidin and Hesperetin--a Mini-Review. Life Sci. 2014, 113, 1–6. [Google Scholar] [CrossRef]
- Jung, K.-Y.; Park, J.; Han, Y.-S.; Lee, Y.H.; Shin, S.Y.; Lim, Y. Synthesis and Biological Evaluation of Hesperetin Derivatives as Agents Inducing Apoptosis. Bioorg. Med. Chem. 2017, 25, 397–407. [Google Scholar] [CrossRef]
- Patel, N.K.; Bairwa, K.; Gangwal, R.; Jaiswal, G.; Jachak, S.M.; Sangamwar, A.T.; Bhutani, K.K. 2’-Hydroxy Flavanone Derivatives as an Inhibitors of pro-Inflammatory Mediators: Experimental and Molecular Docking Studies. Bioorg. Med. Chem. Lett. 2015, 25, 1952–1955. [Google Scholar] [CrossRef]
- Dakora, F.D.; Phillips, D.A. Diverse Functions of Isoflavonoids in Legumes Transcend Anti-Microbial Definitions of Phytoalexins. Physiol. Mol. Plant Pathol. 1996, 49, 1–20. [Google Scholar] [CrossRef]
- Bellou, S.; Karali, E.; Bagli, E.; Al-Maharik, N.; Morbidelli, L.; Ziche, M.; Adlercreutz, H.; Murphy, C.; Fotsis, T. The Isoflavone Metabolite 6-Methoxyequol Inhibits Angiogenesis and Suppresses Tumor Growth. Mol. Cancer 2012, 11, 35. [Google Scholar] [CrossRef]
- Messina, M.; Kucuk, O.; Lampe, J.W. An Overview of the Health Effects of Isoflavones with an Emphasis on Prostate Cancer Risk and Prostate-Specific Antigen Levels. J. AOAC Int. 2006, 89, 1121–1134. [Google Scholar] [CrossRef]
- Dixon, R.A.; Sumner, L.W. Legume Natural Products: Understanding and Manipulating Complex Pathways for Human and Animal Health. Plant Physiol. 2003, 131, 878–885. [Google Scholar] [CrossRef]
- Ko, K.-P. Isoflavones: Chemistry, Analysis, Functions and Effects on Health and Cancer. Asian Pac. J. Cancer Prev. 2014, 15, 7001–7010. [Google Scholar] [CrossRef]
- Coward, L.; Barnes, N.C.; Setchell, K.D.R.; Barnes, S. Genistein, Daidzein, and Their Beta-Glycoside Conjugates: Antitumor Isoflavones in Soybean Foods from American and Asian Diets. J. Agric. Food Chem. 1993, 41, 1961–1967. [Google Scholar] [CrossRef]
- Shu, X.O.; Zheng, Y.; Cai, H.; Gu, K.; Chen, Z.; Zheng, W.; Lu, W. Soy Food Intake and Breast Cancer Survival. JAMA 2009, 302, 2437–2443. [Google Scholar] [CrossRef]
- Hoie, L.H.; Guldstrand, M.; Sjoholm, A.; Graubaum, H.J.; Gruenwald, J.; Zunft, H.J.F.; Lueder, W. Cholesterol-Lowering Effects of a New Isolated Soy Protein with High Levels of Nondenaturated Protein in Hypercholesterolemic Patients. Adv. Ther. 2007, 24, 439–447. [Google Scholar] [CrossRef]
- Ye, Y.-B.; Tang, X.-Y.; Verbruggen, M.A.; Su, Y.-X. Soy Isoflavones Attenuate Bone Loss in Early Postmenopausal Chinese Women: A Single-Blind Randomized, Placebo-Controlled Trial. Eur. J. Nutr. 2006, 45, 327–334. [Google Scholar] [CrossRef]
- Lethaby, A.; Marjoribanks, J.; Kronenberg, F.; Roberts, H.; Eden, J.; Brown, J. Phytoestrogens for Menopausal Vasomotor Symptoms. Cochrane database Syst. Rev. 2013, 2013, CD001395. [Google Scholar] [CrossRef]
- Farquhar, C.; Marjoribanks, J.; Lethaby, A.; Suckling, J.A.; Lamberts, Q. Long Term Hormone Therapy for Perimenopausal and Postmenopausal Women. Cochrane database Syst. Rev. 2009, CD004143. [Google Scholar] [CrossRef]
- Baber, R.J. Phytoestrogens in Health: The Role of Isoflavones. In Isoflavones: Chemistry, Analysis, Function and Effects; Nara, K., Liu, D., Kachlicki, P., Alves, R.C., Baber, R., Bucar, F., Chen, B.H., Park, J., Bolanos, R., Priefer, R., et al., Eds.; The Royal Society of Chemistry: London, UK, 2012; ISBN 978-1-84973-419-6. [Google Scholar]
- Tucker, H.A.; Knowlton, K.F.; Meyer, M.T.; Khunjar, W.O.; Love, N.G. Effect of Diet on Fecal and Urinary Estrogenic Activity. J. Dairy Sci. 2010, 93, 2088–2094. [Google Scholar] [CrossRef]
- Wocławek-Potocka, I.; Mannelli, C.; Boruszewska, D.; Kowalczyk-Zieba, I.; Waśniewski, T.; Skarżyński, D.J. Diverse Effects of Phytoestrogens on the Reproductive Performance: Cow as a Model. Int. J. Endocrinol. 2013, 2013, 650984. [Google Scholar] [CrossRef]
- Hilakivi-Clarke, L.; de Assis, S. Fetal Origins of Breast Cancer. Trends Endocrinol. Metab. 2006, 17, 340–348. [Google Scholar] [CrossRef]
- Wang, Y.; Man Gho, W.; Chan, F.L.; Chen, S.; Leung, L.K. The Red Clover (Trifolium Pratense) Isoflavone Biochanin A Inhibits Aromatase Activity and Expression. Br. J. Nutr. 2008, 99, 303–310. [Google Scholar] [CrossRef]
- Mueller, S.O.; Simon, S.; Chae, K.; Metzler, M.; Korach, K.S. Phytoestrogens and Their Human Metabolites Show Distinct Agonistic and Antagonistic Properties on Estrogen Receptor Alpha (ERalpha) and ERbeta in Human Cells. Toxicol. Sci. 2004, 80, 14–25. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Afnan; Saleem, A.; Akhtar, M.F.; Sharif, A.; Akhtar, B.; Siddique, R.; Ashraf, G.M.; Alghamdi, B.S.; Alharthy, S.A. Anticancer, Cardio-Protective and Anti-Inflammatory Potential of Natural-Sources-Derived Phenolic Acids. Molecules 2022, 27, 7286. [Google Scholar] [CrossRef]
- Hapeshi, A.; Benarroch, J.M.; Clarke, D.J.; Waterfield, N.R. Iso-Propyl Stilbene: A Life Cycle Signal? Microbiology 2019, 165, 516–526. [Google Scholar] [CrossRef]
