Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals
"> Figure 1
<p>The chemical structures of some prominent natural alkaloids and their semisynthetic derivatives serve as effective agents in combating cancer. Reproduced from an open-access source Dhyani et al., 2022 [<a href="#B151-bioengineering-12-00007" class="html-bibr">151</a>].</p> "> Figure 2
<p>The phototherapy mechanism of action. In photodynamic therapy (PDT), photosensitizers (PS) absorb light, transitioning to an excited state. This leads to two pathways: PDT Type I, where the PS reacts with biomolecules to create reactive oxygen species (ROS), and PDT Type II, where the PS transfers energy directly to oxygen, producing ROS. ROS exhibits high oxidizing power, causing cytotoxic effects primarily near their site of generation due to their short lifespan. PS* refers to the photosensitizer’s excited state. Reproduced from an open access source Pivetta et al., 2021 [<a href="#B212-bioengineering-12-00007" class="html-bibr">212</a>].</p> "> Figure 3
<p>PVNPs as delivery therapeutic and imaging agents in cancer. (<b>A</b>) Tobacco mosaic virus (TMV) for the targeted delivery of cisplatin in Pt-resistant ovarian cancer cells [<a href="#B312-bioengineering-12-00007" class="html-bibr">312</a>] (Reprinted/Adapted with permission from [<a href="#B272-bioengineering-12-00007" class="html-bibr">272</a>] Copyright© 2018, American Chemical Society. (<b>B</b>) The preparative process for potato virus X (PVX)-HisTRAIL by coordinating the bond between a Ni-nitrilotriacetic (NTA) group on the virus; the His-tag at the N-terminus of HisTRAIL is shown with a purple triangle. Multivalent display of HisTRAIL on the elongated PVX particle permits proper binding on death receptors DR4/5 (the trimers with blue color) for activating the caspase-dependent apoptosis in cancerous cells [<a href="#B313-bioengineering-12-00007" class="html-bibr">313</a>] (Reprinted/Adapted with permission from [<a href="#B273-bioengineering-12-00007" class="html-bibr">273</a>] Copyright© 2019, American Chemical Society). (<b>C</b>) miR-181a is an important target for ovarian cancer therapy. qPCR data and cancer cell migration assays demonstrated higher knockdown efficacy when anti-miR-181a oligonucleotides were encapsulated and delivered using the VLPs resulting in reduced cancer cell invasiveness [<a href="#B314-bioengineering-12-00007" class="html-bibr">314</a>] [Adapted from open access source: 274 Citation needed]. (<b>D</b>) Schematic illustration of Gd-Cy5.5-PhMV-mPEG NPs for cancer imaging. In vivo NIR fluorescence images of PC-3 prostate tumors in athymic nude mice after the intravenous injection of Gd-Cy5.5-PhMV-DGEA [<a href="#B315-bioengineering-12-00007" class="html-bibr">315</a>] [Adapted from open access source 275: Citation needed].</p> "> Figure 4
<p>PVNPs in cancer immune and combinational therapy (<b>A</b>) Intratumoral administration of plant-derived Cowpea mosaic virus (CPMV) nanoparticles as an in situ vaccine overcomes the local immunosuppression and stimulates a potent anti-tumor response in several mouse cancer models and canine patients [<a href="#B349-bioengineering-12-00007" class="html-bibr">349</a>] (Adapted from open access source: 309, Citation needed). (<b>B</b>) The PhMV-based anti-HER2 vaccine PhMV-CH401, demonstrated efficacy as an anti-HER2 cancer vaccine. Our studies highlight that VLPs derived from PhMV are a promising platform to develop cancer vaccines [<a href="#B350-bioengineering-12-00007" class="html-bibr">350</a>] (Adapted from open access source: 310, Citation needed). (<b>C</b>) Schematic diagram of preparing CCMV VLPs containing ODN 1826 (CCMV-ODN1826) for cancer therapy [<a href="#B315-bioengineering-12-00007" class="html-bibr">315</a>] (Adapted from open access source: 275, Citation needed). (<b>D</b>) Photothermal immunotherapy of melanoma using TLR-7 agonist laden TMV with polydopamine coat [<a href="#B325-bioengineering-12-00007" class="html-bibr">325</a>]. (Adapted from open access source: 285, Citation needed). Statistical significance was measured by one-way ANOVA with Tukey’s test: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. ns refers to not significant.</p> ">
Abstract
:1. Introduction
2. Phytochemicals in Cancer Prevention and Therapeutics: Recent Developments
3. Major Benefits of Phytochemicals in Comparison with Synthetic Anti-Cancer Drugs
4. Molecular Insights into the Roles of Phytochemicals Against Cancer
5. Potential for Cancer Therapy Based on Plant Characteristics: A Few Examples
6. Extraction and Purification of Phytochemicals
7. Phytochemical-Based Nanoparticles in Cancer Prophylaxis and Therapy
8. Negative Effects of Phytochemicals
9. Expression of Monoclonal Antibodies (MABs) in Plants
10. Recent Developments Involving the Expression of Plant-Based Monoclonal Antibodies Against Cancer
11. Plant-Based VNPs and VLPs Against Cancer
12. PVNPs as Delivery Nanosystem in Cancer
13. PVNPs as Imaging Agents
14. PVNPs as Theranostic Agents
15. PVNPs as Vaccine and Immunotherapy Agents
16. PVNPs-Based Combination Therapies
17. Recent Developments of PVNPs Against Cancer
18. Advantages of the Use of Plants for Production of Anti-Cancer MABs, Plant Viral Nanoparticles and Phytochemicals Against Cancer
19. Disadvantages of Plant-Based Platforms Against Cancer
20. Regulatory Aspects of Plant-Made Biopharmaceuticals
21. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.; Chen, J.; Wang, Y.; Zhou, X.; Zhu, W. Moxibustion for the side effects of surgical therapy and chemotherapy in patients with gastric cancer: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e21087. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L.; Atkins, M.B.; Subedi, P.; Wu, J.; Chambers, J.; Joseph Mattingly, T.; Campbell, J.D.; Allen, J.; Ferris, A.E.; Schilsky, R.L. The promise of Immuno-oncology: Implications for defining the value of cancer treatment. J. Immunother. Cancer 2019, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Tiffon, C. The impact of nutrition and environmental epigenetics on human health and disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Su, Z.-Y.; Kong, A.-N.T. Current perspectives on epigenetic modifications by dietary chemopreventive and herbal phytochemicals. Curr. Pharmacol. Rep. 2015, 1, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Samec, M.; Liskova, A.; Kubatka, P.; Uramova, S.; Zubor, P.; Samuel, S.M.; Zulli, A.; Pec, M.; Bielik, T.; Biringer, K. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J. Cancer Res. Clin. Oncol. 2019, 145, 1665–1679. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.R.; Chang, C.H.; Hsu, C.F.; Tsai, M.J.; Cheng, H.; Leong, M.K.; Sung, P.J.; Chen, J.C.; Weng, C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol. 2020, 177, 1409–1423. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef]
- Kamta, J.; Chaar, M.; Ande, A.; Altomare, D.A.; Ait-Oudhia, S. Advancing cancer therapy with present and emerging immuno-oncology approaches. Front. Oncol. 2017, 7, 64. [Google Scholar] [CrossRef]
- Besufekad, Y.; Malaiyarsa, P. Production of monoclonal antibodies in transgenic plants. J. Adv. Biol. Biotechnol 2017, 12, 1–8. [Google Scholar] [CrossRef]
- Hefferon, K. Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci. OA 2017, 3, FSO217. [Google Scholar] [CrossRef]
- Buijs, P.R.; Verhagen, J.H.; van Eijck, C.H.; van den Hoogen, B.G. Oncolytic viruses: From bench to bedside with a focus on safety. Hum. Vaccines Immunother. 2015, 11, 1573–1584. [Google Scholar] [CrossRef]
- Shukla, S.; Hu, H.; Cai, H.; Chan, S.-K.; Boone, C.E.; Beiss, V.; Chariou, P.L.; Steinmetz, N.F. Plant viruses and bacteriophage-based reagents for diagnosis and therapy. Annu. Rev. Virol. 2020, 7, 559–587. [Google Scholar] [CrossRef] [PubMed]
- Gyanani, V.; Haley, J.C.; Goswami, R. Challenges of current anticancer treatment approaches with focus on liposomal drug delivery systems. Pharmaceuticals 2021, 14, 835. [Google Scholar] [CrossRef]
- Nonnekens, J.; Hoeijmakers, J.H. After surviving cancer, what about late life effects of the cure? EMBO Mol. Med. 2017, 9, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.S.; Burgeiro, A.; Garcia, R.; Moreno, A.J.; Carvalho, R.A.; Oliveira, P.J. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev. 2014, 34, 106–135. [Google Scholar] [CrossRef]
- Wigmore, P.M.; Mustafa, S.; El-Beltagy, M.; Lyons, L.; Umka, J.; Bennett, G. Effects of 5-FU. In Chemo Fog. Advances in Experimental Medicine and Biology; Raffa, R.B., Tallarida, R.J., Eds.; Springer: New York, NY, USA, 2010; Volume 678, pp. 157–164. [Google Scholar]
- Ioele, G.; Chieffallo, M.; Occhiuzzi, M.A.; De Luca, M.; Garofalo, A.; Ragno, G.; Grande, F. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules 2022, 27, 5436. [Google Scholar] [CrossRef] [PubMed]
- Feyzizadeh, M.; Barfar, A.; Nouri, Z.; Sarfraz, M.; Zakeri-Milani, P.; Valizadeh, H. Overcoming multidrug resistance through targeting ABC transporters: Lessons for drug discovery. Expert Opin. Drug Discov. 2022, 17, 1013–1027. [Google Scholar] [CrossRef]
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural products as anticancer agents: Current status and future perspectives. Molecules 2022, 27, 8367. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Choi, J.-H.; Seo, D.; Gavaachimed, L.; Choi, J.; Park, S.; Min, N.Y.; Lee, D.H.; Bang, H.-W.; Ham, S.W. EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2024, 1871, 119659. [Google Scholar] [CrossRef] [PubMed]
- Pukhov, S.A.; Semakov, A.V.; Globa, A.A.; Anikina, L.V.; Afanasyeva, S.V.; Yandulova, E.Y.; Aleksandrova, Y.R.; Neganova, M.E.; Klochkov, S.G. New Conjugates of Daunorubicin with Sesquiterpene Lactones and Their Biological Activity. ChemistrySelect 2021, 6, 8446–8451. [Google Scholar] [CrossRef]
- He, Y.-C.; He, L.; Khoshaba, R.; Lu, F.-G.; Cai, C.; Zhou, F.-L.; Liao, D.-F.; Cao, D. Curcumin nicotinate selectively induces cancer cell apoptosis and cycle arrest through a P53-mediated mechanism. Molecules 2019, 24, 4179. [Google Scholar] [CrossRef] [PubMed]
- Neganova, M.; Aleksandrova, Y.R.; Sharova, E.; Smirnova, E.; Artyushin, O.; Nikolaeva, N.; Semakov, A.; Schagina, I.; Akylbekov, N.; Kurmanbayev, R. Conjugates of 3, 5-Bis (arylidene)-4-piperidone and Sesquiterpene Lactones Have an Antitumor Effect via Resetting the Metabolic Phenotype of Cancer Cells. Molecules 2024, 29, 2765. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Awajan, D.; Hamed, R.A.; Azzam, A.O.; Mahmod, A.I.; Al-Yasari, I.H. Combination anticancer therapies using selected phytochemicals. Molecules 2022, 27, 5452. [Google Scholar] [CrossRef]
- Steward, W.; Brown, K. Cancer chemoprevention: A rapidly evolving field. Br. J. Cancer 2013, 109, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Swetha, M.; Keerthana, C.; Rayginia, T.P.; Anto, R.J. Cancer chemoprevention: A strategic approach using phytochemicals. Front. Pharmacol. 2022, 12, 809308. [Google Scholar]
- Olayiwola, Y.; Gollahon, L. Natural Compounds and Breast Cancer: Chemo-Preventive and Therapeutic Capabilities of Chlorogenic Acid and Cinnamaldehyde. Pharmaceuticals 2024, 17, 361. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Kong, A.-N.T. Dietary cancer-chemopreventive compounds: From signaling and gene expression to pharmacological effects. Trends Pharmacol. Sci. 2005, 26, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, M.-M.; Nagy, P.; Szöllősi, J. Chemoprevention of breast cancer by dietary polyphenols. Molecules 2015, 20, 22578–22620. [Google Scholar] [CrossRef]
- Hussain, S.S.; Kumar, A.P.; Ghosh, R. Food-based natural products for cancer management: Is the whole greater than the sum of the parts? In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 233–246. [Google Scholar]
- Orlikova, B.; Dicato, M.; Diederich, M. 1,000 Ways to die: Natural compounds modulate non-canonical cell death pathways in cancer cells. Phytochem. Rev. 2014, 13, 277–293. [Google Scholar] [CrossRef]
- Israel, B.e.B.; Tilghman, S.L.; Parker-Lemieux, K.; Payton-Stewart, F. Phytochemicals: Current strategies for treating breast cancer. Oncol. Lett. 2018, 15, 7471–7478. [Google Scholar] [CrossRef]
- Tao, J.; Diao, L.; Chen, F.; Shen, A.; Wang, S.; Jin, H.; Cai, D.; Hu, Y. pH-sensitive nanoparticles codelivering docetaxel and dihydroartemisinin effectively treat breast cancer by enhancing reactive oxidative species-mediated mitochondrial apoptosis. Mol. Pharm. 2020, 18, 74–86. [Google Scholar] [CrossRef]
