Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells
<p>Cytotoxic effect of different concentrations (10–750 µg/mL) of <span class="html-italic">Crataegus</span> berry (CB) extracts on U87MG human glioblastoma cells. Cell viability was assayed by the MTS test. Glioblastoma cells were treated up to 72 h with increasing concentrations of the extracts. The number of viable control (non-treated) cells at each time point served as 100%. Graphs represent mean values ± SD from three independent experiments.</p> "> Figure 2
<p>Effect of different concentrations (10–750 µg/mL) of <span class="html-italic">Crataegus</span> leaf (CL) extracts on U87MG cell viability. Glioblastoma cells were treated with increasing concentrations of the extracts up to 72 h. The number of viable control (non-treated) cel ls at each time point served as 100%. Graphs represent mean values ± SD from three independent experiments.</p> "> Figure 3
<p>Effect of <span class="html-italic">Crataegus</span> flowers (CF) extracts on U87MG cell viability. Glioblastoma cells were treated up to 72 h with increasing concentrations (10–750 µg/mL) of <span class="html-italic">Crataegus</span> flower extracts. The number of viable control (non-treated) cells at each time point served as 100%. Graphs represent mean values ± SD from three independent experiments.</p> "> Figure 4
<p>Western blot analysis for the cleavage of poly (ADP-ribose) polymerase 1 (PARP1) in the cell lysates obtained after 48 h of treatment with <span class="html-italic">Crataegus</span> berry (<b>a</b>), leaf (<b>b</b>), and flower (<b>c</b>) extracts in 100, 250, and 500 µg/mL concentrations. Non-treated cells served as a control. GAPDH ((glyceraldehyde-3-phosphate dehydrogenase) was used as a protein loading control.</p> "> Figure 5
<p>Light microscopy illustrating morphological changes and cell death promotion (red arrows) in U87MG cells after 48 h incubation with the extracts of <span class="html-italic">Crataegus</span> berries (<b>a</b>), leaves (<b>b</b>), and flowers (<b>c</b>) at a concentration of 250 µg/mL. Non-treated cells were used as a control for the berry and leaf extracts treatment, and dimethyl sulfoxide (DMSO)-treated cells served as a control for the flower extracts. Bars, 100 μm. Magnification of selected areas, ~2.5×. Arrows point to the cells with apoptotic features.</p> "> Figure 6
<p>Actin cytoskeleton organization in U87MG cells treated for 48 h with selected <span class="html-italic">Crataegus</span> berry (CB3 and CB4), leaf (CL3 and CL4), and flower (CF3 and CF4) extracts at concentrations close to the EC50 values. Non-treated cells served as a control for berry and leaf extracts treatment, and DMSO-treated cells served as a control for flower extracts. Cells were stained with Alexa Fluor 488-conjugated phalloidin (green) and DAPI (blue). Bars, 20 µm. White arrows point to actin aggregates, red arrows point to cells with apoptotic features.</p> "> Figure 7
<p>Western blot analysis of the level of focal adhesion kinase (FAK) and its phosphorylated (active) form (p-FAK) in U87MG human glioblastoma cells treated for 48 h with <span class="html-italic">Crataegus</span> berry (<b>a),</b> leaf (<b>b</b>), and flower (<b>c</b>) extracts at concentrations of 100, 250, and 500 µg/mL. Non-treated cells served as a control. GAPDH was used as a protein loading control.</p> "> Figure 8
<p>Western blotting of protein kinase B (PKB, also known as Akt) and its phosphorylated (active) form (p-Akt) in U87MG cells treated for 48 h with different concentrations (100, 250, and 500 µg/mL) of <span class="html-italic">Crataegus</span> berry (<b>a</b>), leaf (<b>b</b>), and flower (<b>c</b>) extracts. Non-treated cells served as a control. GAPDH was used as a protein loading control.</p> "> Figure 9
<p>The content of polyphenolic compounds in extracts of berries, leaves, and flowers of six examined species of <span class="html-italic">Crataegus</span>. The graph represents the mean values ± SD from three independent experiments. The statistical significance was analyzed using Duncan’s test. Values marked with different letters (between the species) within berries, leaves, or flowers indicate statistically significant differences (<span class="html-italic">p</span> < 0.05; for further details, see Materials and Methods section). Abbreviations: B, berries; L, leaves; F, flowers; C1–C6, examined <span class="html-italic">Crataegus</span> species.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Crataegus Extracts Inhibit U87MG Human Glioblastoma Cells Viability