- Teka, T.; Zhang, L.; Ge, X.; Li, Y.; Han, L.; Yan, X. Stilbenes: Source Plants, Chemistry, Biosynthesis, Pharmacology, Application and Problems Related to Their Clinical Application-A Comprehensive Review. Phytochemistry 2022, 197, 113128. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Mascarenhas, R.; Harish, H.M.; Gowda, Y.; Lakshmaiah, V.V.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M.; Almaghasla, M.I.; Rezk, A.A.-S. Stilbenes, a Versatile Class of Natural Metabolites for Inflammation-An Overview. Molecules 2023, 28, 3786. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Camilli, E.; Marconi, S.; Gabrielli, P.; Lisciani, S.; Gambelli, L.; Aguzzi, A.; Novellino, E.; Santini, A.; et al. Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules 2018, 23, 3251. [Google Scholar] [CrossRef]
- Runeberg, P.A.; Brusentsev, Y.; Rendon, S.M.K.; Eklund, P.C. Oxidative Transformations of Lignans. Molecules 2019, 24, 300. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Liang, Z.; Zhao, C. New Lignans and Their Biological Activities. Chem. Biodivers. 2014, 11, 1–54. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Wang, D.-Y.; Li, Y.-P.; Deyrup, S.T.; Zhang, H.-J. Plant-Derived Lignans as Potential Antiviral Agents: A Systematic Review. Phytochem. Rev. 2022, 21, 239–289. [Google Scholar] [CrossRef]
- Kawazoe, K.; Yutani, A.; Tamemoto, K.; Yuasa, S.; Shibata, H.; Higuti, T.; Takaishi, Y. Phenylnaphthalene Compounds from the Subterranean Part of Vitex Rotundifolia and Their Antibacterial Activity against Methicillin-Resistant Staphylococcus Aureus. J. Nat. Prod. 2001, 64, 588–591. [Google Scholar] [CrossRef]
- Hirano, T.; Wakasugi, A.; Oohara, M.; Oka, K.; Sashida, Y. Suppression of Mitogen-Induced Proliferation of Human Peripheral Blood Lymphocytes by Plant Lignans. Planta Med. 1991, 57, 331–334. [Google Scholar] [CrossRef]
- Abraham, K.; Wöhrlin, F.; Lindtner, O.; Heinemeyer, G.; Lampen, A. Toxicology and Risk Assessment of Coumarin: Focus on Human Data. Mol. Nutr. Food Res. 2010, 54, 228–239. [Google Scholar] [CrossRef]
- Akkol, E.K.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers 2020, 12, 1959. [Google Scholar] [CrossRef]
- Majnooni, M.B.; Fakhri, S.; Smeriglio, A.; Trombetta, D.; Croley, C.R.; Bhattacharyya, P.; Sobarzo-Sánchez, E.; Farzaei, M.H.; Bishayee, A. Antiangiogenic Effects of Coumarins against Cancer: From Chemistry to Medicine. Molecules 2019, 24, 4278. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Wu, J.; Jiang, X.; Dong, L.; Xu, F.; Zou, P.; Dai, Y.; Shan, X.; Yang, S.; et al. Synthesis and Evaluation of a Series of Novel Asymmetrical Curcumin Analogs for the Treatment of Inflammation. Molecules 2014, 19, 7287–7307. [Google Scholar] [CrossRef]
- Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a Wound Healing Agent. Life Sci. 2014, 116, 1–7. [Google Scholar] [CrossRef]
- Wichitnithad, W.; Nimmannit, U.; Wacharasindhu, S.; Rojsitthisak, P. Synthesis, Characterization and Biological Evaluation of Succinate Prodrugs of Curcuminoids for Colon Cancer Treatment. Molecules 2011, 16, 1888–1900. [Google Scholar] [CrossRef]
- Masuelli, L.; Granato, M.; Benvenuto, M.; Mattera, R.; Bernardini, R.; Mattei, M.; d’Amati, G.; D’Orazi, G.; Faggioni, A.; Bei, R.; et al. Chloroquine Supplementation Increases the Cytotoxic Effect of Curcumin against Her2/Neu Overexpressing Breast Cancer Cells in Vitro and in Vivo in Nude Mice While Counteracts It in Immune Competent Mice. Oncoimmunology 2017, 6, e1356151. [Google Scholar] [CrossRef]
- Kim, B.R.; Park, J.Y.; Jeong, H.J.; Kwon, H.J.; Park, S.J.; Lee, I.C.; Ryu, Y.B.; Lee, W.S. Design, Synthesis, and Evaluation of Curcumin Analogues as Potential Inhibitors of Bacterial Sialidase. J. Enzyme Inhib. Med. Chem. 2018, 33, 1256–1265. [Google Scholar] [CrossRef]
- Villaflores, O.B.; Chen, Y.J.; Chen, C.P.; Yeh, J.M.; Wu, T.Y. Curcuminoids and Resveratrol as Anti-Alzheimer Agents. Taiwan. J. Obstet. Gynecol. 2012, 51, 515–525. [Google Scholar] [CrossRef]
- Vieira, L.M.M.; Kijjoa, A. Naturally-Occurring Xanthones: Recent Developments. Curr. Med. Chem. 2005, 12, 2413–2446. [Google Scholar] [CrossRef]
- Gales, L.; Damas, A.M. Xanthones—A Structural Perspective. Curr. Med. Chem. 2005, 12, 2499–2515. [Google Scholar] [CrossRef]
- El-seedi, H.R.; Salem, M.A.; Khattab, O.M.; El-wahed, A.A.; El-kersh, D.M.; Khalifa, S.A.M.; Saeed, A.; Abdel-daim, M.M.; Hajrah, N.H. Dietary Xanthones. In Handbook of Dietary Phytochemicals; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Panda, S.S.; Chand, M.; Sakhuja, R.; Jain, S.C. Xanthones as Potential Antioxidants. Curr. Med. Chem. 2013, 20, 4481–4507. [Google Scholar] [CrossRef]
- El-Seedi, H.; El-Barbary, M.; El-Ghorab, D.; Bohlin, L.; Borg-Karlson, A.-K.; Goransson, U.; Verpoorte, R. Recent Insights into the Biosynthesis and Biological Activities of Natural Xanthones. Curr. Med. Chem. 2010, 17, 854–901. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021, 26, 5119. [Google Scholar] [CrossRef]
- Nauman, M.C.; Johnson, J.J. The Purple Mangosteen (Garcinia Mangostana): Defining the Anticancer Potential of Selected Xanthones. Pharmacol. Res. 2022, 175, 106032. [Google Scholar] [CrossRef]
- Niit, M.; Hoskin, V.; Carefoot, E.; Geletu, M.; Arulanandam, R.; Elliott, B.; Raptis, L. Cell-Cell and Cell-Matrix Adhesion in Survival and Metastasis: Stat3 versus Akt. Biomol. Concepts 2015, 6, 383–399. [Google Scholar] [CrossRef]
- Vu, H.A.; Beppu, Y.; Chi, H.T.; Sasaki, K.; Yamamoto, H.; Xinh, P.T.; Tanii, T.; Hara, Y.; Watanabe, T.; Sato, Y.; et al. Green Tea Epigallocatechin Gallate Exhibits Anticancer Effect in Human Pancreatic Carcinoma Cells via the Inhibition of Both Focal Adhesion Kinase and Insulin-like Growth Factor-I Receptor. J. Biomed. Biotechnol. 2010, 2010, 290516. [Google Scholar] [CrossRef]