- Weng, J.-R.; Bai, L.-Y.; Chiu, C.-F.; Hu, J.-L.; Chiu, S.-J.; Wu, C.-Y. Cucurbitane Triterpenoid from Momordica charantia Induces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated Receptor γ Activation. Evid.-Based Complement. Altern. Med. 2013, 2013, 935675. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-S.; Li, T.; Wu, G.-S.; Dang, Y.-Y.; Hao, W.-H.; Chen, X.-P.; Lu, J.-J.; Wang, Y.-T. Effects of furanodiene on 95-D lung cancer cells: Apoptosis, autophagy and G1 phase cell cycle arrest. Am. J. Chin. Med. 2014, 42, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, X.; Cao, S.; Sun, Y.; He, X.; Jiang, B.; Yu, Y.; Duan, J.; Qiu, F.; Kang, N. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed. Pharmacother. 2020, 128, 110245. [Google Scholar] [CrossRef] [PubMed]
- Davoodvandi, A.; Sadeghi, S.; Alavi, S.M.A.; Alavi, S.S.; Jafari, A.; Khan, H.; Aschner, M.; Mirzaei, H.; Sharifi, M.; Asemi, Z. The therapeutic effects of berberine for gastrointestinal cancers. Asia-Pac. J. Clin. Oncol. 2024, 20, 152–167. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, H.; Kimura, R.; Onuma, S.; Ito, A.; Yu, Y.; Yoshino, Y.; Matsunaga, T.; Endo, S.; Ikari, A. Elevation of anticancer drug toxicity by caffeine in spheroid model of human lung adenocarcinoma A549 cells mediated by reduction in claudin-2 and Nrf2 expression. Int. J. Mol. Sci. 2022, 23, 15447. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Wang, W.; Chen, Y.; Ma, F.; Wei, X.; Bi, Y. Deguelin induces PUMA-mediated apoptosis and promotes sensitivity of lung cancer cells (LCCs) to doxorubicin (Dox). Mol. Cell. Biochem. 2018, 442, 177–186. [Google Scholar] [CrossRef]
- Singh, P.; Sahoo, S.K. Piperlongumine loaded PLGA nanoparticles inhibit cancer stem-like cells through modulation of STAT3 in mammosphere model of triple negative breast cancer. Int. J. Pharm. 2022, 616, 121526. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Mohapatra, P.; Kumar, S.; Behera, S.; Dixit, A.; Sahoo, S.K. Nimbolide-encapsulated PLGA nanoparticles induces mesenchymal-to-epithelial transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells. Toxicol. Vitr. 2022, 79, 105293. [Google Scholar] [CrossRef]
- Wang, F.; Mao, Y.; You, Q.; Hua, D.; Cai, D. Piperlongumine induces apoptosis and autophagy in human lung cancer cells through inhibition of PI3K/Akt/mTOR pathway. Int. J. Immunopathol. Pharmacol. 2015, 28, 362–373. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Biswal, B.K. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol. Res. 2020, 156, 104772. [Google Scholar] [CrossRef] [PubMed]
- Rawat, L.; Hegde, H.; Hoti, S.L.; Nayak, V. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed. Pharmacother. 2020, 128, 110243. [Google Scholar] [CrossRef] [PubMed]
- Kung, F.-P.; Lim, Y.-P.; Chao, W.-Y.; Zhang, Y.-S.; Yu, H.-I.; Tai, T.-S.; Lu, C.-H.; Chen, S.-H.; Li, Y.-Z.; Zhao, P.-W. Piperlongumine, a potent anticancer phytotherapeutic, induces cell cycle arrest and apoptosis in vitro and in vivo through the ROS/Akt pathway in human thyroid cancer cells. Cancers 2021, 13, 4266. [Google Scholar] [CrossRef]
- Pan, X.; Chen, G.; Hu, W. Piperlongumine increases the sensitivity of bladder cancer to cisplatin by mitochondrial ROS. J. Clin. Lab. Anal. 2022, 36, e24452. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, S.; Xu, W.; Zhang, Y.; Yang, R.; Ma, K.; Zhang, J.; Xu, J. Piperlongumine inhibits thioredoxin reductase 1 by targeting selenocysteine residues and sensitizes cancer cells to erastin. Antioxidants 2022, 11, 710. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Tian, Z.; Yang, M.; Li, W. Conformation and energy investigation of microtubule longitudinal dynamic instability induced by natural products. Chem. Biol. Drug Des. 2023, 102, 444–456. [Google Scholar] [CrossRef]
- Risinger, A.L.; Du, L. Targeting and extending the eukaryotic druggable genome with natural products: Cytoskeletal targets of natural products. Nat. Prod. Rep. 2020, 37, 634–652. [Google Scholar] [CrossRef]
- Au, T.H.; Nguyen, B.N.; Nguyen, P.H.; Pethe, S.; Vo-Thanh, G.; Vu Thi, T.H. Vinblastine loaded on graphene quantum dots and its anticancer applications. J. Microencapsul. 2022, 39, 239–251. [Google Scholar] [CrossRef]
- Zhang, Y.; An, J.; Shao, Y.; Yu, N.; Yue, S.; Sun, H.; Zhang, J.; Gu, W.; Xia, Y.; Zhang, J.; et al. CD38-Directed Vincristine Nanotherapy for Acute Lymphoblastic Leukemia. Biomacromolecules 2022, 23, 377–387. [Google Scholar] [CrossRef]
- Yaffe, P.B.; Power Coombs, M.R.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol. Carcinog. 2015, 54, 1070–1085. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, F.; Jia, G.; Liu, R. Aged black garlic extract inhibits the growth of estrogen receptor-positive breast cancer cells by downregulating MCL-1 expression through the ROS-JNK pathway. PLoS ONE 2023, 18, e0286454. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Park, S.; Chung, Y.H.; Kim, G.-Y.; Choi, Y.W.; Kim, B.W.; Choi, Y.H. Induction of apoptosis by a hexane extract of aged black garlic in the human leukemic U937 cells. Nutr. Res. Pract. 2014, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Yang, G.; Liu, H.; Liu, X.; Lin, S.; Sun, D.; Wang, Y. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway. Biomed. Rep. 2014, 2, 250–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.Y.; Zhang, Z.H.; Bian, H.L.; Lin, G. Garlic-derived compound S-allylmercaptocysteine inhibits cell growth and induces apoptosis via the JNK and p38 pathways in human colorectal carcinoma cells. Oncol. Lett. 2014, 8, 2591–2596. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Bagul, M.; Kakumanu, S.; Wilson, T.A. Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J. Med. Food 2015, 18, 731–737. [Google Scholar] [CrossRef]
- Toledano Medina, M.Á.; Merinas-Amo, T.; Fernández-Bedmar, Z.; Font, R.; del Río-Celestino, M.; Pérez-Aparicio, J.; Moreno-Ortega, A.; Alonso-Moraga, Á.; Moreno-Rojas, R. Physicochemical characterization and biological activities of black and white garlic: In vivo and in vitro assays. Foods 2019, 8, 220. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, F.; Wang, Q.-W.; Wang, J.; Yang, K.; Hu, R.-R.; Liu, H.-C.; Wang, H.-Y.; Wang, Y.-S. Aged black garlic extract induces inhibition of gastric cancer cell growth in vitro and in vivo. Mol. Med. Rep. 2012, 5, 66–72. [Google Scholar] [CrossRef]
- Castro, N.P.; Rangel, M.C.; Merchant, A.S.; MacKinnon, G.; Cuttitta, F.; Salomon, D.S.; Kim, Y.S. Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. Cancer Prev. Res. 2019, 12, 147–158. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.-F.; Newman, B.; Yu, Y.; Clouthier, S.G.; Schwartz, S.J.; Wicha, M.S. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res. 2010, 16, 2580–2590. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Yoo, D.R.; Jang, Y.H.; Jang, S.Y.; Nam, M.J. Sulforaphane induces apoptosis in human hepatic cancer cells through inhibition of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase4, mediated by hypoxia inducible factor-1-dependent pathway. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2011, 1814, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Keenan, J.I.; Salm, N.; Wallace, A.J.; Hampton, M.B. Using food to reduce H. pylori-associated inflammation. Phytother. Res. 2012, 26, 1620–1625. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Huang, L.; Lei, P.; Liu, X.; Li, B.; Shan, Y. Sulforaphane normalizes intestinal flora and enhances gut barrier in mice with BBN-induced bladder cancer. Mol. Nutr. Food Res. 2018, 62, 1800427. [Google Scholar] [CrossRef]
- Singh, K.B.; Hahm, E.-R.; Alumkal, J.J.; Foley, L.M.; Hitchens, T.K.; Shiva, S.S.; Parikh, R.A.; Jacobs, B.L.; Singh, S.V. Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. Carcinogenesis 2019, 40, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhou, Y.; Li, J.; Zheng, Z.; Hu, Y.; Li, L.; Wu, W. Sulforaphane downregulated fatty acid synthase and inhibited microtubule-mediated mitophagy leading to apoptosis. Cell Death Dis. 2021, 12, 917. [Google Scholar] [CrossRef]
- Li, S.-H.; Fu, J.; Watkins, D.N.; Srivastava, R.K.; Shankar, S. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog–GLI pathway. Mol. Cell. Biochem. 2013, 373, 217–227. [Google Scholar] [CrossRef]
- Kumar, R.; de Mooij, T.; Peterson, T.; Johnson, A.; Daniels, D.J.; Parney, I.F. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane. PLoS ONE 2017, 12, e0179012. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Gong Essel, K.; Mangiaracina Benbrook, D.; Garland, J.; Daniel Zhao, Y.; Chandra, V. Preclinical efficacy and involvement of AKT, mTOR, and ERK kinases in the mechanism of sulforaphane against endometrial cancer. Cancers 2020, 12, 1273. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wang, W.; Zhou, Z.; Sun, C. Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention. PLoS ONE 2014, 9, e114764. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Xu, D.-R.; Zheng, F.-M.; Long, Z.-J.; Huang, S.-S.; Wu, X.; Zhou, W.-H.; Huang, R.-W.; Liu, Q. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells. J. Transl. Med. 2011, 9, 71. [Google Scholar] [CrossRef]
- Cao, A.; Li, Q.; Yin, P.; Dong, Y.; Shi, H.; Wang, L.; Ji, G.; Xie, J.; Wu, D. Curcumin induces apoptosis in human gastric carcinoma AGS cells and colon carcinoma HT-29 cells through mitochondrial dysfunction and endoplasmic reticulum stress. Apoptosis 2013, 18, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Wu, J.; Cao, W.; Zhang, J.; Liu, W.; Jiang, X.; Zhang, X. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J. Neuro-Oncol. 2007, 85, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Hosseindoost, S.; Mahdian, S.M.A.; Vousooghi, N.; Rajabi, A.; Jafari, A.; Ostadian, A.; Hamblin, M.R.; Hadjighassem, M.; Mirzaei, H. Exosomes released from U87 glioma cells treated with curcumin and/or temozolomide produce apoptosis in naive U87 cells. Pathol.-Res. Pract. 2023, 245, 154427. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Manna, A.; Saha, S.; Khan, P.; Bhattacharjee, P.; Guha, D.; Adhikary, A.; Mukhjerjee, S. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res. Ther. 2014, 5, 116. [Google Scholar] [CrossRef]
- Borges, G.A.; Elias, S.T.; Amorim, B.; de Lima, C.L.; Coletta, R.D.; Castilho, R.M.; Squarize, C.H.; Guerra, E.N.S. Curcumin downregulates the PI3K–AKT–mTOR pathway and inhibits growth and progression in head and neck cancer cells. Phytother. Res. 2020, 34, 3311–3324. [Google Scholar] [CrossRef] [PubMed]
- Shamsnia, H.S.; Roustaei, M.; Ahmadvand, D.; Butler, A.E.; Amirlou, D.; Soltani, S.; Momtaz, S.; Jamialahmadi, T.; Abdolghaffari, A.H.; Sahebkar, A. Impact of curcumin on p38 MAPK: Therapeutic implications. Inflammopharmacology 2023, 31, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 2020, 25, 3146. [Google Scholar] [CrossRef]
- Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M. Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid. Molecules 2020, 25, 4553. [Google Scholar] [CrossRef]
- Gu, J.-W.; Makey, K.L.; Tucker, K.B.; Chinchar, E.; Mao, X.; Pei, I.; Thomas, E.Y.; Miele, L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc. Cell 2013, 5, 9. [Google Scholar] [CrossRef]
- Sen, T.; Chatterjee, A. Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: Involvement of integrin receptor α5β1 in the process. Eur. J. Nutr. 2011, 50, 465–478. [Google Scholar] [CrossRef]
- Wei, R.; Cortez Penso, N.E.; Hackman, R.M.; Wang, Y.; Mackenzie, G.G. Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial–mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients 2019, 11, 1856. [Google Scholar] [CrossRef]
- Van Aller, G.S.; Carson, J.D.; Tang, W.; Peng, H.; Zhao, L.; Copeland, R.A.; Tummino, P.J.; Luo, L. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem. Biophys. Res. Commun. 2011, 406, 194–199. [Google Scholar] [CrossRef]
- Ko, E.-B.; Jang, Y.-G.; Kim, C.-W.; Go, R.-E.; Lee, H.K.; Choi, K.-C. Gallic acid hindered lung cancer progression by inducing cell cycle arrest and apoptosis in a549 lung cancer cells via PI3K/Akt pathway. Biomol. Ther. 2022, 30, 151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ren, X.; Shi, M.; Jiang, Z.; Wang, H.; Su, Q.; Liu, Q.; Li, G.; Jiang, G. Downregulation of STAT3 and activation of MAPK are involved in the induction of apoptosis by HNK in glioblastoma cell line U87. Oncol. Rep. 2014, 32, 2038–2046. [Google Scholar] [CrossRef]
- Moral, R.; Escrich, E. Influence of olive oil and its components on breast cancer: Molecular mechanisms. Molecules 2022, 27, 477. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pu, R.; Zhou, L.; Wang, D.; Li, X. Effects of a Chlorogenic Acid-Containing Herbal Medicine (LASNB) on Colon Cancer. Evid.-Based Complement. Altern. Med. 2021, 2021, 9923467. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W. Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol. Sin. 2022, 43, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Ma, J.; Xu, Y.; Wang, Y.; Hu, M.; Ma, F.; Qin, Z.; Xue, R.; Tao, N. Cinnamaldehyde treatment of prostate cancer-associated fibroblasts prevents their inhibitory effect on T cells through toll-like receptor 4. Drug Des. Dev. Ther. 2020, 14, 3363–3372. [Google Scholar] [CrossRef]