2.2. Do Crataegus Extracts Promote Apoptosis of U87MG Human Glioblastoma Cells?
2.3. Crataegus Extracts Promote Apoptosis-Associated Changes in Morphology of U87MG Human Glioblastoma Cells
2.4. Crataegus Extracts Significantly Decrease the Activity of the Prosurvival FAK and Akt Kinases
2.5. Identification of Polyphenolic Compounds
2.6. Quantification of Polyphenolic Compounds
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Plant Material
4.3. Extracts Preparation
4.4. Cell Culture
4.5. MTS Cell Viability Assay
4.6. Western Blot Analysis of the Cell Lysates
4.7. Light Microscopy Analysis
4.8. Fluorescent Stainings and Confocal Microscopy Analysis
4.9. Determination of Polyphenols Profile
4.10. Quantification of Polyphenolics and Method Validation
4.11. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Santini, A.; Novellino, E. Nutraceuticals: Beyond the Diet Before the Drugs. Curr. Bioact. Compd. 2014, 10, 1–12. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. Editorial: The State of Science and Innovation of Bioactive Research and Applications, Health, and Diseases. Front. Nutr. 2019, 6, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Novellino, E.; Armini, V.; Ritieni, A. State of the art of Ready-to-Use Therapeutic Food: A tool for nutraceuticals addition to foodstuff. Food Chem. 2013, 140, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Souto, E.B. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Traditional herbs: A remedy for cardiovascular disorders. Phytomedicine 2016, 23, 1082–1089. [Google Scholar] [CrossRef]
- Dong, Y.; Liao, J.; Yao, K.; Jiang, W.; Wang, J. Application of Traditional Chinese Medicine in Treatment of Atrial Fibrillation. Evid. Based Complementary Altern. Med. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Tadić, V.M.; Dobrić, S.; Marković, G.M.; Dordević, S.M.; Arsić, I.A.; Menković, N.R.; Stević, T. Anti-inflammatory, Gastroprotective, Free-Radical-Scavenging, and Antimicrobial Activities of Hawthorn Berries Ethanol Extract. J. Agric. Food Chem. 2008, 56, 7700–7709. [Google Scholar] [CrossRef]
- Strugała, P.; Gładkowski, W.; Kucharska, A.Z.; Sokół-Łętowska, A.; Gabrielska, J. Antioxidant activity and anti-inflammatory effect of fruit extracts from blackcurrant, chokeberry, hawthorn, and rosehip, and their mixture with linseed oil on a model lipid membrane. Eur. J. Lipid Sci. Technol. 2016, 118, 461–474. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Lv, Z.; Yang, W.; Zhang, C.; Chen, D.; Jiao, Z. Effect of dehydration techniques on bioactive compounds in hawthorn slices and their correlations with antioxidant properties. J. Food Sci. Technol. 2019, 56, 2446–2457. [Google Scholar] [CrossRef]
- Lou, X.; Yuan, B.; Wang, L.; Xu, H.; Hanna, M.; Yuan, L. Evaluation of physicochemical characteristics, nutritional composition and antioxidant capacity of Chinese organic hawthorn berry (Crataegus pinnatifida). Int. J. Food Sci. Technol. 2020, 55, 1679–1688. [Google Scholar] [CrossRef]
- Hwang, E.; Park, S.Y.; Yin, C.S.; Kim, H.T.; Kim, Y.M.; Yi, T.H. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J. Ginseng Res. 2017, 41, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.W.; Han, T.; Jung, J.; Song, Y.; Um, M.Y.; Yoon, M.; Kim, Y.T.; Cho, S.; Kim, I.H.; Han, D.; et al. Chlorogenic Acid from Hawthorn Berry (Crataegus pinnatifida Fruit) Prevents Stress Hormone-Induced Depressive Behavior, through Monoamine Oxidase B-Reactive Oxygen Species Signaling in Hippocampal Astrocytes of Mice. Mol. Nutr. Food Res. 2018, 62, 1–27. [Google Scholar] [CrossRef]