- Sen, T.; Moulik, S.; Dutta, A.; Choudhury, P.R.; Banerji, A.; Das, S.; Roy, M.; Chatterjee, A. Multifunctional Effect of Epigallocatechin-3-Gallate (EGCG) in Downregulation of Gelatinase-A (MMP-2) in Human Breast Cancer Cell Line MCF-7. Life Sci. 2009, 84, 194–204. [Google Scholar] [CrossRef]
- Shimoi, K.; Saka, N.; Kaji, K.; Nozawa, R.; Kinae, N. Metabolic Fate of Luteolin and Its Functional Activity at Focal Site. BioFactors 2000, 12, 181–186. [Google Scholar] [CrossRef]
- Hasnat, A.; Pervin, M.; Lim, J.H.; Lim, B.O. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition. Molecules 2015, 20, 21157–21166. [Google Scholar] [CrossRef]
- Orsulic, S.; Huber, O.; Aberle, H.; Arnold, S.; Kemler, R. E-Cadherin Binding Prevents Beta-Catenin Nuclear Localization and Beta-Catenin/LEF-1-Mediated Transactivation. J. Cell Sci. 1999, 112 Pt 8, 1237–1245. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Li, Y.; Wang, Y.; Sun, S.Y.; Jiang, T.; Li, C.; Cui, S.X.; Qu, X.J. Naringin, a Natural Dietary Compound, Prevents Intestinal Tumorigenesis in ApcMin/+ Mouse Model. J. Cancer Res. Clin. Oncol. 2016, 142, 913–925. [Google Scholar] [CrossRef]
- Han, K.Y.; Chen, P.N.; Hong, M.C.; Hseu, Y.C.; Chen, K.M.; Hsu, L.S.; Chen, W.J. Naringenin Attenuated Prostate Cancer Invasion via Reversal of Epithelial–to–Mesenchymal Transition and Inhibited UPA Activity. Anticancer Res. 2018, 38, 6753–6758. [Google Scholar] [CrossRef]
- Naderi Alizadeh, M.; Rashidi, M.; Muhammadnejad, A.; Moeini Zanjani, T.; Ziai, S.A. Antitumor Effects of Umbelliprenin in a Mouse Model of Colorectal Cancer. Iran. J. Pharm. Res. IJPR 2018, 17, 976–985. [Google Scholar]
- Chen, C.-C.; Sureshbabul, M.; Chen, H.-W.; Lin, Y.-S.; Lee, J.-Y.; Hong, Q.-S.; Yang, Y.-C.; Yu, S.-L. Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer. Evid. Based. Complement. Alternat. Med. 2013, 2013, 541695. [Google Scholar] [CrossRef]
- Mani, J.; Fleger, J.; Rutz, J.; Maxeiner, S.; Bernd, A.; Kippenberger, S.; Zöller, N.; Chun, F.K.-H.; Relja, B.; Juengel, E.; et al. Curcumin Combined with Exposure to Visible Light Blocks Bladder Cancer Cell Adhesion and Migration by an Integrin Dependent Mechanism. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 10564–10574. [Google Scholar] [CrossRef]
- Yang, T.-Y.; Wu, M.-L.; Chang, C.-I.; Liu, C.-I.; Cheng, T.-C.; Wu, Y.-J. Bornyl Cis-4-Hydroxycinnamate Suppresses Cell Metastasis of Melanoma through FAK/PI3K/Akt/MTOR and MAPK Signaling Pathways and Inhibition of the Epithelial-to-Mesenchymal Transition. Int. J. Mol. Sci. 2018, 19, 2152. [Google Scholar] [CrossRef]
- Yu, H.J.; Shin, J.A.; Cho, S.D. Inhibition of Focal Adhesion Kinase/Paxillin Axis by Caffeic Acid Phenethyl Ester Restrains Aggressive Behaviors of Head and Neck Squamous Cell Carcinoma in Vitro. Arch. Oral Biol. 2023, 146, 105611. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, Y.; Lu, G. α-Mangostin Suppresses Lipopolysaccharide-Induced Invasion by Inhibiting Matrix Metalloproteinase-2/9 and Increasing E-Cadherin Expression through Extracellular Signal-Regulated Kinase Signaling in Pancreatic Cancer Cells. Oncol. Lett. 2013, 5, 1958–1964. [Google Scholar] [CrossRef]
- Chei, S.; Oh, H.-J.; Song, J.-H.; Seo, Y.-J.; Lee, K.; Lee, B.-Y. Magnolol Suppresses TGF-β-Induced Epithelial-to-Mesenchymal Transition in Human Colorectal Cancer Cells. Front. Oncol. 2019, 9, 752. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Tsao, M.-J.; Chiu, C.-Y.; Kan, P.-C.; Chen, Y. Magnolol Inhibits Human Glioblastoma Cell Migration by Regulating N-Cadherin. J. Neuropathol. Exp. Neurol. 2018, 77, 426–436. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Yang, B.; Xiang, T.; Yin, X.; Peng, W.; Cheng, W.; Wan, J.; Luo, F.; Li, H.; et al. Mangiferin Exerts Antitumor Activity in Breast Cancer Cells by Regulating Matrix Metalloproteinases, Epithelial to Mesenchymal Transition, and β-Catenin Signaling Pathway. Toxicol. Appl. Pharmacol. 2013, 272, 180–190. [Google Scholar] [CrossRef]
- Deng, Q.; Tian, Y.X.; Liang, J.J. Mangiferin Inhibits Cell Migration and Invasion through Rac1/WAVE2 Signalling in Breast Cancer. Cytotechnology 2018, 70, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Brockmueller, A.; Mueller, A.L.; Shayan, P.; Shakibaei, M. β1-Integrin Plays a Major Role in Resveratrol-Mediated Anti-Invasion Effects in the CRC Microenvironment. Front. Pharmacol. 2022, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Buhrmann, C.; Yazdi, M.; Popper, B.; Kunnumakkara, A.B.; Aggarwal, B.B.; Shakibaei, M. Induction of the Epithelial-to-Mesenchymal Transition of Human Colorectal Cancer by Human TNF-β (Lymphotoxin) and Its Reversal by Resveratrol. Nutrients 2019, 11, 704. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, H.; Behrendt, I.; Meroño, T.; González-Domínguez, R.; Fasshauer, M.; Rudloff, S.; Andres-Lacueva, C.; Kuntz, S. Plasma Anthocyanins and Their Metabolites Reduce in vitro Migration of Pancreatic Cancer Cells, PANC-1, in a FAK- and NF-KB Dependent Manner: Results from the ATTACH-Study a Randomized, Controlled, Crossover Trial in Healthy Subjects. Biomed. Pharmacother. 2023, 158, 114076. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.-T.; Huang, Y.-T.; Hwang, J.-J.; Lee, A.Y.-L.; Ke, F.-C.; Huang, C.-J.; Kandaswami, C.; Lee, P.-P.H.; Lee, M.-T. Transinactivation of the Epidermal Growth Factor Receptor Tyrosine Kinase and Focal Adhesion Kinase Phosphorylation by Dietary Flavonoids: Effect on Invasive Potential of Human Carcinoma Cells. Biochem. Pharmacol. 2004, 67, 2103–2114. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.-W.; Chen, P.-N.; Wu, H.-C.; Wu, S.-W.; Tsai, P.-Y.; Hsieh, Y.-S.; Chang, H.-R. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways. Int. J. Med. Sci. 2017, 14, 984–993. [Google Scholar] [CrossRef]