- Kueck, A.; Opipari Jr, A.W.; Griffith, K.A.; Tan, L.; Choi, M.; Huang, J.; Wahl, H.; Liu, J.R. Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol. Oncol. 2007, 107, 450–457. [Google Scholar] [CrossRef]
- Fu, Y.; Chang, H.; Peng, X.; Bai, Q.; Yi, L.; Zhou, Y.; Zhu, J.; Mi, M. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS ONE 2014, 9, e102535. [Google Scholar] [CrossRef] [PubMed]
- Seong, Y.-A.; Shin, P.-G.; Yoon, J.-S.; Yadunandam, A.K.; Kim, G.-D. Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma A549 cells by anacardic acid. Cell Biochem. Biophys. 2014, 68, 369–377. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Wang, M.; Lin, X.; Zhang, Y.; Laurent, I.; Zhong, Y.; Li, J. Ampelopsin inhibits breast cancer cell growth through mitochondrial apoptosis pathway. Biol. Pharm. Bull. 2021, 44, 1738–1745. [Google Scholar] [CrossRef]
- Lu, H.-F.; Chie, Y.-J.; Yang, M.-S.; Lee, C.-S.; Fu, J.-J.; Yang, J.-S.; Tan, T.-W.; Wu, S.-H.; Ma, Y.-S.; Ip, S.-W. Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax-and Bcl-2-triggered mitochondrial pathway. Int. J. Oncol. 2010, 36, 1477–1484. [Google Scholar] [PubMed]
- Tsai, M.-H.; Liu, J.-F.; Chiang, Y.-C.; Hu, S.C.-S.; Hsu, L.-F.; Lin, Y.-C.; Lin, Z.-C.; Lee, H.-C.; Chen, M.-C.; Huang, C.-L. Correction: Artocarpin, an isoprenyl flavonoid, induces p53-dependent or independent apoptosis via ROS-mediated MAPKs and Akt activation in non-small cell lung cancer cells. Oncotarget 2019, 10, 3430. [Google Scholar] [CrossRef]
- Park, S.-A.; Seo, Y.J.; Kim, L.K.; Kim, H.J.; Yoon, K.D.; Heo, T.-H. Butein Inhibits Cell Growth by Blocking the IL-6/IL-6Rα Interaction in Human Ovarian Cancer and by Regulation of the IL-6/STAT3/FoxO3a Pathway. Int. J. Mol. Sci. 2023, 24, 6038. [Google Scholar] [CrossRef]
- Samarghandian, S.; Azimi Nezhad, M.; Mohammadi, G. Role of caspases, Bax and Bcl-2 in chrysin-induced apoptosis in the A549 human lung adenocarcinoma epithelial cells. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2014, 14, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pan, Y.; Zhao, Y.; Ren, M.; Li, Y.; Lu, G.; Wu, K.; He, S. Delphinidin modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells. Environ. Toxicol. 2021, 36, 1557–1566. [Google Scholar] [CrossRef]
- Gossner, G.; Choi, M.; Tan, L.; Fogoros, S.; Griffith, K.A.; Kuenker, M.; Liu, J.R. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol. Oncol. 2007, 105, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, S.V.; Bai, W.; Cheng, J.Q.; Coppola, D.; Kruk, P.A. Oncogenic pathways implicated in ovarian epithelial cancer. Hematol./Oncol. Clin. 2003, 17, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Joshi, H.; Gupta, D.S.; Abjani, N.K.; Kaur, G.; Mohan, C.D.; Kaur, J.; Aggarwal, D.; Rani, I.; Ramniwas, S.; Abdulabbas, H.S. Genistein: A promising modulator of apoptosis and survival signaling in cancer. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 2893–2910. [Google Scholar] [CrossRef] [PubMed]
- Obinu, A.; Burrai, G.P.; Cavalli, R.; Galleri, G.; Migheli, R.; Antuofermo, E.; Rassu, G.; Gavini, E.; Giunchedi, P. Transmucosal solid lipid nanoparticles to improve genistein absorption via intestinal lymphatic transport. Pharmaceutics 2021, 13, 267. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Kim, I.-S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yu, X.; Chen, X.; Zhong, H.; Liang, C.; Xu, X.; Xu, W.; Cheng, Y.; Wang, W.; Yu, L. Individual factors define the overall effects of dietary genistein exposure on breast cancer patients. Nutr. Res. 2019, 67, 1–16. [Google Scholar] [CrossRef]
- Ma, M.; Luan, X.; Zheng, H.; Wang, X.; Wang, S.; Shen, T.; Ren, D. A mulberry diels-alder-type adduct, Kuwanon M, triggers apoptosis and paraptosis of lung cancer cells through inducing endoplasmic reticulum stress. Int. J. Mol. Sci. 2023, 24, 1015. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.-h.; Yuan, H.-h.; Xu, M.-t.; Hong, Y.-t.; Gao, C.-c.; Wu, Z.-p.; Han, H.-t.; Sun, X.; Gao, R.-l.; Yang, S.-f. A novel Diels–Alder adduct of mulberry leaves exerts anticancer effect through autophagy-mediated cell death. Acta Pharmacol. Sin. 2021, 42, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR-and hypoxia-induced factor 1α-mediated signaling. Autophagy 2011, 7, 966–978. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Sulaiman, G.M.; Anwar, S.S.; Tawfeeq, A.T.; Khan, R.A.; Mohammed, S.A.; Al-Omar, M.S.; Alsharidah, M.; Al Rugaie, O.; Al-Amiery, A.A. Quercetin against MCF7 and CAL51 breast cancer cell lines: Apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine 2021, 16, 1937–1961. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Urakawa, D.; He, Z.; Akagi, I.; Hou, D.-X.; Sakao, K. Apoptosis Induction in HepG2 and HCT116 Cells by a Novel Quercetin-Zinc (II) Complex: Enhanced Absorption of Quercetin and Zinc (II). Int. J. Mol. Sci. 2023, 24, 17457. [Google Scholar] [CrossRef]
- Tarahovsky, Y.S.; Kim, Y.A.; Yagolnik, E.A.; Muzafarov, E.N. Flavonoid–membrane interactions: Involvement of flavonoid–metal complexes in raft signaling. Biochim. Biophys. Acta (BBA)-Biomembr. 2014, 1838, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yang, L.; Li, S.; Ye, D.; Yang, L.; Liu, Q.; Zhao, Z.; Cai, Q.; Tan, J.; Li, X. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 412. [Google Scholar] [CrossRef] [PubMed]
- Binienda, A.; Ziolkowska, S.; Pluciennik, E. The anticancer properties of silibinin: Its molecular mechanism and therapeutic effect in breast cancer. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2020, 20, 1787–1796. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, F.; Zhang, Y.S.; Thakur, K.; Zhang, J.G.; Liu, Y.; Kan, H.; Wei, Z.J. Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells. J. Agric. Food Chem. 2019, 67, 7378–7389. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Bao, J.; Lin, W.; Gao, H.; Zhao, W.; Zhang, Q.; Leung, C.-H.; Ma, D.-L.; Lu, J.; Chen, X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells. Free Radic. Biol. Med. 2016, 92, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Ock, C.W.; Kim, G.D. Dioscin decreases breast cancer stem-like cell proliferation via cell cycle arrest by modulating p38 mitogen-activated protein kinase and AKT/mTOR signaling pathways. J. Cancer Prev. 2021, 26, 183. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Abuzar, S.M.; Ilyas, K.; Qadees, I.; Bilal, M.; Yousaf, R.; Kassim, R.M.T.; Rasul, A.; Saleem, U.; Alves, M.S. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chem.-Biol. Interact. 2023, 382, 110634. [Google Scholar] [CrossRef]
- Aggarwal, V.; Tuli, H.S.; Kaur, J.; Aggarwal, D.; Parashar, G.; Chaturvedi Parashar, N.; Kulkarni, S.; Kaur, G.; Sak, K.; Kumar, M. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicines 2020, 8, 103. [Google Scholar] [CrossRef]
- Kamiya, T.; Nishihara, H.; Hara, H.; Adachi, T. Ethanol extract of Brazilian red propolis induces apoptosis in human breast cancer MCF-7 cells through endoplasmic reticulum stress. J. Agric. Food Chem. 2012, 60, 11065–11070. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.-C.; Hsieh, Y.-S.; Yu, C.-C.; Lai, Y.-Y.; Chen, P.-N. Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS ONE 2014, 9, e101579. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Ahn, K.S.; Hsu, A.; Woo, C.C.; Yuan, Y.; Tan, K.H.B.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Koh, A.P.F. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front. Pharmacol. 2018, 9, 1294. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zhou, P.; Peng, Y.-B.; Xu, X.; Ma, J.; Liu, Q.; Zhang, L.; Wen, X.-D.; Qi, L.-W.; Gao, N. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PLoS ONE 2012, 7, e39664. [Google Scholar] [CrossRef]
- Jiang, Q.; Rao, X.; Kim, C.Y.; Freiser, H.; Zhang, Q.; Jiang, Z.; Li, G. Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int. J. Cancer 2012, 130, 685–693. [Google Scholar] [CrossRef]
- Yang, K.M.; Kim, B.M.; Park, J.-B. ω-Hydroxyundec-9-enoic acid induces apoptosis through ROS-mediated endoplasmic reticulum stress in non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 2014, 448, 267–273. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother. 2004, 58, 100–110. [Google Scholar] [CrossRef]
- Moran, N.E.; Mohn, E.S.; Hason, N.; Erdman, J.W., Jr.; Johnson, E.J. Intrinsic and extrinsic factors impacting absorption, metabolism, and health effects of dietary carotenoids. Adv. Nutr. 2018, 9, 465–492. [Google Scholar] [CrossRef] [PubMed]
- Rudzińska, A.; Juchaniuk, P.; Oberda, J.; Wiśniewska, J.; Wojdan, W.; Szklener, K.; Mańdziuk, S. Phytochemicals in cancer treatment and cancer prevention—Review on epidemiological data and clinical trials. Nutrients 2023, 15, 1896. [Google Scholar] [CrossRef]
- Yang, D.-J.; Lin, J.-T.; Chen, Y.-C.; Liu, S.-C.; Lu, F.-J.; Chang, T.-J.; Wang, M.; Lin, H.-W.; Chang, Y.-Y. Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264. 7 cells via NF-κB and JNK inactivation. J. Funct. Foods 2013, 5, 607–615. [Google Scholar] [CrossRef]
- Amin, A.; Hamza, A.A.; Bajbouj, K.; Ashraf, S.S.; Daoud, S. Saffron: A potential candidate for a novel anticancer drug against hepatocellular carcinoma. Hepatology 2011, 54, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Zhang, X.; Wang, L.; Li, X.; Xie, T.; Zhao, J.; Yan, J.; Wang, L.; Ye, H.; Jiao, S. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription. Theranostics 2020, 10, 6839. [Google Scholar] [CrossRef]
- Fu, M.; Tang, W.; Liu, J.-J.; Gong, X.-Q.; Kong, L.; Yao, X.-M.; Jing, M.; Cai, F.-Y.; Li, X.-T.; Ju, R.-J. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J. Drug Target. 2020, 28, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhao, L.; Yoo, S.-A.; Lin, Z.; Zhang, Y.; Yang, W.; Piao, J. Emodin induces ferroptosis in colorectal cancer through NCOA4-mediated ferritinophagy and NF-κb pathway inactivation. Apoptosis 2024, 29, 1810–1823. [Google Scholar] [CrossRef] [PubMed]
- Balogun, F.; Ashafa, T. Aqueous root extracts of Dicoma anomala (Sond.) extenuates postprandial hyperglycaemia in vitro and its modulation on the activities of carbohydrate-metabolizing enzymes in streptozotocin-induced diabetic Wistar rats. S. Afr. J. Bot. 2017, 112, 102–111. [Google Scholar] [CrossRef]
- Greenwell, M.; Rahman, P.K. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112. [Google Scholar]
- Maroyi, A. Dicoma anomala sond.: A review of its botany, ethnomedicine, phytochemistry and pharmacology. Asian J. Pharm. Clin. Res. 2018, 11, 70. [Google Scholar] [CrossRef]
- Shafiq, A.; Moore, J.; Suleman, A.; Faiz, S.; Farooq, O.; Arshad, A.; Tehseen, M.; Zafar, A.; Ali, S.H.; Din, N.U.; et al. Elevated Soluble Galectin-3 as a Marker of Chemotherapy Efficacy in Breast Cancer Patients: A Prospective Study. Int. J. Breast Cancer 2020, 2020, 4824813. [Google Scholar] [CrossRef]
- Chota, A.; George, B.P.; Abrahamse, H. Potential treatment of breast and lung Cancer using Dicoma anomala, an African medicinal plant. Molecules 2020, 25, 4435. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.C.; Min, J.S.; Kim, M.J.; Kim, J.A.; Kor, M.H.; Yoo, H.S.; Ahn, J.K. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells. J. Ethnopharmacol. 2011, 136, 197–203. [Google Scholar] [CrossRef]
- Angelova, S.; Gospodinova, Z.; Krasteva, M.; Antov, G.; Lozanov, V. Antitumor activity of Bulgarian herb Tribulus terrestris L. on human breast cancer cells. J. BioScience Biotechnol. 2013, 2, 25–32. [Google Scholar]
- Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Shu, C.W.; Weng, J.R.; Chang, H.W.; Liu, P.F.; Chen, J.J.; Peng, C.C.; Huang, J.W.; Lin, W.Y.; Yen, C.Y. Tribulus terrestris fruit extract inhibits autophagic flux to diminish cell proliferation and metastatic characteristics of oral cancer cells. Environ. Toxicol. 2021, 36, 1173–1180. [Google Scholar] [CrossRef]
- Yang, Z.; Garcia, A.; Xu, S.; Powell, D.R.; Vertino, P.M.; Singh, S.; Marcus, A.I. Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition. PLoS ONE 2013, 8, e75069. [Google Scholar] [CrossRef]
- Shikder, M.; Al Hasib, T.; Kabir, M. Anticancer Mechanism of Withania Somnifera and Its Bioactive Compounds: A Short Review Along with Computational Molecular Docking Study. 2020. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/60c75069bb8c1a7c083dbafb (accessed on 20 October 2024).