- Bisignano, C.; Furneri, P.M.; Mandalari, G. In Vitro Efficacy of Crataegus oxycantha L. (Hawthorn) and Its Major Components against ATCC and Clinical Strains of Ureaplasma urealyticum. Adv. Microbiol. 2016, 6, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, H.; Hemmati, A.A.; Goudarzi, M.; Foruozandeh, H.; Kalantar, M.; Aghel, N.; Aslani, M.K.; Ehsan, T.S. Healing Effect of Hawthorn (Crataegus pontica C. Koch) Leaf Extract in Dermal Toxicity Induced by T-2 Toxin in Rabbit. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e35688. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Yan, M.; Zhao, X.; Jin, H.; Gong, Y. Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis. S. Afr. J. Bot. 2020, 130, 448–455. [Google Scholar] [CrossRef]
- Zhu, R.G.; Sun, Y.D.; Hou, Y.T.; Fan, J.G.; Chen, G.; Li, T.P. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice. Chem. Biol. Interact. 2017, 272, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E.; Brown, P.N.; Talent, N.; Dickinson, T.A.; Shipley, P.R. A review of the chemistry of the genus Crataegus. Phytochemistry 2012, 79, 5–26. [Google Scholar] [CrossRef]
- Venskutonis, P.R. Phytochemical composition and bioactivities of hawthorn (Crataegus spp.): Review of recent research advances. J. Food Bioact. 2018, 4, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Lin, B.; Shang, X.Y.; Zhou, L.; Yao, G.D.; Huang, X.X.; Song, S.J. Phenylpropanoids from the fruit of Crataegus pinnatifida exhibit cytotoxicity on hepatic carcinoma cells through apoptosis induction. Fitoterapia 2018, 127, 301–307. [Google Scholar] [CrossRef]
- Mustapha, N.; Bzéouich, I.M.; Ghedira, K.; Hennebelle, T.; Chekir-Ghedira, L. Compounds isolated from the aerial part of Crataegus azarolus inhibit growth of B16F10 melanoma cells and exert a potent inhibition of the melanin synthesis. Biomed. Pharmacother. 2015, 69, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Aissani, N.; Albouchi, F.; Sebai, H. Anticancer Effect in Human Glioblastoma and Antioxidant Activity of Petroselinum crispum L. Methanol Extract. Nutr. Cancer. 2020, 29, 1–9. [Google Scholar] [CrossRef]
- Amador, S.; Nieto-Camacho, A.; Ramírez-Apan, T.; Martínez, M.; Maldonado, E. Cytotoxic, anti-inflammatory, and α-glucosidase inhibitory effects of flavonoids from Lippia graveolens (Mexican oregano). Med. Chem. Res. 2020, 29, 1497–1506. [Google Scholar] [CrossRef]
- Karatsai, O.; Stasyk, O.; Redowicz, M.J. Effects of Arginine and Its Deprivation on Human Glioblastoma Physiology and Signaling. Adv. Exp. Med. Biol. 2020, 1202, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Lyons, S.M.; Alizadeh, E.; Mannheimer, J.; Schuamberg, K.; Caste, J.; Schroder, B.; Turk, P.; Thamm, D.; Prasad, A. Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas. Biol. Open. 2016, 5, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Saraste, A.; Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 2000, 45, 528–537. [Google Scholar] [CrossRef]