- Yu, D.; Ye, T.; Xiang, Y.; Shi, Z.; Zhang, J.; Lou, B.; Zhang, F.; Chen, B.; Zhou, M. Quercetin Inhibits Epithelial-Mesenchymal Transition, Decreases Invasiveness and Metastasis, and Reverses IL-6 Induced Epithelial-Mesenchymal Transition, Expression of MMP by Inhibiting STAT3 Signaling in Pancreatic Cancer Cells. Onco. Targets. Ther. 2017, 10, 4719–4729. [Google Scholar] [CrossRef]
- Lai, W.-W.; Hsu, S.-C.; Chueh, F.-S.; Chen, Y.-Y.; Yang, J.-S.; Lin, J.-P.; Lien, J.-C.; Tsai, C.-H.; Chung, J.-G. Quercetin Inhibits Migration and Invasion of SAS Human Oral Cancer Cells through Inhibition of NF-ΚB and Matrix Metalloproteinase-2/-9 Signaling Pathways. Anticancer Res. 2013, 33, 1941–1950. [Google Scholar]
- Cao, H.-H.; Cheng, C.-Y.; Su, T.; Fu, X.-Q.; Guo, H.; Li, T.; Tse, A.K.-W.; Kwan, H.-Y.; Yu, H.; Yu, Z.-L. Quercetin Inhibits HGF/c-Met Signaling and HGF-Stimulated Melanoma Cell Migration and Invasion. Mol. Cancer 2015, 14, 103. [Google Scholar] [CrossRef]
- Hu, X.-W.; Meng, D.; Fang, J. Apigenin Inhibited Migration and Invasion of Human Ovarian Cancer A2780 Cells through Focal Adhesion Kinase. Carcinogenesis 2008, 29, 2369–2376. [Google Scholar] [CrossRef] [PubMed]
- Franzen, C.A.; Amargo, E.; Todorović, V.; Desai, B.V.; Huda, S.; Mirzoeva, S.; Chiu, K.; Grzybowski, B.A.; Chew, T.-L.; Green, K.J.; et al. The Chemopreventive Bioflavonoid Apigenin Inhibits Prostate Cancer Cell Motility through the Focal Adhesion Kinase/Src Signaling Mechanism. Cancer Prev. Res. (Phila). 2009, 2, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.; Chen, M.; Takahashi, H.; King, J.; Reber, H.A.; Hines, O.J.; Pandol, S.; Eibl, G. Apigenin Inhibits NNK-Induced Focal Adhesion Kinase Activation in Pancreatic Cancer Cells. Pancreas 2012, 41, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Hong, S.; Yoo, S.-H.; Kim, G.-W. Cyanidin-3-O-Sambubioside from Acanthopanax Sessiliflorus Fruit Inhibits Metastasis by Downregulating MMP-9 in Breast Cancer Cells MDA-MB-231. Planta Med. 2013, 79, 1636–1640. [Google Scholar] [CrossRef]
- Im, N.-K.; Jang, W.J.; Jeong, C.-H.; Jeong, G.-S. Delphinidin Suppresses PMA-Induced MMP-9 Expression by Blocking the NF-ΚB Activation through MAPK Signaling Pathways in MCF-7 Human Breast Carcinoma Cells. J. Med. Food 2014, 17, 855–861. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, Y.-F.; Chen, X.-Y.; Han, B.; Li, F.; Chen, J.-Y.; Peng, X.-L.; Luo, L.-P.; Chen, W.; Yu, X.-P. Black Rice-Derived Anthocyanins Inhibit HER-2-Positive Breast Cancer Epithelial-Mesenchymal Transition-Mediated Metastasis in Vitro by Suppressing FAK Signaling. Int. J. Mol. Med. 2017, 40, 1649–1656. [Google Scholar] [CrossRef]
- Adams, L.S.; Phung, S.; Yee, N.; Seeram, N.P.; Li, L.; Chen, S. Blueberry Phytochemicals Inhibit Growth and Metastatic Potential of MDA-MB-231 Breast Cancer Cells through Modulation of the Phosphatidylinositol 3-Kinase Pathway. Cancer Res. 2010, 70, 3594–3605. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, A.; Kajiya, N.; Oishi, K.; Kamada, Y.; Ikeda, A.; Chigwechokha, P.K.; Kibe, T.; Kishida, M.; Kishida, S.; Komatsu, M.; et al. NEU3 Inhibitory Effect of Naringin Suppresses Cancer Cell Growth by Attenuation of EGFR Signaling through GM3 Ganglioside Accumulation. Eur. J. Pharmacol. 2016, 782, 21–29. [Google Scholar] [CrossRef]
- Yen, H.-R.; Liu, C.-J.; Yeh, C.-C. Naringenin Suppresses TPA-Induced Tumor Invasion by Suppressing Multiple Signal Transduction Pathways in Human Hepatocellular Carcinoma Cells. Chem. Biol. Interact. 2015, 235, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.-H.; Kim, J.H. Combined Administration of Naringenin and Hesperetin with Optimal Ratio Maximizes the Anti-Cancer Effect in Human Pancreatic Cancer via down Regulation of FAK and P38 Signaling Pathway. Phytomedicine 2019, 58, 152762. [Google Scholar] [CrossRef] [PubMed]
- Sawai, H.; Okada, Y.; Funahashi, H.; Matsuo, Y.; Takahashi, H.; Takeyama, H.; Manabe, T. Activation of Focal Adhesion Kinase Enhances the Adhesion and Invasion of Pancreatic Cancer Cells via Extracellular Signal-Regulated Kinase-1/2 Signaling Pathway Activation. Mol. Cancer 2005, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhu, C.-F.; Dai, Y.-L.; Zhong, Q.; Sun, B. Inhibitory Effects of Genistein on Metastasis of Human Hepatocellular Carcinoma. World J. Gastroenterol. 2009, 15, 4952–4957. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, M.; Xu, L.; Ananthanarayanan, V.; Cooper, J.; Takimoto, C.H.; Helenowski, I.; Pelling, J.C.; Bergan, R.C. Dietary Genistein Inhibits Metastasis of Human Prostate Cancer in Mice. Cancer Res. 2008, 68, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, S.; Xu, L.; Liu, Y.; Deb, D.K.; Platanias, L.C.; Bergan, R.C. Genistein Inhibits P38 Map Kinase Activation, Matrix Metalloproteinase Type 2, and Cell Invasion in Human Prostate Epithelial Cells. Cancer Res. 2005, 65, 3470–3478. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Yeh, W.-L.; Chen, J.-H.; Lin, C.; Huang, S.-S.; Lu, D.-Y. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression. Int. J. Mol. Sci. 2014, 15, 3889–3903. [Google Scholar] [CrossRef]