- Senthilnathan, P.; Padmavathi, R.; Magesh, V.; Sakthisekaran, D. Chemotherapeutic efficacy of paclitaxel in combination with Withania somnifera on benzo(a)pyrene-induced experimental lung cancer. Cancer Sci. 2006, 97, 658–664. [Google Scholar] [CrossRef]
- Krishna B, V.; Glory, T.; Florida, T.; Aneesh, N.; Rekha, L.; Thangaraj, P. Gene expression analysis of EGFR and PI3K genes in A549 lung cancer cell line treated with Withania somnifera root extract. Res. J. Biotechnol. 2020, 15, 71–75. [Google Scholar]
- Zúñiga, R.; Concha, G.; Cayo, A.; Cikutović-Molina, R.; Arevalo, B.; González, W.; Catalán, M.A.; Zúñiga, L. Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomed. Pharmacother. = Biomed. Pharmacother. 2020, 129, 110383. [Google Scholar] [CrossRef]
- Sari, A.N.; Bhargava, P.; Dhanjal, J.K.; Putri, J.F.; Radhakrishnan, N.; Shefrin, S.; Ishida, Y.; Terao, K.; Sundar, D.; Kaul, S.C.; et al. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Cancers 2020, 12, 1160. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Chang, F.R.; Huang, Z.Y.; Chen, J.H.; Wu, Y.C.; Wu, C.C. Tubocapsenolide A, a novel withanolide, inhibits proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat shock proteins. J. Biol. Chem. 2008, 283, 17184–17193. [Google Scholar] [CrossRef]
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022, 22, 206. [Google Scholar] [CrossRef]
- Patil, S.S.; Bhasarkar, S.; Rathod, V.K. Extraction of curcuminoids from Curcuma longa: Comparative study between batch extraction and novel three phase partitioning. Prep. Biochem. Biotechnol. 2019, 49, 407–418. [Google Scholar] [CrossRef]
- Gaikar, V.G.; Dandekar, D.V. Process for Extraction of Curcuminoids from Curcuma Species. U.S. Patent 6,224,877, 1 May 2001. [Google Scholar]
- Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef]
- Sahne, F.; Mohammadi, M.; Najafpour, G.D.; Moghadamnia, A.A. Extraction of bioactive compound curcumin from turmeric (Curcuma longa L.) via different routes: A comparative study. Pak. J. Biotechnol. 2016, 13, 173–180. [Google Scholar]
- Kwon, H.-L.; Chung, M.-S. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L. Food Chem. 2015, 185, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.K.; Sharma, K.; Dutta, A.; Kundu, A.; Awasthi, A.; Goon, A.; Banerjee, K.; Saha, S. Purity evaluation of curcuminoids in the turmeric extract obtained by accelerated solvent extraction. J. AOAC Int. 2017, 100, 586–591. [Google Scholar] [CrossRef]
- Haiyan, X.; Chunshan, Z.; Qifu, L.; Longsheng, C. Studies on separation and purification of piceid from Polygonum cuspidatum by macroporous adsorption resin. Zhongguo yao xue za zhi (Zhongguo yao xue hui: 1989) 2005, 40, 96–98. [Google Scholar]
- Nepote, V.; Grosso, N.R.; Guzman, C.A. Optimization of extraction of phenolic antioxidants from peanut skins. J. Sci. Food Agric. 2005, 85, 33–38. [Google Scholar] [CrossRef]
- Lin, J.-A.; Kuo, C.-H.; Chen, B.-Y.; Li, Y.; Liu, Y.-C.; Chen, J.-H.; Shieh, C.-J. A novel enzyme-assisted ultrasonic approach for highly efficient extraction of resveratrol from Polygonum cuspidatum. Ultrason. Sonochem. 2016, 32, 258–264. [Google Scholar] [CrossRef]
- Syahdi, R.R.; Nadyana, R.; Putri, R.H.; Santi, R.; Mun’im, A. Application of green extraction methods to resveratrol extraction from peanut (Arachis Hypogaea L.) skin. Int. J. Appl. Pharm 2020, 12, 38–42. [Google Scholar] [CrossRef]
- Averilla, J.N.; Oh, J.; Wu, Z.; Liu, K.H.; Jang, C.H.; Kim, H.J.; Kim, J.S.; Kim, J.S. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments. J. Sci. Food Agric. 2019, 99, 4043–4053. [Google Scholar] [CrossRef] [PubMed]
- Háková, M.; Havlíková, L.C.; Švec, F.; Solich, P.; Erben, J.; Chvojka, J.; Šatínský, D. Novel nanofibrous sorbents for the extraction and determination of resveratrol in wine. Talanta 2020, 206, 120181. [Google Scholar] [CrossRef]
- Zhao, Q.; Cheng, D.-Q.; Tao, M.; Ning, W.-J.; Yang, Y.-J.; Meng, K.-Y.; Mei, Y.; Feng, Y.-Q. Rapid magnetic solid-phase extraction based on alendronate sodium grafted mesoporous magnetic nanoparticle for the determination of trans-resveratrol in peanut oils. Food Chem. 2019, 279, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Jun, X.; Deji, S.; Ye, L.; Rui, Z. Comparison of in vitro antioxidant activities and bioactive components of green tea extracts by different extraction methods. Int. J. Pharm. 2011, 408, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.-S.; Lee, N.; Kim, Y.H.; Lee, C.-H.; Hong, S.P.; Jeon, Y.-W.; Kim, Y.-E. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules 2013, 18, 13530–13545. [Google Scholar] [CrossRef]
- Li, D.-C.; Jiang, J.-G. Optimization of the microwave-assisted extraction conditions of tea polyphenols from green tea. Int. J. Food Sci. Nutr. 2010, 61, 837–845. [Google Scholar] [CrossRef]
- Cui, L.; Liu, Y.; Liu, T.; Yuan, Y.; Yue, T.; Cai, R.; Wang, Z. Extraction of Epigallocatechin gallate and Epicatechin gallate from tea leaves using β-cyclodextrin. J. Food Sci. 2017, 82, 394–400. [Google Scholar] [CrossRef]
- Ferdosian, F.; Ebadi, M.; Zafar-Mehrabian, R.; Golsefidi, M.A.; Moradi, A.V. Extraction of Epigallocatechin Gallate from Green Tea and its Chracterization using Polymeric electrode PAN/PPY enriched with nano particles of TiO2 and rGO. Int. J. Electrochem. Sci. 2019, 14, 6347–6365. [Google Scholar] [CrossRef]
- del Valle, J.M.; Glatzel, V.; Martínez, J.L. Supercritical CO2 extraction of allicin from garlic flakes: Screening and kinetic studies. Food Res. Int. 2012, 45, 216–224. [Google Scholar] [CrossRef]
- Farías-Campomanes, A.M.; Horita, C.N.; Pollonio, M.A.; Meireles, M.A.A. Allicin-rich extract obtained from garlic by pressurized liquid extraction: Quantitative determination of allicin in garlic samples. Food Public Health 2014, 4, 272–278. [Google Scholar] [CrossRef]
- Rybak, M.E.; Calvey, E.M.; Harnly, J.M. Quantitative determination of allicin in garlic: Supercritical fluid extraction and standard addition of alliin. J. Agric. Food Chem. 2004, 52, 682–687. [Google Scholar] [CrossRef]
- Mathialagan, R.; Mansor, N.; Shamsuddin, M.R.; Uemura, Y.; Majeed, Z. Optimisation of ultrasonic-assisted extraction (UAE) of allicin from garlic (Allium sativum L.). Chem. Eng. Trans. 2017, 56, 1747–1752. [Google Scholar]
- Lee, J.; Gupta, S.; Huang, J.-S.; Jayathilaka, L.P.; Lee, B.-S. HPLC–MTT assay: Anticancer activity of aqueous garlic extract is from allicin. Anal. Biochem. 2013, 436, 187–189. [Google Scholar] [CrossRef]
- Li, F.; Li, Q.; Wu, S.; Tan, Z. Salting-out extraction of allicin from garlic (Allium sativum L.) based on ethanol/ammonium sulfate in laboratory and pilot scale. Food Chem. 2017, 217, 91–97. [Google Scholar] [CrossRef]
- Jiang, H.; Xing, Z.; Wang, Y.; Zhang, Z.; Mintah, B.K.; Dabbour, M.; Li, Y.; He, R.; Huang, L.; Ma, H. Preparation of allicin-whey protein isolate conjugates: Allicin extraction by water, conjugates’ ultrasound-assisted binding and its stability, solubility and emulsibility analysis. Ultrason. Sonochem. 2020, 63, 104981. [Google Scholar] [CrossRef]
- Lu, P.; Zhao, X.; Cui, T. Full Length Research Paper Production of emodin from Aspergillus ochraceus at preparative scale. Afr. J. Biotechnol. 2010, 9, 512–517. [Google Scholar]
- Beňová, B.; Adam, M.; Pavlíková, P.; Fischer, J. Supercritical fluid extraction of piceid, resveratrol and emodin from Japanese knotweed. J. Supercrit. Fluids 2010, 51, 325–330. [Google Scholar] [CrossRef]
- Genovese, S.; Tammaro, F.; Menghini, L.; Carlucci, G.; Epifano, F.; Locatelli, M. Comparison of three different extraction methods and HPLC determination of the anthraquinones aloe-emodine, emodine, rheine, chrysophanol and physcione in the bark of Rhamnus alpinus L.(Rhamnaceae). Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2010, 21, 261–267. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Bao, C.; You, J.; Wang, Z.; Shi, Y.; Zhang, H. Ultrasonic extraction and separation of anthraquinones from Rheum palmatum L. Ultrason. Sonochem. 2008, 15, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Pandit, N.T.; Patravale, V.B. Design and optimization of a novel method for extraction of genistein. Indian J. Pharm. Sci. 2011, 73, 184–192. [Google Scholar]
- Pananun, T.; Montalbo-Lomboy, M.; Noomhorm, A.; Grewell, D.; Lamsal, B. High-power ultrasonication-assisted extraction of soybean isoflavones and effect of toasting. LWT-Food Sci. Technol. 2012, 47, 199–207. [Google Scholar] [CrossRef]
- Rostagno, M.; Araújo, J.; Sandi, D. Supercritical fluid extraction of isoflavones from soybean flour. Food Chem. 2002, 78, 111–117. [Google Scholar] [CrossRef]
- Araújo, J.M.; Silva, M.V.; Chaves, J.B. Supercritical fluid extraction of daidzein and genistein isoflavones from soybean hypocotyl after hydrolysis with endogenous β-glucosidases. Food Chem. 2007, 105, 266–272. [Google Scholar] [CrossRef]
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr. 2015, 6, 408–419. [Google Scholar] [CrossRef]
- Yoshioka, H.; Renold, W.; Fischer, N.; Higo, A.; Mabry, T.J. Sesquiterpene lactones from Ambrosia confertiflora (Compositae). Phytochemistry 1970, 9, 823–832. [Google Scholar] [CrossRef]
- Marchand, B.; Behl, H.M.; Rodriguez, E. Application of high-performance liquid chromatography for analysis and isolation of sesquiterpene lactones. J. Chromatogr. A 1983, 265, 97–104. [Google Scholar] [CrossRef]
- Kery, A.; Ronyai, E.; Simandi, B.; Lemberkovics, E.; Keve, T.; Deak, A.; Kemeny, S. Recovery of a bioactive sesquiterpene lactone from Tanacetum parthenium by extraction with supercritical carbon dioxide. Chromatographia 1999, 49, 503–508. [Google Scholar] [CrossRef]
- Smith, R.M.; Burford, M.D. Supercritical fluid extraction and gas chromatographic determination of the sesquiterpene lactone parthenolide in the medicinal herb feverfew (Tanacetum parthenium). J. Chromatogr. A 1992, 627, 255–261. [Google Scholar] [CrossRef]
- Végh, K.; Alberti, Á.; Riethmüller, E.; Tóth, A.; Béni, S.; Kéry, Á. Supercritical fluid extraction and convergence chromatographic determination of parthenolide in Tanacetum parthenium L.: Experimental design, modeling and optimization. J. Supercrit. Fluids 2014, 95, 84–91. [Google Scholar] [CrossRef]
- Abidin, L.; Mujeeb, M.; Mir, S.R.; Khan, S.A.; Ahmad, A. Comparative assessment of extraction methods and quantitative estimation of luteolin in the leaves of Vitex negundo Linn. by HPLC. Asian Pac. J. Trop. Med. 2014, 7, S289–S293. [Google Scholar] [CrossRef]
- Sriti Eljazi, J.; Selmi, S.; Zarroug, Y.; Wesleti, I.; Aouini, B.; Jallouli, S.; Limam, F. Essential oil composition, phenolic compound, and antioxidant potential of Inulaviscosa as affected by extraction process. Int. J. Food Prop. 2018, 21, 2309–2319. [Google Scholar] [CrossRef]