- Zhao, X.; Guan, J.L. Focal adhesion kinase and Its signaling pathways in cell migration and angiogenesis. Adv. Drug Deliv. Rev. 2011, 63, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Hochwald, S.N. The role of FAK in tumor metabolism and therapy. Pharmacol. Ther. 2014, 142, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Fayard, E.; Tintignac, L.A.; Baudry, A.; Hemmings, B.A. Protein kinase B/Akt at a glance. J. Cell Sci. 2005, 118, 5675–5678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, M.A.; Rodrigues, F.; Alves, R.C.; Oliveira, M.B.P. Herbal products containing Hibiscus sabdariffa L., Crataegus spp., and Panax spp.: Labeling and safety concerns. Food Res. Int. 2017, 100, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogiatzoglou, A.; Mulligan, A.A.; Luben, R.N.; Lentjes, M.A.; Heiss, C.; Kelm, M.; Merx, M.W.; Spencer, J.P.; Schroeter, H.; Kuhnle, G.G. Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and theaflavins in the European Union. Br. J. Nutr. 2014, 111, 1463–1473. [Google Scholar] [CrossRef] [Green Version]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Zhang, Z.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J. Mass Spectrom. 2003, 38, 1272–1280. [Google Scholar] [CrossRef]
- Chen, S.D.; Lu, C.J.; Zhao, R.Z. Qualitative and Quantitative Analysis of Rhizoma Smilacis glabrae by Ultra High Performance Liquid Chromatography Coupled with LTQ OrbitrapXL Hybrid Mass Spectrometry. Molecules 2014, 19, 10427–10439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbehenn, R.V.; Constabel, C. Tannins in plant–herbivore interactions. Phytochemistry 2011, 72, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Zafrilla, P.; Ferreres, F.; Tomás-Barberán, F.A. Effect of Processing and Storage on the Antioxidant Ellagic Acid Derivatives and Flavonoids of Red Raspberry (Rubus idaeus) Jams. J. Agric. Food Chem. 2001, 49, 3651–3655. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of Gallic and Ellagic Acid Derivatives in Different Plant Parts of Terminalia Arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Commun. 2016, 11, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Liu, P.; Jia, X.; Zhai, M.; Zhou, S.; Wu, B.; Guo, Z. Metabolic profiling revealed the organ-specific distribution differences of tannins and flavonols in pecan. Food Sci. Nutr. 2020, 8, 4987–5006. [Google Scholar] [CrossRef]
- Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao): LC/ESI-MS/MS identification of flavonoids in cocoa. J. Mass Spectrom. 2003, 38, 35–42. [Google Scholar] [CrossRef]
- Sasmita, A.O.; Wong, Y.P.; Ling, A.P.K. Biomarkers and therapeutic advances in glioblastoma multiforme. Asia Pac. J. Clin. Oncol. 2018, 14, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol. 2017, 35, 2402–2409. [Google Scholar] [CrossRef] [PubMed]
- Mraihi, F.; Fadhil, H.; Trabelsi-Ayadi, M.; Chérif, J.K. Chemical characterization by HPLC-DAD-ESI/MS of flavonoids from hawthorn fruits and their inhibition of human tumor growth. J. New Sci. 2015, 3, 840–846. [Google Scholar]
- Ganie, S.A.; Dar, T.A.; Zargar, S.; Bhat, A.H.; Dar, K.B.; Masood, A.; Zargar, M.A. Crataegus songarica methanolic extract accelerates enzymatic status in kidney and heart tissue damage in albino rats and Its in vitro cytotoxic activity. Pharm. Biol. 2016, 54, 1246–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belkhir, M.; Dhaouadi, K.; Rosa, A.; Atzeri, A.; Nieddu, M.; Ignazio, C.; Tuberoso, G.; Rescigno, A.; Amri, M.; Fattouch, S. Protective effects of azarole polyphenolic extracts against oxidative damage using in vitro biomolecular and cellular models. Ind. Crops Prod. 2016, 86, 239–250. [Google Scholar] [CrossRef]