- Velasco-Velázquez, M.A.; Salinas-Jazmín, N.; Mendoza-Patiño, N.; Mandoki, J.J. Reduced Paxillin Expression Contributes to the Antimetastatic Effect of 4-Hydroxycoumarin on B16-F10 Melanoma Cells. Cancer Cell Int. 2008, 8, 8. [Google Scholar] [CrossRef]
- Lee, J.-H.; Choi, S.; Lee, Y.; Lee, H.-J.; Kim, K.-H.; Ahn, K.-S.; Bae, H.; Lee, H.-J.; Lee, E.-O.; Ahn, K.-S.; et al. Herbal Compound Farnesiferol C Exerts Antiangiogenic and Antitumor Activity and Targets Multiple Aspects of VEGFR1 (Flt1) or VEGFR2 (Flk1) Signaling Cascades. Mol. Cancer Ther. 2010, 9, 389–399. [Google Scholar] [CrossRef]
- Benvenuto, M.; Mattera, R.; Masuelli, L.; Taffera, G.; Andracchio, O.; Tresoldi, I.; Lido, P.; Giganti, M.G.; Godos, J.; Modesti, A.; et al. (±)-Gossypol Induces Apoptosis and Autophagy in Head and Neck Carcinoma Cell Lines and Inhibits the Growth of Transplanted Salivary Gland Cancer Cells in BALB/c Mice. Int. J. Food Sci. Nutr. 2017, 68, 298–312. [Google Scholar] [CrossRef]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of Polyphenols and Its Anticancer Properties in Biomedical Research: A Narrative Review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef]
- Leu, T.-H.; Su, S.L.; Chuang, Y.-C.; Maa, M.-C. Direct Inhibitory Effect of Curcumin on Src and Focal Adhesion Kinase Activity. Biochem. Pharmacol. 2003, 66, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, S.-J.; Kang, S.-S.; Jin, E.-J. Correction: Curcumin Inhibits Cellular Condensation and Alters Microfilament Organization during Chondrogenic Differentiation of Limb Bud Mesenchymal Cells. Exp. Mol. Med. 2020, 52, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-J.; Su, C.-C.; Lu, H.-F.; Yang, J.-S.; Hsu, S.-C.; Ip, S.-W.; Wu, J.-J.; Li, Y.-C.; Ho, C.-C.; Wu, C.-C.; et al. Curcumin Blocks Migration and Invasion of Mouse-Rat Hybrid Retina Ganglion Cells (N18) through the Inhibition of MMP-2, -9, FAK, Rho A and Rock-1 Gene Expression. Oncol. Rep. 2010, 23, 665–670. [Google Scholar] [PubMed]
- Thiyagarajan, V.; Lin, S.-H.; Chia, Y.-C.; Weng, C.-F. A Novel Inhibitor, 16-Hydroxy-Cleroda-3,13-Dien-16,15-Olide, Blocks the Autophosphorylation Site of Focal Adhesion Kinase (Y397) by Molecular Docking. Biochim. Biophys. Acta 2013, 1830, 4091–4101. [Google Scholar] [CrossRef] [PubMed]
- Sathe, G.; Pinto, S.M.; Syed, N.; Nanjappa, V.; Solanki, H.S.; Renuse, S.; Chavan, S.; Khan, A.A.; Patil, A.H.; Nirujogi, R.S.; et al. Phosphotyrosine Profiling of Curcumin-Induced Signaling. Clin. Proteomics 2016, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.R.; Kim, Y.N.; Park, C.G.; Cho, K.H.; Cho, D.Y.; Lee, H.Y. RCP Induces FAK Phosphorylation and Ovarian Cancer Cell Invasion with Inhibition by Curcumin. Exp. Mol. Med. 2018, 50, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Lou, D.; Yang, J.; Lin, M.; Deng, X.; Fan, Q. Curcumin and Wikstroflavone B, a New Biflavonoid Isolated from Wikstroemia Indica, Synergistically Suppress the Proliferation and Metastasis of Nasopharyngeal Carcinoma Cells via Blocking FAK/STAT3 Signaling Pathway. Phytomedicine 2020, 79, 153341. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-Y.; Yang, H.-W.; Chu, Y.-H.; Chang, Y.-C.; Hsieh, M.-J.; Chou, M.-Y.; Yeh, K.-T.; Lin, Y.-M.; Yang, S.-F.; Lin, C.-W. Caffeic Acid Phenethyl Ester Inhibits Oral Cancer Cell Metastasis by Regulating Matrix Metalloproteinase-2 and the Mitogen-Activated Protein Kinase Pathway. Evid. Based. Complement. Alternat. Med. 2012, 2012, 732578. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Du, B.; Pan, X.; Liu, J.; Zhao, Q.; Lian, X.; Qian, M.; Liu, M. CADPE Inhibits PMA-Stimulated Gastric Carcinoma Cell Invasion and Matrix Metalloproteinase-9 Expression by FAK/MEK/ERK-Mediated AP-1 Activation. Mol. Cancer Res. 2010, 8, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Pan, Z.; Dong, M.; Yu, C.; Niu, Y. Ferulic Acid Suppresses Activation of Hepatic Stellate Cells through ERK1/2 and Smad Signaling Pathways in Vitro. Biochem. Pharmacol. 2015, 93, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.-C.; Huang, A.-C.; Wu, P.-P.; Lin, H.-Y.; Chueh, F.-S.; Yang, J.-S.; Lu, C.-C.; Chiang, J.-H.; Meng, M.; Chung, J.-G. Gallic Acid Suppresses the Migration and Invasion of PC-3 Human Prostate Cancer Cells via Inhibition of Matrix Metalloproteinase-2 and -9 Signaling Pathways. Oncol. Rep. 2011, 26, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Kim, J.K.; Kim, D.W.; Hwang, H.S.; Eum, W.S.; Park, J.; Han, K.H.; Oh, J.S.; Choi, S.Y. Antitumor Activity of Methyl Gallate by Inhibition of Focal Adhesion Formation and Akt Phosphorylation in Glioma Cells. Biochim. Biophys. Acta 2013, 1830, 4017–4029. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.H.; Shudo, T.; Yoshida, T.; Sugiyama, Y.; Si, J.Y.; Tsukano, C.; Takemoto, Y.; Kakizuka, A. Ellagic Acid, Extracted from Sanguisorba Officinalis, Induces G1 Arrest by Modulating PTEN Activity in B16F10 Melanoma Cells. Genes Cells 2019, 24, 688–704. [Google Scholar] [CrossRef] [PubMed]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef]