- Huang, W.; Xue, A.; Niu, H.; Jia, Z.; Wang, J. Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem. 2009, 114, 1147–1154. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Zu, Y.; Zhao, X. Microwave-assisted simultaneous extraction of luteolin and apigenin from tree peony pod and evaluation of its antioxidant activity. Sci. World J. 2014, 2014, 506971. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-J.; Liu, W.; Zu, Y.-G.; Tong, M.-H.; Li, S.-M.; Yan, M.-M.; Efferth, T.; Luo, H. Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanuscajan (L.) Millsp.] leaves. Food Chem. 2008, 111, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Horbowicz, M. Method of quercetin extraction from dry scales of onion. Veg. Crops Res. Bull. 2002, 57, 119–124. [Google Scholar]
- Martino, K.G.; Guyer, D. Supercritical fluid extraction of quercetin from onion skins. J. Food Process Eng. 2004, 27, 17–28. [Google Scholar] [CrossRef]
- Sharifi, N.; Mahernia, S.; Amanlou, M. Comparison of different methods in quercetin extraction from leaves of Raphanus sativus L. Pharm. Sci. 2017, 23, 59–65. [Google Scholar] [CrossRef]
- Ko, M.-J.; Cheigh, C.-I.; Cho, S.-W.; Chung, M.-S. Subcritical water extraction of flavonol quercetin from onion skin. J. Food Eng. 2011, 102, 327–333. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, Y.; Su, P.; Guo, Z. Microwave-assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb. Phytochem. Anal. 2009, 20, 33–37. [Google Scholar] [CrossRef]
- Wu, H.; Chen, M.; Fan, Y.; Elsebaei, F.; Zhu, Y. Determination of rutin and quercetin in Chinese herbal medicine by ionic liquid-based pressurized liquid extraction–liquid chromatography–chemiluminescence detection. Talanta 2012, 88, 222–229. [Google Scholar] [CrossRef]
- Shi, M.; Chen, Z.; Gong, H.; Peng, Z.; Sun, Q.; Luo, K.; Wu, B.; Wen, C.; Lin, W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother. Res. 2024, 38, 880–911. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Peng, Y.; Zhao, Y.; Liang, X.; Tang, Y.; Liu, J. A novel derivative of artemisinin inhibits cell proliferation and metastasis via down-regulation of cathepsin K in breast cancer. Eur. J. Pharmacol. 2019, 858, 172382. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Chen, L.; He, S.-j.; Zuo, J.-p. Artemisinin derivative SM934 in the treatment of autoimmune and inflammatory diseases: Therapeutic effects and molecular mechanisms. Acta Pharmacol. Sin. 2022, 43, 3055–3061. [Google Scholar] [CrossRef]
- Holdhoff, M.; Nicholas, M.K.; Peterson, R.A.; Maraka, S.; Liu, L.C.; Fischer, J.H.; Wefel, J.S.; Fan, T.M.; Vannorsdall, T.; Russell, M.; et al. Phase I dose-escalation study of procaspase-activating compound-1 in combination with temozolomide in patients with recurrent high-grade astrocytomas. Neuro-Oncol. Adv. 2023, 5, vdad087. [Google Scholar] [CrossRef] [PubMed]
- Sminia, P.; van den Berg, J.; van Kootwijk, A.; Hageman, E.; Slotman, B.J.; Verbakel, W. Experimental and clinical studies on radiation and curcumin in human glioma. J Cancer Res Clin Oncol 2021, 147, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Medical University of South, C. Phase I Assay-guided Trial of Anti-inflammatory Phytochemicals in Patients with Advanced Cancer. 2013. Available online: https://clin.larvol.com/trial-detail/NCT01820299 (accessed on 20 October 2024).
- Paur, I.; Lilleby, W.; Bøhn, S.K.; Hulander, E.; Klein, W.; Vlatkovic, L.; Axcrona, K.; Bolstad, N.; Bjøro, T.; Laake, P. Tomato-based randomized controlled trial in prostate cancer patients: Effect on PSA. Clin. Nutr. 2017, 36, 672–679. [Google Scholar] [CrossRef]
- News and Updates. 2024. Available online: https://www.clinicaltrials.gov/about-site/new (accessed on 20 October 2024).
- Hamblin, M.R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016, 6, 113–124. [Google Scholar] [CrossRef]
- Zhen, X.; Cheng, P.; Pu, K. Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small 2019, 15, 1804105. [Google Scholar] [CrossRef]
- Pivetta, T.P.; Botteon, C.E.; Ribeiro, P.A.; Marcato, P.D.; Raposo, M. Nanoparticle systems for cancer phototherapy: An overview. Nanomaterials 2021, 11, 3132. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhao, L.; Zhang, Q.; Chang, M.; Li, C.; Zhang, H.; Lu, Y.; Chen, Y. An acceptor–donor–acceptor structured small molecule for effective NIR triggered dual phototherapy of cancer. Adv. Funct. Mater. 2020, 30, 1910301. [Google Scholar] [CrossRef]
- Liu, P.; Yang, W.; Shi, L.; Zhang, H.; Xu, Y.; Wang, P.; Zhang, G.; Chen, W.R.; Zhang, B.; Wang, X. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J. Mater. Chem. B 2019, 7, 6924–6933. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D. Photodynamic therapy of cancer: An update. CA A Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Wojtunik-Kulesza, K.A.; Oniszczuk, T.; Kasprzak, K. The potential of photodynamic therapy (PDT)—Experimental investigations and clinical use. Biomed. Pharmacother. 2016, 83, 912–929. [Google Scholar] [CrossRef]
- Kim, M.; Jung, H.Y.; Park, H.J. Topical PDT in the treatment of benign skin diseases: Principles and new applications. Int. J. Mol. Sci. 2015, 16, 23259–23278. [Google Scholar] [CrossRef]
- Wen, X.; Li, Y.; Hamblin, M.R. Photodynamic therapy in dermatology beyond non-melanoma cancer: An update. Photodiagnosis Photodyn. Ther. 2017, 19, 140–152. [Google Scholar] [CrossRef]
- Ailioaie, L.M.; Litscher, G. Curcumin and photobiomodulation in chronic viral hepatitis and hepatocellular carcinoma. Int. J. Mol. Sci. 2020, 21, 7150. [Google Scholar] [CrossRef]
- Jiang, S.; Zhu, R.; He, X.; Wang, J.; Wang, M.; Qian, Y.; Wang, S. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. Int. J. Nanomed. 2017, 12, 167–178. [Google Scholar] [CrossRef]
- Machado, F.C.; de Matos, R.P.A.; Primo, F.L.; Tedesco, A.C.; Rahal, P.; Calmon, M.F. Effect of curcumin-nanoemulsion associated with photodynamic therapy in breast adenocarcinoma cell line. Bioorg. Med. Chem. 2019, 27, 1882–1890. [Google Scholar] [CrossRef]
- Monge-Fuentes, V.; Muehlmann, L.A.; Longo, J.P.F.; Silva, J.R.; Fascineli, M.L.; de Souza, P.; Faria, F.; Degterev, I.A.; Rodriguez, A.; Carneiro, F.P. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J. Photochem. Photobiol. B Biol. 2017, 166, 301–310. [Google Scholar] [CrossRef]
- Semeraro, P.; Chimienti, G.; Altamura, E.; Fini, P.; Rizzi, V.; Cosma, P. Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications. Mater. Sci. Eng. C 2018, 85, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xiang, Y.; Pan, W.; Wang, H.; Li, N.; Tang, B. Dual-targeted photothermal agents for enhanced cancer therapy. Chem. Sci. 2020, 11, 8055–8072. [Google Scholar] [CrossRef] [PubMed]
- Abadeer, N.S.; Murphy, C.J. Recent progress in cancer thermal therapy using gold nanoparticles. In Nanomaterials and Neoplasms; Jenny Stanford Publishing: Singapore, 2021; pp. 143–217. [Google Scholar]
- Zou, L.; Wang, H.; He, B.; Zeng, L.; Tan, T.; Cao, H.; He, X.; Zhang, Z.; Guo, S.; Li, Y. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 2016, 6, 762. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, X.; Shen, P.; Wang, J.; Shen, Y.; Shen, Y.; Webster, T.J.; Deng, J. Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. Int. J. Nanomed. 2020, 15, 1903–1914. [Google Scholar] [CrossRef]
- Fernandes, N.; Rodrigues, C.F.; Moreira, A.F.; Correia, I.J. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater. Sci. 2020, 8, 2990–3020. [Google Scholar] [CrossRef]
- Tafech, A.; Stéphanou, A. On the importance of acidity in cancer cells and therapy. Biology 2024, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Pedrosa, P.; Lima, J.C.; Fernandes, A.R.; Baptista, P.V. Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles. Sci. Rep. 2017, 7, 10872. [Google Scholar] [CrossRef]
- Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H. Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv. 2019, 26, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Bano, S.; Nazir, S.; Nazir, A.; Munir, S.; Mahmood, T.; Afzal, M.; Ansari, F.L.; Mazhar, K. Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: Surface engineering, T2 relaxometry, and photodynamic treatment potential. Int. J. Nanomed. 2016, 11, 3833–3848. [Google Scholar] [CrossRef] [PubMed]
- Kharey, P.; Dutta, S.B.; Manikandan, M.; Palani, I.; Majumder, S.; Gupta, S. Green synthesis of near-infrared absorbing eugenate capped iron oxide nanoparticles for photothermal application. Nanotechnology 2019, 31, 095705. [Google Scholar] [CrossRef] [PubMed]
- Ashkbar, A.; Rezaei, F.; Attari, F.; Ashkevarian, S. Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Sci. Rep. 2020, 10, 21206. [Google Scholar] [CrossRef]
- Mun, S.T.; Bae, D.H.; Ahn, W.S. Epigallocatechin gallate with photodynamic therapy enhances anti-tumor effects in vivo and in vitro. Photodiagnosis Photodyn. Ther. 2014, 11, 141–147. [Google Scholar] [CrossRef]
- Goddard, Z.R.; Marín, M.J.; Russell, D.A.; Searcey, M. Active targeting of gold nanoparticles as cancer therapeutics. Chem. Soc. Rev. 2020, 49, 8774–8789. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J. Pers. Med. 2021, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, L.; Shen, J.; Ma, L.; Wang, L. Effects of Nutrients/Nutrition on Toxicants/Toxicity. In Nutritional Toxicology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–28. [Google Scholar]
- Duda-Chodak, A.; Tarko, T. Possible side effects of polyphenols and their interactions with medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- Alwhaibi, A.M.; Alshamrani, A.A.; Alenazi, M.A.; Altwalah, S.F.; Alameel, N.N.; Aljabali, N.N.; Alghamdi, S.B.; Bineid, A.I.; Alwhaibi, M.; Al Arifi, M.N. Vincristine-induced neuropathy in patients diagnosed with solid and hematological malignancies: The role of dose rounding. J. Clin. Med. 2023, 12, 5662. [Google Scholar] [CrossRef]
- Madsen, M.L.; Due, H.; Ejskjær, N.; Jensen, P.; Madsen, J.; Dybkær, K. Aspects of vincristine-induced neuropathy in hematologic malignancies: A systematic review. Cancer Chemother. Pharmacol. 2019, 84, 471–485. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, Q. The potential toxic side effects of flavonoids. Biocell 2022, 46, 357. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. Toxic phytochemicals and their potential risks for human cancer. Cancer Prev. Res. 2015, 8, 1–8. [Google Scholar] [CrossRef]
- Laqueur, G.; Spatz, M. Toxicology of cycasin. Cancer Res. 1968, 28, 2262–2267. [Google Scholar] [CrossRef] [PubMed]