- Bura, F.T.; Firuzja, R.A.; Nemati, F. Cytotoxic effect of the flower and leaf bud extract of Crataegus microphylla C. Koch on Hela cell line. IIOAB J. 2016, 7, 214–218. [Google Scholar]
- Lou, X.; Xu, H.; Hanna, M.; Yuan, L. Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. LWT 2020, 130, 1–10. [Google Scholar] [CrossRef]
- Coimbra, A.T.; Luís, Â.F.S.; Batista, M.T.; Ferreira, S.M.P.; Duarte, A.P.C. Phytochemical Characterization, Bioactivities Evaluation and Synergistic Effect of Arbutus unedo and Crataegus monogyna Extracts with Amphotericin B. Curr. Microbiol. 2020, 77, 2143–2154. [Google Scholar] [CrossRef]
- Issaadi, O.; Fibiani, M.; Picchi, V.; Scalzo, R.L.; Madani, K. Phenolic composition and antioxidant capacity of hawthorn (Crataegus oxyacantha L.) flowers and fruits grown in Algeria. J. Complement Integr. Med. 2020, 17, 1–10. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Cortés-Rodríguez, M.; Milán-Carrillo, J.; Montes-Avila, J.; Robles-Banuelos, B.; Angel, A.S.; Cuevas-Rodriguez, E.O.; Rangel-Lopes, E. Anti-oxidant and anti-proliferative effect of anthocyanin enriched fractions from two Mexican wild blackberries (Rubus spp.) on HepG2 and glioma cell lines. J. Berry Res. 2020, 10, 513–529. [Google Scholar] [CrossRef]
- Provenzano, F.; Sánchez, J.L.; Rao, E.; Santonocito, R.; Ditta, L.A.; Linares, I.B.; Passantino, R.; Campisi, P.; Dia, M.G.; Costa, M.A.; et al. Water Extract of Cryphaea heteromalla (Hedw.) D. Mohr Bryophyte as a Natural Powerful Source of Biologically Active Compounds. Int. J. Mol. Sci. 2019, 20, 5560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooi, K.L.; Muhammad, T.S.T.; Tan, M.L.; Sulaiman, S.F. Cytotoxic, apoptotic and anti-α-glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. J. Ethnopharmacol. 2011, 135, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Murad, L.D.; Soares, N.P.; Brand, C.; Monteiro, M.C.; Teodoro, A.J. Effects of Caffeic and 5-Caffeoylquinic Acids on Cell Viability and Cellular Uptake in Human Colon Adenocarcinoma Cells. Nutr. Cancer. 2015, 67, 532–542. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, C.Y. Comprehensive Study on Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Various Polyphenolics in Scavenging a Free Radical and its Structural Relationship. Crit. Rev. Food Sci. Nutr. 2004, 44, 253–273. [Google Scholar] [CrossRef] [PubMed]
- Soica, C.; Oprean, C.; Borcan, F.; Danciu, C.; Trandafirescu, C.; Coricovac, D.; Crainiceanu, Z.; Dehelean, C.A.; Munteanu, M. The Synergistic Biologic Activity of Oleanolic and Ursolic Acids in Complex with Hydroxypropyl-γ-Cyclodextrin. Molecules 2014, 19, 4924–4940. [Google Scholar] [CrossRef] [Green Version]
- Karatsai, O.; Shliaha, P.; Jensen, O.N.; Stasyk, O.; Rędowicz, M.J. Combinatory Treatment of Canavanine and Arginine Deprivation Efficiently Targets Human Glioblastoma Cells via Pleiotropic Mechanisms. Cells 2020, 9, 2217. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Tentative Assignment | λmax nm | (M − H) m/z | Crataegus | |||
---|---|---|---|---|---|---|---|
MS | MS/MS | B | L | F | |||
1 | Cyanidin 3-O-glucoside | 278, 514 | 449+ | 287 | + | ||
2 | Pelargonidin 3-O-rutinoside | 279, 517 | 579+ | 271, 433 | + | ||
3 | Cyanidin 3-O-arabinoside | 274, 510 | 419+ | 287 | + | ||
4 | Peonidin 3-O-glucoside | 278, 516 | 463+ | 301 | + | ||
Flavan-3-ols | |||||||