- Yang, F.; Xu, K.; Zhang, S.; Zhang, J.; Qiu, Y.; Luo, J.; Tan, G.; Zou, Z.; Wang, W.; Kang, F. Discovery of Novel Chloropyramine-Cinnamic Acid Hybrids as Potential FAK Inhibitors for Intervention of Metastatic Triple-Negative Breast Cancer. Bioorg. Med. Chem. 2022, 66, 116809. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, W.; Zhang, B.; Liu, Y.; Wang, Z.; Wu, Y.; Yu, X.-J.; Zhang, X.; Ming, P.; Zhou, G.; et al. The Natural Compound Magnolol Inhibits Invasion and Exhibits Potential in Human Breast Cancer Therapy. Sci. Rep. 2013, 3, 3098. [Google Scholar] [CrossRef]
- Li, X.; Fan, S.; Pan, X.; Xiaokaiti, Y.; Duan, J.; Shi, Y.; Pan, Y.; Tie, L.; Wang, X.; Li, Y.; et al. Nordihydroguaiaretic Acid Impairs Prostate Cancer Cell Migration and Tumor Metastasis by Suppressing Neuropilin 1. Oncotarget 2016, 7, 86225–86238. [Google Scholar] [CrossRef]
- Buhrmann, C.; Shayan, P.; Goel, A.; Shakibaei, M. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules. Nutrients 2017, 9, 73. [Google Scholar] [CrossRef]
- Vanamala, J.; Radhakrishnan, S.; Reddivari, L.; Bhat, V.B.; Ptitsyn, A. Resveratrol Suppresses Human Colon Cancer Cell Proliferation and Induces Apoptosis via Targeting the Pentose Phosphate and the Talin-FAK Signaling Pathways-A Proteomic Approach. Proteome Sci. 2011, 9, 49. [Google Scholar] [CrossRef]
- Azios, N.G.; Dharmawardhane, S.F. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells. Neoplasia 2005, 7, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Medrano, F.J.; Andreu, J.M. Binding of Gossypol to Purified Tubulin and Inhibition of Its Assembly into Microtubules. Eur. J. Biochem. 1986, 158, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-S.; Chu, S.-C.; Huang, S.-C.; Kao, S.-H.; Lin, M.-S.; Chen, P.-N. Gossypol Reduces Metastasis and Epithelial-Mesenchymal Transition by Targeting Protease in Human Cervical Cancer. Am. J. Chin. Med. 2021, 49, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Singh, P.; Panda, D. Curcumin Suppresses the Dynamic Instability of Microtubules, Activates the Mitotic Checkpoint and Induces Apoptosis in MCF-7 Cells. FEBS J. 2010, 277, 3437–3448. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.K.; Bharne, S.S.; Rathinasamy, K.; Naik, N.R.; Panda, D. Dietary Antioxidant Curcumin Inhibits Microtubule Assembly through Tubulin Binding. FEBS J. 2006, 273, 5320–5332. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Park, S.; Kim, S.Y.; Um, S.H.; Moon, E.-Y. Curcumin Hampers the Antitumor Effect of Vinblastine via the Inhibition of Microtubule Dynamics and Mitochondrial Membrane Potential in HeLa Cervical Cancer Cells. Phytomedicine 2016, 23, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Tepedelen, B.E.; Soya, E.; Korkmaz, M. Epigallocatechin-3-Gallate Reduces the Proliferation of Benign Prostatic Hyperplasia Cells via Regulation of Focal Adhesions. Life Sci. 2017, 191, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zhou, H.; Wang, T.; Mu, Y.; Wu, B.; Guo, D.; Zhang, X.; Wu, Y. Epigallocatechin-3-Gallate Inhibits Proliferation and Migration of Human Colon Cancer SW620 Cells in Vitro. Acta Pharmacol. Sin. 2012, 33, 120–126. [Google Scholar] [CrossRef]
- Hung, C.-F.; Huang, T.-F.; Chiang, H.-S.; Wu, W.-B. (-)-Epigallocatechin-3-Gallate, a Polyphenolic Compound from Green Tea, Inhibits Fibroblast Adhesion and Migration through Multiple Mechanisms. J. Cell. Biochem. 2005, 96, 183–197. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Lin, P.-H.; Shih, Y.-H.; Wang, K.-L.; Hong, Y.-H.; Shieh, T.-M.; Huang, T.-C.; Hsia, S.-M. Natural Antioxidant Resveratrol Suppresses Uterine Fibroid Cell Growth and Extracellular Matrix Formation In Vitro and In Vivo. Antioxidants 2019, 8, 99. [Google Scholar] [CrossRef]
- Azios, N.G.; Krishnamoorthy, L.; Harris, M.; Cubano, L.A.; Cammer, M.; Dharmawardhane, S.F. Estrogen and Resveratrol Regulate Rac and Cdc42 Signaling to the Actin Cytoskeleton of Metastatic Breast Cancer Cells. Neoplasia 2007, 9, 147–158. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, M.; Zhou, Y.; Wang, C.; Yuan, Y.; Li, L.; Bresette, W.; Chen, Y.; Cheng, J.; Lu, Y.; et al. Corrigendum to “Resveratrol Exerts Dose-Dependent Anti-Fibrotic or pro-Fibrotic Effects in Kidneys: A Potential Risk to Individuals with Impaired Kidney Function”: Volume and Pages of the Publication: Phytomedicine 2019, 57: 223-235. Phytomedicine 2022, 98, 153855. [Google Scholar] [CrossRef]
- Schneider, Y.; Chabert, P.; Stutzmann, J.; Coelho, D.; Fougerousse, A.; Gossé, F.; Launay, J.-F.; Brouillard, R.; Raul, F. Resveratrol Analog (Z)-3,5,4’-Trimethoxystilbene Is a Potent Anti-Mitotic Drug Inhibiting Tubulin Polymerization. Int. J. cancer 2003, 107, 189–196. [Google Scholar] [CrossRef]
- Guo, K.; Feng, Y.; Zheng, X.; Sun, L.; Wasan, H.S.; Ruan, S.; Shen, M. Resveratrol and Its Analogs: Potent Agents to Reverse Epithelial-to-Mesenchymal Transition in Tumors. Front. Oncol. 2021, 11, 644134. [Google Scholar] [CrossRef]
- Chen, P.-N.; Chu, S.-C.; Kuo, W.-H.; Chou, M.-Y.; Lin, J.-K.; Hsieh, Y.-S. Epigallocatechin-3 Gallate Inhibits Invasion, Epithelial-Mesenchymal Transition, and Tumor Growth in Oral Cancer Cells. J. Agric. Food Chem. 2011, 59, 3836–3844. [Google Scholar] [CrossRef]
- Chen, P.-N.; Chu, S.-C.; Chiou, H.-L.; Kuo, W.-H.; Chiang, C.-L.; Hsieh, Y.-S. Mulberry Anthocyanins, Cyanidin 3-Rutinoside and Cyanidin 3-Glucoside, Exhibited an Inhibitory Effect on the Migration and Invasion of a Human Lung Cancer Cell Line. Cancer Lett. 2006, 235, 248–259. [Google Scholar] [CrossRef]