- Kisby, G.E.; Fry, R.C.; Lasarev, M.R.; Bammler, T.K.; Beyer, R.P.; Churchwell, M.; Doerge, D.R.; Meira, L.B.; Palmer, V.S.; Ramos-Crawford, A.-L. The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner. PLoS ONE 2011, 6, e20911. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, H.B.; Honig, D.M.; Kulling, S.E.; Metzler, M. Studies on the metabolism of the plant lignans secoisolariciresinol and matairesinol. J. Agric. Food Chem. 2003, 51, 6317–6325. [Google Scholar] [CrossRef] [PubMed]
- Ward, H.A.; Kuhnle, G.G.; Mulligan, A.A.; Lentjes, M.A.; Luben, R.N.; Khaw, K.-T. Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition–Norfolk in relation to phytoestrogen intake derived from an improved database. Am. J. Clin. Nutr. 2010, 91, 440–448. [Google Scholar] [CrossRef] [PubMed]
- van Duursen, M.B.; Nijmeijer, S.; De Morree, E.; de Jong, P.C.; van den Berg, M. Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology 2011, 289, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.H.; Doerge, D.R.; Woodling, K.A.; Hartman, J.A.; Kwak, J.; Helferich, W.G. Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis 2008, 29, 2162–2168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cifone, M.; Murli, H.; Erexson, G.; Mecchi, M.; Lawlor, T. Application of simplified in vitro screening tests to detect genotoxicity of aristolochic acid. Food Chem. Toxicol. 2004, 42, 2021–2028. [Google Scholar] [CrossRef]
- Arlt, V.M.; Stiborova, M.; Schmeiser, H.H. Aristolochic acid as a probable human cancer hazard in herbal remedies: A review. Mutagenesis 2002, 17, 265–277. [Google Scholar] [CrossRef]
- Han, Z.T.; Tong, Y.K.; He, L.M.; Zhang, Y.; Sun, J.Z.; Wang, T.Y.; Zhang, H.; Cui, Y.L.; Newmark, H.L.; Conney, A.H. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced increase in depressed white blood cell counts in patients treated with cytotoxic cancer chemotherapeutic drugs. Proc. Natl. Acad. Sci. USA 1998, 95, 5362–5365. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabi, E.; Ahlgren, J.; Bergelin, N.; Törnquist, K. Phorbol 12-myristate 13-acetate inhibits FRO anaplastic human thyroid cancer cell proliferation by inducing cell cycle arrest in G1/S phase: Evidence for an effect mediated by PKCδ. Mol. Cell. Endocrinol. 2008, 292, 26–35. [Google Scholar] [CrossRef]
- Zheng, X.; Chang, R.L.; Cui, X.-X.; Avila, G.E.; Hebbar, V.; Garzotto, M.; Shih, W.J.; Lin, Y.; Lu, S.-E.; Rabson, A.B. Effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) in combination with paclitaxel (Taxol) on prostate Cancer LNCaP cells cultured in vitro or grown as xenograft tumors in immunodeficient mice. Clin. Cancer Res. 2006, 12, 3444–3451. [Google Scholar] [CrossRef] [PubMed]
- Fürstenberger, G.; Berry, D.; Sorg, B.; Marks, F. Skin tumor promotion by phorbol esters is a two-stage process. Proc. Natl. Acad. Sci. USA 1981, 78, 7722–7726. [Google Scholar] [CrossRef] [PubMed]
- Schoental, R. Toxicology and carcinogenic action of pyrrolizidine alkaloids. Cancer Res. 1968, 28, 2237–2246. [Google Scholar] [PubMed]
- Zhao, Y.; Xia, Q.; Yin, J.J.; Lin, G.; Fu, P.P. Photoirradiation of dehydropyrrolizidine alkaloids—Formation of reactive oxygen species and induction of lipid peroxidation. Toxicol. Lett. 2011, 205, 302–309. [Google Scholar] [CrossRef]
- Weisbord, S.D.; Soule, J.B.; Kimmel, P.L. Poison on line—Acute renal failure caused by oil of wormwood purchased through the Internet. N. Engl. J. Med. 1997, 337, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Winickoff, J.P.; Houck, C.S.; Rothman, E.L.; Bauchner, H. Verve and Jolt: Deadly new Internet drugs. Pediatrics 2000, 106, 829–830. [Google Scholar] [CrossRef] [PubMed]
- Komarova, T.V.; Baschieri, S.; Donini, M.; Marusic, C.; Benvenuto, E.; Dorokhov, Y.L. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev. Vaccines 2010, 9, 859–876. [Google Scholar] [CrossRef]
- Verdeil, J.-L.; Alemanno, L.; Niemenak, N.; Tranbarger, T.J. Pluripotent versus totipotent plant stem cells: Dependence versus autonomy? Trends Plant Sci. 2007, 12, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.; Steplewski, Z.; Glogowska, M.; Koprowski, H. Inhibition of tumor growth by plant-derived mAb. Proc. Natl. Acad. Sci. USA 2005, 102, 7026–7030. [Google Scholar] [CrossRef]
- Verch, T.; Yusibov, V.; Koprowski, H. Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. J. Immunol. Methods 1998, 220, 69–75. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.A.; Kumagai, M.H.; Hanley, K.; Turpen, T.H.; Hakim, I.; Grill, L.K.; Tusé, D.; Levy, S.; Levy, R. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc. Natl. Acad. Sci. USA 1999, 96, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Nessa, M.U.; Rahman, M.A.; Kabir, Y. Plant-produced monoclonal antibody as immunotherapy for cancer. BioMed Res. Int. 2020, 2020, 3038564. [Google Scholar] [CrossRef] [PubMed]
- Tusé, D.; Ku, N.; Bendandi, M.; Becerra, C.; Collins, R.; Langford, N.; Sancho, S.I.; López-Díaz de Cerio, A.; Pastor, F.; Kandzia, R. Clinical safety and immunogenicity of tumor-targeted, plant-made Id-KLH conjugate vaccines for follicular lymphoma. BioMed Res. Int. 2015, 2015, 648143. [Google Scholar] [CrossRef]
- Bulaon, C.J.I.; Khorattanakulchai, N.; Rattanapisit, K.; Sun, H.; Pisuttinusart, N.; Phoolcharoen, W. Development of Plant-Derived Bispecific Monoclonal Antibody Targeting PD-L1 and CTLA-4 against Mouse Colorectal Cancer. Planta Medica 2024, 90, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, S.R.; Phoolcharoen, W.; Ko, K. Expression, function, and glycosylation of anti-colorectal cancer large single-chain antibody (LSC) in plant. Plant Biotechnol. Rep. 2020, 14, 363–371. [Google Scholar] [CrossRef]
- Park, S.R.; Lee, J.-H.; Kim, K.; Kim, T.M.; Lee, S.H.; Choo, Y.-K.; Kim, K.S.; Ko, K. Expression and in vitro function of anti-breast cancer llama-based single domain antibody VHH expressed in tobacco plants. Int. J. Mol. Sci. 2020, 21, 1354. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Kang, Y.J.; Park, S.R.; Oh, Y.J.; Ko, K. Production, expression, and function of dual-specific monoclonal antibodies in a single plant. Planta 2024, 259, 15. [Google Scholar] [CrossRef] [PubMed]
- Rattanapisit, K.; Bulaon, C.J.I.; Strasser, R.; Sun, H.; Phoolcharoen, W. In vitro and in vivo studies of plant-produced Atezolizumab as a potential immunotherapeutic antibody. Sci. Rep. 2023, 13, 14146. [Google Scholar] [CrossRef] [PubMed]
- Bulaon, C.J.I.; Sun, H.; Malla, A.; Phoolcharoen, W. Therapeutic efficacy of plant-produced Nivolumab in transgenic C57BL/6-hPD-1 mouse implanted with MC38 colon cancer. Biotechnol. Rep. 2023, 38, e00794. [Google Scholar] [CrossRef] [PubMed]
- Izadi, S.; Gumpelmair, S.; Coelho, P.; Duarte, H.O.; Gomes, J.; Leitner, J.; Kunnummel, V.; Mach, L.; Reis, C.A.; Steinberger, P. Plant-derived Durvalumab variants show efficient PD-1/PD-L1 blockade and therapeutically favourable FcR binding. Plant Biotechnol. J. 2024, 22, 1224–1237. [Google Scholar] [CrossRef]
- Shin, J.H.; Oh, S.; Jang, M.H.; Lee, S.Y.; Min, C.; Eu, Y.J.; Begum, H.; Kim, J.C.; Lee, G.R.; Oh, H.B. Enhanced efficacy of glycoengineered rice cell-produced trastuzumab. Plant Biotechnol. J. 2024, 22, 3068–3081. [Google Scholar] [CrossRef]
- Stark, M.C.; Joubert, A.M.; Visagie, M.H. Molecular farming of pembrolizumab and nivolumab. Int. J. Mol. Sci. 2023, 24, 10045. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Kajiura, H.; Kamiya, R.; Yoshida, T.; Misaki, R.; Fujiyama, K. Production and N-glycan engineering of Varlilumab in Nicotiana benthamiana. Front. Plant Sci. 2023, 14, 1215580. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Kim, K.; Kim, Y.; Zhu, R.; Hain, L.; Seferovic, H.; Kim, M.-H.; Woo, H.J.; Hwang, H.; Lee, S.H. Plant-Derived Anti-Human Epidermal Growth Factor Receptor 2 Antibody Suppresses Trastuzumab-Resistant Breast Cancer with Enhanced Nanoscale Binding. ACS Nano 2024, 18, 16126–16140. [Google Scholar] [CrossRef] [PubMed]
- Bulaon, C.J.I.; Khorattanakulchai, N.; Rattanapisit, K.; Sun, H.; Pisuttinusart, N.; Strasser, R.; Tanaka, S.; Soon-Shiong, P.; Phoolcharoen, W. Antitumor effect of plant-produced anti-CTLA-4 monoclonal antibody in a murine model of colon cancer. Front. Plant Sci. 2023, 14, 1149455. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Phakham, T.; Bulaon, C.J.I.; Khorattanakulchai, N.; Shanmugaraj, B.; Buranapraditkun, S.; Boonkrai, C.; Sooksai, S.; Hirankarn, N.; Abe, Y.; Strasser, R. Functional characterization of pembrolizumab produced in Nicotiana benthamiana using a rapid transient expression system. Front. Plant Sci. 2021, 12, 736299. [Google Scholar] [CrossRef] [PubMed]
- Rattanapisit, K.; Phakham, T.; Buranapraditkun, S.; Siriwattananon, K.; Boonkrai, C.; Pisitkun, T.; Hirankarn, N.; Strasser, R.; Abe, Y.; Phoolcharoen, W. Structural and in vitro functional analyses of novel plant-produced anti-human PD1 antibody. Sci. Rep. 2019, 9, 15205. [Google Scholar] [CrossRef] [PubMed]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.O.; Babar, Z.-U.-D.; Suleman, F. Assessing the prices and affordability of oncology medicines for three common cancers within the private sector of South Africa. BMC Health Serv. Res. 2021, 21, 661. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.F.; Peyret, H.; Saunders, K.; Castells-Graells, R.; Marsian, J.; Meshcheriakova, Y.; Lomonossoff, G.P. Synthetic plant virology for nanobiotechnology and nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1447. [Google Scholar] [CrossRef] [PubMed]
- Shahgolzari, M.; Pazhouhandeh, M.; Milani, M.; Yari Khosroushahi, A.; Fiering, S. Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1629. [Google Scholar] [CrossRef]
- Steinmetz, N.F.; Masarapu, H.; He, H. Tymovirus Virus and Virus-like Particles as Nanocarriers for Imaging and Therapeutic Agents. U.S. Patent 11,739,301, 29 August 2023. [Google Scholar]
- Ortega-Rivera, O.A.; Beiss, V.; Osota, E.O.; Chan, S.K.; Karan, S.; Steinmetz, N.F. Production of cytoplasmic type citrus leprosis virus-like particles by plant molecular farming. Virology 2023, 578, 7–12. [Google Scholar] [CrossRef]
- Nikitin, N.; Trifonova, E.; Karpova, O.; Atabekov, J. Biosafety of plant viruses for human and animals. Mosc. Univ. Biol. Sci. Bull. 2016, 71, 128–134. [Google Scholar] [CrossRef]
- Wen, A.M.; Steinmetz, N.F. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem. Soc. Rev. 2016, 45, 4074–4126. [Google Scholar] [CrossRef]
- Sherman, M.B.; Guenther, R.H.; Tama, F.; Sit, T.L.; Brooks, C.L.; Mikhailov, A.M.; Orlova, E.V.; Baker, T.S.; Lommel, S.A. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J. Virol. 2006, 80, 10395–10406. [Google Scholar] [CrossRef] [PubMed]