5 | Procyanidin trimer (B-type) | 278 | 865 | 289 | + | + | |
6 | Procyanidin dimer (B-type) | 279 | 577 | 289 | + | + | + |
7 | (+)-Catechin | 281 | 289 | - | + | + | + |
8 | (−)-Epicatechin | 274 | 289 | 245 | + | ||
9 | Procyanidin tetramer (B-type) | 278 | 1442 | 720[M − 2H]−2, 577, 289 | + | ||
10 | Cinchonain (A-type) | 279, 377 | 451 | 341, 176 | + | ||
11 | Ellagic acid pentoside | 278 | 433 | 301 | + | ||
12 | Punicalin isomer β | 279 | 781 | 721, 299 | + | + | |
13 | Punicalin isomer α | 278 | 781 | 299 | + | ||
14 | 2-O-galloylpunicalin | 279 | 933 | 721, 301 | + | ||
15 | Eucalbanin A | 279 | 1085 | 739, 301 | + | ||
16 | Quinic acid | 274 | 191 | 173 | + | ||
17 | Coumaroylquinic acid | 309 | 337 | 163, 119 | + | ||
18 | Protocatechuic acid glucoside | 251sh, 288 | 315 | 153 | + | ||
19 | 4-O-caffeoylquinic acid | 299sh, 324 | 353 | 191 | + | ||
20 | Unidentified caffeic derivative | 288sh, 327 | 297 | 179 | + | + | |
21 | 3-O-p-Coumaroylquinic acid | 310 | 337 | 163, 119 | + | + | |
22 | 3-O-caffeoylquinic acid | 299sh, 321 | 353 | 191 | + | + | + |
23 | Unidentified cumaric derivative | 312 | 281 | 163 | + | + | |
24 | 3,4-O-dicaffeoylquinic acid | 299sh, 327 | 515 | 353 | + | + | + |
25 | 1,2,3,4-tetra-O-galloyl-glucoside | 269 | 787 | 421 | + | ||
26 | 1,3,4,6-tetra-O-galloyl-glucoside | 277 | 787 | 421 | + | ||
27 | 2,3,4,6-tetra-O-galloyl-glucoside | 278 | 787 | 421 | + | ||
28 | Apigenin 8-C-glucoside (vitexin) | 268, 329 | 431 | 311, 341, 284 | + | ||
29 | Luteolin 6,8-C-diglucoside | 265, 352 | 609 | 285 | + | ||
30 | Quercetin 3-O-rutinoside (rutin) | 264, 350 | 609 | 301, 187, 111 | + | ||
31 | Naringenin 7-O-glucoside | 272, 353 | 433 | 271 | + | ||
32 | Quercetin 3-O-glucoside | 255, 355 | 463 | 301 | + | + | + |
33 | Quercetin 3-O-galactoside | 255, 352 | 463 | 301 | + | + | |
34 | Quercetin 3-O-acetyl hexoside | 260, 352 | 505 | 301 | + | ||
35 | Myricetin 3-O-rhamnoside | 281 | 463 | 317 | + | ||
36 | Apigenin 6-C-glucoside-8-C-arabinoside | 269, 329 | 563 | 269 | + | ||
37 | Cratenacin | 268, 377 | 619 | 413, 293 | + | + | + |
No. | Crataegus Species | Samples | Location | |
---|---|---|---|---|
1 | C. monogyna | CB1; CL1; CF1 | Błażowa | 49°53′14.55″ N 22°7′16.77″ E |
2 | C. rhipidophylla | CB2; CL2; CF2 | Piątkowa | 49°53′21.09″ N 22°8′29.93″ E |
3 | C. x subsphaericea (hybrid C. rhipidophylla and C. laevigata) | CB3; CL3; CF3 | Błażowa | 49°53′15.24″ N 22°6′46.22″ E |
4 | C. laevigata x rhipidophylla x monogyna | CB4; CL4; CF4 | Błażowa | 49°53′3.77″ N 22°6′28.68″ E |
5 | C. macrocarpa (hybrid C. rhipidophylla and C. monogyna) | CB5; CL5; CF5 | Błażowa | 49°53′4.8″ N 22°6′30.57″ E |
6 | C. laevigata | CB6; CL6; CF6 | Piątkowa | 49°53′1.89″ N 22°8′59.19″ E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. https://doi.org/10.3390/molecules26092656
Żurek N, Karatsai O, Rędowicz MJ, Kapusta IT. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules. 2021; 26(9):2656. https://doi.org/10.3390/molecules26092656
Chicago/Turabian StyleŻurek, Natalia, Olena Karatsai, Maria Jolanta Rędowicz, and Ireneusz Tomasz Kapusta. 2021. "Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells" Molecules 26, no. 9: 2656. https://doi.org/10.3390/molecules26092656
APA StyleŻurek, N., Karatsai, O., Rędowicz, M. J., & Kapusta, I. T. (2021). Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules, 26(9), 2656. https://doi.org/10.3390/molecules26092656