- Huang, H.-P.; Shih, Y.-W.; Chang, Y.-C.; Hung, C.-N.; Wang, C.-J. Chemoinhibitory Effect of Mulberry Anthocyanins on Melanoma Metastasis Involved in the Ras/PI3K Pathway. J. Agric. Food Chem. 2008, 56, 9286–9293. [Google Scholar] [CrossRef]
- Chang, H.-L.; Chang, Y.-M.; Lai, S.-C.; Chen, K.-M.; Wang, K.-C.; Chiu, T.-T.; Chang, F.-H.; Hsu, L.-S. Naringenin Inhibits Migration of Lung Cancer Cells via the Inhibition of Matrix Metalloproteinases-2 and -9. Exp. Ther. Med. 2017, 13, 739–744. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, B.; Liu, J.; Wu, X.; Luo, N.; Wang, X.; Zheng, X.; Pan, X. Combinatorial Anti-Proliferative Effects of Tamoxifen and Naringenin: The Role of Four Estrogen Receptor Subtypes. Toxicology 2018, 410, 231–246. [Google Scholar] [CrossRef]
- Twarock, S.; Tammi, M.I.; Savani, R.C.; Fischer, J.W. Hyaluronan Stabilizes Focal Adhesions, Filopodia, and the Proliferative Phenotype in Esophageal Squamous Carcinoma Cells. J. Biol. Chem. 2010, 285, 23276–23284. [Google Scholar] [CrossRef] [PubMed]
- Jamialahmadi, K.; Salari, S.; Alamolhodaei, N.S.; Avan, A.; Gholami, L.; Karimi, G. Auraptene Inhibits Migration and Invasion of Cervical and Ovarian Cancer Cells by Repression of Matrix Metalloproteinasas 2 and 9 Activity. J. pharmacopuncture 2018, 21, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.-H.; Lin, C.-L.; Chen, P.-N.; Wu, P.-J.; Liu, C.-J.; Hsieh, Y.-H. Angelol-A Exerts Anti-Metastatic and Anti-Angiogenic Effects on Human Cervical Carcinoma Cells by Modulating the Phosphorylated-ERK/MiR-29a-3p That Targets the MMP2/VEGFA Axis. Life Sci. 2022, 296, 120317. [Google Scholar] [CrossRef]
- Hwang, H.J.; Park, H.J.; Chung, H.-J.; Min, H.-Y.; Park, E.-J.; Hong, J.-Y.; Lee, S.K. Inhibitory Effects of Caffeic Acid Phenethyl Ester on Cancer Cell Metastasis Mediated by the Down-Regulation of Matrix Metalloproteinase Expression in Human HT1080 Fibrosarcoma Cells. J. Nutr. Biochem. 2006, 17, 356–362. [Google Scholar] [CrossRef]
- Lee, K.W.; Kang, N.J.; Kim, J.H.; Lee, K.M.; Lee, D.E.; Hur, H.J.; Lee, H.J. Caffeic Acid Phenethyl Ester Inhibits Invasion and Expression of Matrix Metalloproteinase in SK-Hep1 Human Hepatocellular Carcinoma Cells by Targeting Nuclear Factor Kappa B. Genes Nutr. 2008, 2, 319–322. [Google Scholar] [CrossRef]
- Li, K.; Tu, Y.; Liu, Q.; Ouyang, Y.; He, M.; Luo, M.; Chen, J.; Pi, R.; Liu, A. PT93, a Novel Caffeic Acid Amide Derivative, Suppresses Glioblastoma Cells Migration, Proliferation and MMP-2/-9 Expression. Oncol. Lett. 2017, 13, 1990–1996. [Google Scholar] [CrossRef]
- Zhang, F.-H.; Ren, H.-Y.; Shen, J.-X.; Zhang, X.-Y.; Ye, H.-M.; Shen, D.-Y. Magnolol Suppresses the Proliferation and Invasion of Cholangiocarcinoma Cells via Inhibiting the NF-ΚB Signaling Pathway. Biomed. Pharmacother. 2017, 94, 474–480. [Google Scholar] [CrossRef]
- Hwang, E.-S.; Park, K.-K. Magnolol Suppresses Metastasis via Inhibition of Invasion, Migration, and Matrix Metalloproteinase-2/-9 Activities in PC-3 Human Prostate Carcinoma Cells. Biosci. Biotechnol. Biochem. 2010, 74, 961–967. [Google Scholar] [CrossRef]
- Pai, J.-T.; Hsu, C.-Y.; Hsieh, Y.-S.; Tsai, T.-Y.; Hua, K.-T.; Weng, M.-S. Suppressing Migration and Invasion of H1299 Lung Cancer Cells by Honokiol through Disrupting Expression of an HDAC6-Mediated Matrix Metalloproteinase 9. Food Sci. Nutr. 2020, 8, 1534–1545. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Han, J.M.; Choi, Y.S.; Jung, H.J. Pterostilbene Suppresses Both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol. Molecules 2020, 25, 228. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.-H.; Lin, Y.-T.; Lin, C.-L.; Wei, C.-S.; Ho, C.-T.; Chen, W.-J. Suppression of Heregulin-Β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, P38 Kinase Cascade and Akt Activation. Evid. Based. Complement. Alternat. Med. 2011, 2011, 562187. [Google Scholar] [CrossRef]
- Dilshara, M.G.; Kang, C.-H.; Choi, Y.H.; Kim, G.-Y. Mangiferin Inhibits Tumor Necrosis Factor-α-Induced Matrix Metalloproteinase-9 Expression and Cellular Invasion by Suppressing Nuclear Factor-ΚB Activity. BMB Rep. 2015, 48, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-S.; Jung, K.; Kim, D.-H.; Kim, H.-S. Selective Inhibition of MMP-9 Gene Expression by Mangiferin in PMA-Stimulated Human Astroglioma Cells: Involvement of PI3K/Akt and MAPK Signaling Pathways. Pharmacol. Res. 2012, 66, 95–103. [Google Scholar] [CrossRef]
- Zeng, Z.; Lin, C.; Wang, S.; Wang, P.; Xu, W.; Ma, W.; Wang, J.; Xiang, Q.; Liu, Y.; Yang, J.; et al. Suppressive Activities of Mangiferin on Human Epithelial Ovarian Cancer. Phytomedicine 2020, 76, 153267. [Google Scholar] [CrossRef]
- Luo, M.; Liu, Q.; He, M.; Yu, Z.; Pi, R.; Li, M.; Yang, X.; Wang, S.; Liu, A. Gartanin Induces Cell Cycle Arrest and Autophagy and Suppresses Migration Involving PI3K/Akt/MTOR and MAPK Signalling Pathway in Human Glioma Cells. J. Cell. Mol. Med. 2017, 21, 46–57. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Liu, W.; Hou, J.; Xu, J.; Guo, Y.; Hu, P. Cratoxylumxanthone C, a Natural Xanthone, Inhibits Lung Cancer Proliferation and Metastasis by Regulating STAT3 and FAK Signal Pathways. Front. Pharmacol. 2022, 13, 920422. [Google Scholar] [CrossRef]