- Czapar, A.E.; Steinmetz, N.F. Plant viruses and bacteriophages for drug delivery in medicine and biotechnology. Curr. Opin. Chem. Biol. 2017, 38, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, L.; Novelli, F.; Tanno, B.; Leonardi, S.; Hizam, V.M.; Arcangeli, C.; Santi, L.; Baschieri, S.; Lico, C.; Mancuso, M. Peptide-Functionalized and Drug-Loaded Tomato Bushy Stunt Virus Nanoparticles Counteract Tumor Growth in a Mouse Model of Shh-Dependent Medulloblastoma. Int. J. Mol. Sci. 2023, 24, 8911. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Youngblood, M.; Kim, H.-I.; González-Gamboa, I.; Monroy-Borrego, A.G.; Caparco, A.A.; Lowry, G.V.; Steinmetz, N.F.; Giraldo, J.P. DNA Delivery by Virus-Like Nanocarriers in Plant Cells. Nano Lett. 2024, 24, 7833–7842. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.K.; Wang, C.; Lorens, B.; Levine, A.D.; Steinmetz, N.F.; Shukla, S. Cowpea mosaic virus (CPMV)-based cancer testis antigen NY-ESO-1 vaccine elicits an antigen-specific cytotoxic T cell response. ACS Appl. Bio Mater. 2020, 3, 4179–4187. [Google Scholar] [CrossRef]
- Affonso de Oliveira, J.F.; Moreno-Gonzalez, M.A.; Ma, Y.; Deng, X.; Schuphan, J.; Steinmetz, N.F. Plant Virus Intratumoral Immunotherapy with CPMV and PVX Elicits Durable Antitumor Immunity in a Mouse Model of Diffuse Large B-Cell Lymphoma. Mol. Pharm. 2024, 21, 6206–6219. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, G.; Alonso-Miguel, D.; Perez-Alenza, M.D.; Zimmermann, A.B.E.; Schaafsma, E.; Kolling, F.W.; Barreno, L.; Alonso-Diez, A.; Beiss, V.; Affonso de Oliveira, J.F.; et al. Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Induces Local and Systemic Antitumor Efficacy in Canine Mammary Cancer Patients. Cells 2023, 12, 2241. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.; Chung, Y.H.; Steinmetz, N.F. TLR Agonists Delivered by Plant Virus and Bacteriophage Nanoparticles for Cancer Immunotherapy. Bioconjug. Chem. 2023, 34, 1596–1605. [Google Scholar] [CrossRef]
- Sergent, P.; Pinto-Cárdenas, J.C.; Carrillo, A.J.A.; Dávalos, D.L.; Pérez, M.D.G.; Lechuga, D.A.M.; Alonso-Miguel, D.; Schaafsma, E.; Cuarenta, A.J.; Muñoz, D.C. An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1. Cells 2024, 13, 1478. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, M.A.; Zhao, Z.; Caparco, A.A.; Steinmetz, N.F. Combination of cowpea mosaic virus (CPMV) intratumoral therapy and oxaliplatin chemotherapy. Mater. Adv. 2024, 5, 4878–4888. [Google Scholar] [CrossRef]
- Kim, S.M.; Faix, P.H.; Schnitzer, J.E. Overcoming key biological barriers to cancer drug delivery and efficacy. J. Control. Release 2017, 267, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xie, Q.; Sun, Y. Advances in nanomaterial-based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023, 11, 1177151. [Google Scholar] [CrossRef]
- Chariou, P.L.; Lee, K.L.; Wen, A.M.; Gulati, N.M.; Stewart, P.L.; Steinmetz, N.F. Detection and imaging of aggressive cancer cells using an epidermal growth factor receptor (EGFR)-targeted filamentous plant virus-based nanoparticle. Bioconjug. Chem. 2015, 26, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Destito, G.; Yeh, R.; Rae, C.S.; Finn, M.; Manchester, M. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem. Biol. 2007, 14, 1152–1162. [Google Scholar] [CrossRef]
- Cho, C.-F.; Yu, L.; Nsiama, T.K.; Kadam, A.N.; Raturi, A.; Shukla, S.; Amadei, G.A.; Steinmetz, N.F.; Luyt, L.G.; Lewis, J.D. Viral nanoparticles decorated with novel EGFL7 ligands enable intravital imaging of tumor neovasculature. Nanoscale 2017, 9, 12096–12109. [Google Scholar] [CrossRef] [PubMed]
- Le, D.H.; Lee, K.L.; Shukla, S.; Commandeur, U.; Steinmetz, N.F. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 2017, 9, 2348–2357. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.D.; Steinmetz, N.F. Tobacco mosaic virus delivery of mitoxantrone for cancer therapy. Nanoscale 2018, 10, 16307–16313. [Google Scholar] [CrossRef] [PubMed]
- Czapar, A.E.; Zheng, Y.-R.; Riddell, I.A.; Shukla, S.; Awuah, S.G.; Lippard, S.J.; Steinmetz, N.F. Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano 2016, 10, 4119–4126. [Google Scholar] [CrossRef] [PubMed]
- Parhizkar, E.; Rafieipour, P.; Sepasian, A.; Alemzadeh, E.; Dehshahri, A.; Ahmadi, F. Synthesis and cytotoxicity evaluation of gemcitabine-tobacco mosaic virus conjugates. J. Drug Deliv. Sci. Technol. 2021, 62, 102388. [Google Scholar] [CrossRef]
- Alemzadeh, E.; Dehshahri, A.; Dehghanian, A.R.; Afsharifar, A.; Behjatnia, A.A.; Izadpanah, K.; Ahmadi, F. Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus nanoparticle. Colloids Surf. B Biointerfaces 2019, 174, 80–86. [Google Scholar] [CrossRef]
- Cao, J.; Guenther, R.H.; Sit, T.L.; Opperman, C.H.; Lommel, S.A.; Willoughby, J.A. Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin. Small 2014, 10, 5126–5136. [Google Scholar] [CrossRef]
- Aljabali, A.A.; Shukla, S.; Lomonossoff, G.P.; Steinmetz, N.F.; Evans, D.J. Cpmv-dox delivers. Mol. Pharm. 2013, 10, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Franke, C.E.; Czapar, A.E.; Patel, R.B.; Steinmetz, N.F. Tobacco mosaic virus-delivered cisplatin restores efficacy in platinum-resistant ovarian cancer cells. Mol. Pharm. 2017, 15, 2922–2931. [Google Scholar] [CrossRef]
- Le, D.H.; Commandeur, U.; Steinmetz, N.F. Presentation and delivery of tumor necrosis factor-related apoptosis-inducing ligand via elongated plant viral nanoparticle enhances antitumor efficacy. ACS Nano 2019, 13, 2501–2510. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.K.; Steinmetz, N.F. microRNA-181a silencing by antisense oligonucleotides delivered by virus-like particles. J. Mater. Chem. B 2023, 11, 816–825. [Google Scholar] [CrossRef]
- Kim, K.R.; Lee, A.S.; Kim, S.M.; Heo, H.R.; Kim, C.S. Virus-like nanoparticles as a theranostic platform for cancer. Front. Bioeng. Biotechnol. 2023, 10, 1106767. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.; Lin, R.D.; Steinmetz, N.F. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. J. Mater. Chem. B 2018, 6, 5888–5895. [Google Scholar] [CrossRef]
- Kernan, D.L.; Wen, A.M.; Pitek, A.S.; Steinmetz, N.F. Featured Article: Delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles. Exp. Biol. Med. 2017, 242, 1405–1411. [Google Scholar] [CrossRef]
- Esfandiari, N.; Arzanani, M.K.; Soleimani, M.; Kohi-Habibi, M.; Svendsen, W.E. A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumor Biol. 2016, 37, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, N. Targeting breast cancer with bio-inspired virus nanoparticles. Arch. Breast Cancer 2018, 5, 90–95. [Google Scholar]
- Shukla, S.; Roe, A.J.; Liu, R.; Veliz, F.A.; Commandeur, U.; Wald, D.N.; Steinmetz, N.F. Affinity of plant viral nanoparticle potato virus X (PVX) towards malignant B cells enables cancer drug delivery. Biomater. Sci. 2020, 8, 3935–3943. [Google Scholar] [CrossRef]
- Marchetti, L.; Simon-Gracia, L.; Lico, C.; Mancuso, M.; Baschieri, S.; Santi, L.; Teesalu, T. Targeting of Tomato Bushy Stunt Virus with a Genetically Fused C-End Rule Peptide. Nanomaterials 2023, 13, 1428. [Google Scholar] [CrossRef] [PubMed]
- Barkovich, K.J.; Zhao, Z.; Steinmetz, N.F. iRGD-Targeted Physalis Mottle Virus Like Nanoparticles for Targeted Cancer Delivery. Small Sci. 2023, 3, 2300067. [Google Scholar] [CrossRef] [PubMed]
- Shahgolzari, M.; Venkataraman, S.; Osano, A.; Akpa, P.A.; Hefferon, K. Plant Virus Nanoparticles Combat Cancer. Vaccines 2023, 11, 1278. [Google Scholar] [CrossRef] [PubMed]
- Chariou, P.L.; Wang, L.; Desai, C.; Park, J.; Robbins, L.K.; von Recum, H.A.; Ghiladi, R.A.; Steinmetz, N.F. Let there be light: Targeted photodynamic therapy using high aspect ratio plant viral nanoparticles. Macromol. Biosci. 2019, 19, 1800407. [Google Scholar] [CrossRef]
- Nkanga, C.I.; Ortega-Rivera, O.A.; Steinmetz, N.F. Photothermal immunotherapy of melanoma using TLR-7 agonist laden tobacco mosaic virus with polydopamine coat. Nanomed. Nanotechnol. Biol. Med. 2022, 44, 102573. [Google Scholar] [CrossRef]
- Zhao, Z.; Simms, A.; Steinmetz, N.F. Cisplatin-loaded tobacco mosaic virus for ovarian cancer treatment. Biomacromolecules 2022, 23, 4379–4387. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.; Steinmetz, N.F. Plant viral and bacteriophage delivery of nucleic acid therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1487. [Google Scholar] [CrossRef]
- Shahgolzari, M.; Dianat-Moghadam, H.; Yavari, A.; Fiering, S.N.; Hefferon, K. Multifunctional plant virus nanoparticles for targeting breast cancer tumors. Vaccines 2022, 10, 1431. [Google Scholar] [CrossRef]
- Lam, P.; Steinmetz, N.F. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater. Sci. 2019, 7, 3138–3142. [Google Scholar] [CrossRef] [PubMed]
- Villagrana-Escareño, M.V.; Reynaga-Hernández, E.; Galicia-Cruz, O.G.; Durán-Meza, A.L.; la Cruz-González, D.; Hernández-Carballo, C.Y.; Ruíz-García, J. VLPs derived from the CCMV plant virus can directly transfect and deliver heterologous genes for translation into mammalian cells. BioMed Res. Int. 2019, 2019, 4630891. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Cornelissen, J.J.; Yuan, Q.; Cao, S. Delivery of MicroRNAs by plant virus-based nanoparticles to functionally alter the osteogenic differentiation of human mesenchymal stem cells. Chin. Chem. Lett. 2023, 34, 107448. [Google Scholar] [CrossRef]
- Nuñez-Rivera, A.; Fournier, P.G.; Arellano, D.L.; Rodriguez-Hernandez, A.G.; Vazquez-Duhalt, R.; Cadena-Nava, R.D. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. Beilstein J. Nanotechnol. 2020, 11, 372–382. [Google Scholar] [CrossRef]
- Masarapu, H.; Patel, B.K.; Chariou, P.L.; Hu, H.; Gulati, N.M.; Carpenter, B.L.; Ghiladi, R.A.; Shukla, S.; Steinmetz, N.F. Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs. Biomacromolecules 2017, 18, 4141–4153. [Google Scholar] [CrossRef]
- Yildiz, I.; Shukla, S.; Steinmetz, N.F. Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol. 2011, 22, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhang, Y.; Shukla, S.; Gu, Y.; Yu, X.; Steinmetz, N.F. Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer. ACS Nano 2017, 11, 9249–9258. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, N.F.; Ablack, A.L.; Hickey, J.L.; Ablack, J.; Manocha, B.; Mymryk, J.S.; Luyt, L.G.; Lewis, J.D. Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors. Small 2011, 7, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Dickmeis, C.; Nagarajan, A.; Fischer, R.; Commandeur, U.; Steinmetz, N. Molecular farming of fluorescent virus-based nanoparticles for optical imaging in plants, human cells and mouse models. Biomater. Sci. 2014, 2, 784–797. [Google Scholar] [CrossRef]