- Utispan, K.; Niyomtham, N.; Yingyongnarongkul, B.-E.; Koontongkaew, S. Ethanolic Extract of Ocimum Sanctum Leaves Reduced Invasion and Matrix Metalloproteinase Activity of Head and Neck Cancer Cell Lines. Asian Pac. J. Cancer Prev. 2020, 21, 363–370. [Google Scholar] [CrossRef]
- Takeda, T.; Tsubaki, M.; Sakamoto, K.; Ichimura, E.; Enomoto, A.; Suzuki, Y.; Itoh, T.; Imano, M.; Tanabe, G.; Muraoka, O.; et al. Mangiferin, a Novel Nuclear Factor Kappa B-Inducing Kinase Inhibitor, Suppresses Metastasis and Tumor Growth in a Mouse Metastatic Melanoma Model. Toxicol. Appl. Pharmacol. 2016, 306, 105–112. [Google Scholar] [CrossRef]
- Carragher, N.O.; Frame, M.C. Focal Adhesion and Actin Dynamics: A Place Where Kinases and Proteases Meet to Promote Invasion. Trends Cell Biol. 2004, 14, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Padežnik, T.; Oleksy, A.; Cokan, A.; Takač, I.; Sobočan, M. Changes in the Extracellular Matrix in Endometrial and Cervical Cancer: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 5463. [Google Scholar] [CrossRef]
- Roy, T.; Boateng, S.T.; Uddin, M.B.; Banang-Mbeumi, S.; Yadav, R.K.; Bock, C.R.; Folahan, J.T.; Siwe-Noundou, X.; Walker, A.L.; King, J.A.; et al. The PI3K-Akt-MTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023, 12, 1671. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Caban, M.; Lewandowska, U. Inhibiting Effects of Polyphenols on Angiogenesis and Epithelial-Mesenchymal Transition in Anterior Segment Eye Diseases. J. Funct. Foods 2021, 87, 104761. [Google Scholar] [CrossRef]
- Jia, W.; Zhou, L.; Li, L.; Zhou, P.; Shen, Z. Nano-Based Drug Delivery of Polyphenolic Compounds for Cancer Treatment: Progress, Opportunities, and Challenges. Pharmaceuticals 2023, 16, 101. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef]
- Vladu, A.F.; Ficai, D.; Ene, A.G.; Ficai, A. Combination Therapy Using Polyphenols: An Efficient Way to Improve Antitumoral Activity and Reduce Resistance. Int. J. Mol. Sci. 2022, 23, 244. [Google Scholar] [CrossRef]
- Focaccetti, C.; Palumbo, C.; Benvenuto, M.; Carrano, R.; Melaiu, O.; Nardozi, D.; Angiolini, V.; Lucarini, V.; Kërpi, B.; Masuelli, L.; et al. The Combination of Bioavailable Concentrations of Curcumin and Resveratrol Shapes Immune Responses While Retaining the Ability to Reduce Cancer Cell Survival. Int. J. Mol. Sci. 2023, 25, 232. [Google Scholar] [CrossRef]
- Bohn, T. Dietary Factors Affecting Polyphenol Bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Narayanan, S.; Sethuraman, S.; Krishnan, U.M. Combinations of Plant Polyphenols & Anti-Cancer Molecules: A Novel Treatment Strategy for Cancer Chemotherapy. Anticancer. Agents Med. Chem. 2013, 13, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Bei, R.; Guptill, V.; Masuelli, L.; Kashmiri, S.V.; Muraro, R.; Frati, L.; Schlom, J.; Kantor, J. The Use of a Cationic Liposome Formulation (DOTAP) Mixed with a Recombinant Tumor-Associated Antigen to Induce Immune Responses and Protective Immunity in Mice. J. Immunother. 1998, 21, 159–169. [Google Scholar] [CrossRef]
- Giulimondi, F.; Vulpis, E.; Digiacomo, L.; Giuli, M.V.; Mancusi, A.; Capriotti, A.L.; Laganà, A.; Cerrato, A.; Zenezini Chiozzi, R.; Nicoletti, C.; et al. Opsonin-Deficient Nucleoproteic Corona Endows UnPEGylated Liposomes with Stealth Properties In Vivo. ACS Nano 2022, 16, 2088–2100. [Google Scholar] [CrossRef]
- Chang, P.-Y.; Peng, S.-F.; Lee, C.-Y.; Lu, C.-C.; Tsai, S.-C.; Shieh, T.-M.; Wu, T.-S.; Tu, M.-G.; Chen, M.Y.; Yang, J.-S. Curcumin-Loaded Nanoparticles Induce Apoptotic Cell Death through Regulation of the Function of MDR1 and Reactive Oxygen Species in Cisplatin-Resistant CAR Human Oral Cancer Cells. Int. J. Oncol. 2013, 43, 1141–1150. [Google Scholar] [CrossRef]
- Yallapu, M.M.; Maher, D.M.; Sundram, V.; Bell, M.C.; Jaggi, M.; Chauhan, S.C. Curcumin Induces Chemo/Radio-Sensitization in Ovarian Cancer Cells and Curcumin Nanoparticles Inhibit Ovarian Cancer Cell Growth. J. Ovarian Res. 2010, 3, 11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrano, R.; Grande, M.; Leti Maggio, E.; Zucca, C.; Bei, R.; Palumbo, C.; Focaccetti, C.; Nardozi, D.; Lucarini, V.; Angiolini, V.; et al. Dietary Polyphenols Effects on Focal Adhesion Plaques and Metalloproteinases in Cancer Invasiveness. Biomedicines 2024, 12, 482. https://doi.org/10.3390/biomedicines12030482
Carrano R, Grande M, Leti Maggio E, Zucca C, Bei R, Palumbo C, Focaccetti C, Nardozi D, Lucarini V, Angiolini V, et al. Dietary Polyphenols Effects on Focal Adhesion Plaques and Metalloproteinases in Cancer Invasiveness. Biomedicines. 2024; 12(3):482. https://doi.org/10.3390/biomedicines12030482
Chicago/Turabian StyleCarrano, Raffaele, Martina Grande, Eleonora Leti Maggio, Carlotta Zucca, Riccardo Bei, Camilla Palumbo, Chiara Focaccetti, Daniela Nardozi, Valeria Lucarini, Valentina Angiolini, and et al. 2024. "Dietary Polyphenols Effects on Focal Adhesion Plaques and Metalloproteinases in Cancer Invasiveness" Biomedicines 12, no. 3: 482. https://doi.org/10.3390/biomedicines12030482
APA StyleCarrano, R., Grande, M., Leti Maggio, E., Zucca, C., Bei, R., Palumbo, C., Focaccetti, C., Nardozi, D., Lucarini, V., Angiolini, V., Mancini, P., Barberini, F., Barillari, G., Cifaldi, L., Masuelli, L., Benvenuto, M., & Bei, R. (2024). Dietary Polyphenols Effects on Focal Adhesion Plaques and Metalloproteinases in Cancer Invasiveness. Biomedicines, 12(3), 482. https://doi.org/10.3390/biomedicines12030482