- Bruckman, M.A.; Randolph, L.N.; Gulati, N.M.; Stewart, P.L.; Steinmetz, N.F. Silica-coated Gd (DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages. J. Mater. Chem. B 2015, 3, 7503–7510. [Google Scholar] [CrossRef]
- Chung, Y.H.; Cai, H.; Steinmetz, N.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv. Drug Deliv. Rev. 2020, 156, 214–235. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhou, J.; Nkanga, C.I.; Jin, Z.; He, T.; Borum, R.M.; Yim, W.; Zhou, J.; Cheng, Y.; Xu, M. One-step supramolecular multifunctional coating on plant virus nanoparticles for bioimaging and therapeutic applications. ACS Appl. Mater. Interfaces 2022, 14, 13692–13702. [Google Scholar] [CrossRef]
- Pitek, A.; Hu, H.; Shukla, S.; Steinmetz, N. Cancer theranostic applications of albumin-coated tobacco mosaic virus nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 39468–39477. [Google Scholar] [CrossRef]
- Luzuriaga, M.A.; Welch, R.P.; Dharmarwardana, M.; Benjamin, C.E.; Li, S.; Shahrivarkevishahi, A.; Popal, S.; Tuong, L.H.; Creswell, C.T.; Gassensmith, J.J. Enhanced stability and controlled delivery of MOF-encapsulated vaccines and their immunogenic response in vivo. ACS Appl. Mater. Interfaces 2019, 11, 9740–9746. [Google Scholar] [CrossRef]
- Dharmarwardana, M.; Martins, A.F.; Chen, Z.; Palacios, P.M.; Nowak, C.M.; Welch, R.P.; Li, S.; Luzuriaga, M.A.; Bleris, L.; Pierce, B.S. Nitroxyl modified tobacco mosaic virus as a metal-free high-relaxivity MRI and EPR active superoxide sensor. Mol. Pharm. 2018, 15, 2973–2983. [Google Scholar] [CrossRef]
- Bruckman, M.A.; Jiang, K.; Simpson, E.J.; Randolph, L.N.; Luyt, L.G.; Yu, X.; Steinmetz, N.F. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett. 2014, 14, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, G.; Pérez-Alenza, D.; Barreno, L.; Alonso-Diez, Á.; de Oliveira, J.F.A.; Suárez-Redondo, M.; Fiering, S.F.; Steinmetz, N.F.; Peña, L. Innovative CPMV immunotherapy: A canine model for poor-prognosis breast cancer treatment. Cancer Res. 2024, 84 (Suppl. S6), 6663. [Google Scholar] [CrossRef]
- Shahgolzari, M.; Fiering, S. Emerging potential of plant virus nanoparticles (PVNPs) in anticancer immunotherapies. J. Cancer Immunol. 2022, 4, 22. [Google Scholar]
- Jung, E.; Chung, Y.H.; Mao, C.; Fiering, S.N.; Steinmetz, N.F. The Potency of Cowpea Mosaic Virus Particles for Cancer In Situ Vaccination Is Unaffected by the Specific Encapsidated Viral RNA. Mol. Pharm. 2023, 20, 3589–3597. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Beiss, V.; Fields, J.; Steinmetz, N.F.; Fiering, S. Cowpea mosaic virus stimulates antitumor immunity through recognition by multiple MYD88-dependent toll-like receptors. Biomaterials 2021, 275, 120914. [Google Scholar] [CrossRef]
- Shukla, S.; Wang, C.; Beiss, V.; Cai, H.; Washington, T.; Murray, A.A.; Gong, X.; Zhao, Z.; Masarapu, H.; Zlotnick, A. The unique potency of Cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater. Sci. 2020, 8, 5489–5503. [Google Scholar] [CrossRef]
- Hu, H.; Steinmetz, N.F. Development of a virus-like particle-based anti-HER2 breast cancer vaccine. Cancers 2021, 13, 2909. [Google Scholar] [CrossRef] [PubMed]
- Barreno, L.; Sevane, N.; Valdivia, G.; Alonso-Miguel, D.; Suarez-Redondo, M.; Alonso-Diez, A.; Fiering, S.; Beiss, V.; Steinmetz, N.F.; Perez-Alenza, M.D. Transcriptomics of canine inflammatory mammary cancer treated with empty cowpea mosaic virus implicates neutrophils in anti-tumor immunity. Int. J. Mol. Sci. 2023, 24, 14034. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Myers, J.T.; Woods, S.E.; Gong, X.; Czapar, A.E.; Commandeur, U.; Huang, A.Y.; Levine, A.D.; Steinmetz, N.F. Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers. Biomaterials 2017, 121, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Lebel, M.-È.; Chartrand, K.; Tarrab, E.; Savard, P.; Leclerc, D.; Lamarre, A. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Lett. 2016, 16, 1826–1832. [Google Scholar] [CrossRef]
- Murray, A.A.; Wang, C.; Fiering, S.; Steinmetz, N.F. In situ vaccination with cowpea vs tobacco mosaic virus against melanoma. Mol. Pharm. 2018, 15, 3700–3716. [Google Scholar] [CrossRef]
- Cai, H.; Shukla, S.; Wang, C.; Masarapu, H.; Steinmetz, N.F. Heterologous prime-boost enhances the antitumor immune response elicited by plant-virus-based cancer vaccine. J. Am. Chem. Soc. 2019, 141, 6509–6518. [Google Scholar] [CrossRef]
- Shahgolzari, M.; Pazhouhandeh, M.; Milani, M.; Fiering, S.; Khosroushahi, A.Y. Alfalfa mosaic virus nanoparticles-based in situ vaccination induces antitumor immune responses in breast cancer model. Nanomedicine 2020, 16, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chung, Y.H.; Steinmetz, N.F. Melanoma immunotherapy enabled by M2 macrophage targeted immunomodulatory cowpea mosaic virus. Mater. Adv. 2024, 5, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Jandzinski, M.; Wang, C.; Gong, X.; Bonk, K.W.; Keri, R.A.; Steinmetz, N.F. A viral nanoparticle cancer vaccine delays tumor progression and prolongs survival in a HER2+ tumor mouse model. Adv. Ther. 2019, 2, 1800139. [Google Scholar] [CrossRef]
- Cai, H.; Shukla, S.; Steinmetz, N.F. The antitumor efficacy of CpG oligonucleotides is improved by encapsulation in plant virus-like particles. Adv. Funct. Mater. 2020, 30, 1908743. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Vault, viral, and virus-like nanoparticles for targeted cancer therapy. Mater. Adv. 2023, 4, 2909–2917. [Google Scholar] [CrossRef]
- Shin, M.D.; Jung, E.; Moreno-Gonzalez, M.A.; Ortega-Rivera, O.A.; Steinmetz, N.F. Pluronic F127 “nanoarmor” for stabilization of Cowpea mosaic virus immunotherapy. Bioeng. Transl. Med. 2024, 9, e10574. [Google Scholar] [CrossRef] [PubMed]
- Boone, C.E.; Wang, C.; Lopez-Ramirez, M.A.; Beiss, V.; Shukla, S.; Chariou, P.L.; Kupor, D.; Rueda, R.; Wang, J.; Steinmetz, N.F. Active microneedle administration of plant virus nanoparticles for cancer in situ vaccination improves immunotherapeutic efficacy. ACS Appl. Nano Mater. 2020, 3, 8037–8051. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Czapar, A.E.; Fiering, S.; Oleinick, N.L.; Steinmetz, N.F. Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS Omega 2018, 3, 3702–3707. [Google Scholar] [CrossRef] [PubMed]
- Karan, S.; Jung, E.; Boone, C.; Steinmetz, N.F. Synergistic combination therapy using cowpea mosaic virus intratumoral immunotherapy and Lag-3 checkpoint blockade. Cancer Immunol. Immunother. 2024, 73, 51. [Google Scholar] [CrossRef]
- Koellhoffer, E.C.; Steinmetz, N.F. Cowpea mosaic virus and natural killer cell agonism for in situ cancer vaccination. Nano Lett. 2022, 22, 5348–5356. [Google Scholar] [CrossRef]
- Gautam, A.; Beiss, V.; Wang, C.; Wang, L.; Steinmetz, N.F. Plant viral nanoparticle conjugated with anti-PD-1 peptide for ovarian cancer immunotherapy. Int. J. Mol. Sci. 2021, 22, 9733. [Google Scholar] [CrossRef]
- Lee, K.L.; Murray, A.A.; Le, D.H.T.; Sheen, M.R.; Shukla, S.; Commandeur, U.; Fiering, S.; Steinmetz, N.F. Combination of Plant Virus Nanoparticle-Based in Situ Vaccination with Chemotherapy Potentiates Antitumor Response. Nano Lett. 2017, 17, 4019–4028. [Google Scholar] [CrossRef]
- Cai, H.; Wang, C.; Shukla, S.; Steinmetz, N.F. Cowpea mosaic virus immunotherapy combined with cyclophosphamide reduces breast cancer tumor burden and inhibits lung metastasis. Adv. Sci. 2019, 6, 1802281. [Google Scholar] [CrossRef]
- Zhao, Z.; Ortega-Rivera, O.A.; Chung, Y.H.; Simms, A.; Steinmetz, N.F. A co-formulated vaccine of irradiated cancer cells and cowpea mosaic virus improves ovarian cancer rejection. J. Mater. Chem. B 2023, 11, 5429–5441. [Google Scholar] [CrossRef]
- Barkovich, K.J.; Wu, Z.; Zhao, Z.; Simms, A.; Chang, E.Y.; Steinmetz, N.F. Physalis Mottle Virus-Like Nanocarriers with Expanded Internal Loading Capacity. Bioconjug. Chem. 2023, 34, 1585–1595. [Google Scholar] [CrossRef]
- Almalki, W.H. An Up-to-date Review on Protein-based Nanocarriers in the Management of Cancer. Curr. Drug Deliv. 2024, 21, 509–524. [Google Scholar] [CrossRef] [PubMed]
- González-Gamboa, I.; Caparco, A.A.; McCaskill, J.; Fuenlabrada-Velázquez, P.; Hays, S.S.; Jin, Z.; Jokerst, J.V.; Pokorski, J.K.; Steinmetz, N.F. Inter-coat protein loading of active ingredients into Tobacco mild green mosaic virus through partial dissociation and reassembly of the virion. Sci. Rep. 2024, 14, 7168. [Google Scholar] [CrossRef]
- Arul, S.S.; Balakrishnan, B.; Handanahal, S.S.; Venkataraman, S. Viral nanoparticles: Current advances in design and development. Biochimie 2023, 219, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhou, P.; Wang, Y.M.; Zhu, Z.; Yuan, Q.; Cao, S.; Li, J. Supramolecular nanoparticles based on elastin-like peptides modified capsid protein as drug delivery platform with enhanced cancer chemotherapy efficacy. Int. J. Biol. Macromol. 2024, 256, 128107. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Famta, P.; Tiwari, V.; Kotha, A.K.; Kashikar, R.; Chougule, M.B.; Chung, Y.H.; Steinmetz, N.F.; Uddin, M.; Singh, S.B. Instigation of the epoch of nanovaccines in cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1870. [Google Scholar] [CrossRef]
- Chung, Y.H.; Zhao, Z.; Jung, E.; Omole, A.O.; Wang, H.; Sutorus, L.; Steinmetz, N.F. Systemic Administration of Cowpea Mosaic Virus Demonstrates Broad Protection Against Metastatic Cancers. Adv. Sci. 2024, 11, 2308237. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.H.; Ortega-Rivera, O.A.; Volckaert, B.A.; Jung, E.; Zhao, Z.; Steinmetz, N.F. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc. Natl. Acad. Sci. USA 2023, 120, e2221859120. [Google Scholar] [CrossRef]
- Truchado Martín, D.A.; Juárez-Molina, M.; Rincón, S.; Zurita, L.; Tomé-Amat, J.; Lorz López, M.C.; Ponz, F. A multifunctionalized potyvirus-derived nanoparticle that targets and internalizes into cancer cells. Int. J. Mol. Sci. 2024, 25, 4327. [Google Scholar] [CrossRef]
- Jung, E.; Foroughishafiei, A.; Chung, Y.H.; Steinmetz, N.F. Enhanced Efficacy of a TLR3 Agonist Delivered by Cowpea Chlorotic Mottle Virus Nanoparticles. Small Sci. 2024, 4, 2300314. [Google Scholar] [CrossRef]
- Ghani, M.A.; Bangar, A.; Yang, Y.; Jung, E.; Sauceda, C.; Mandt, T.; Shukla, S.; Webster, N.J.; Steinmetz, N.F.; Newton, I.G. Treatment of Hepatocellular Carcinoma by Multimodal In Situ Vaccination Using Cryoablation and a Plant Virus Immunostimulant. J. Vasc. Interv. Radiol. 2023, 34, 1247–1257.e8. [Google Scholar] [CrossRef]
- Oluwayelu, D.O.; Adebiyi, A.I. Plantibodies in human and animal health: A review. Afr. Health Sci. 2016, 16, 640–645. [Google Scholar] [CrossRef]
- Sheshukova, E.; Komarova, T.; Dorokhov, Y. Plant factories for the production of monoclonal antibodies. Biochemistry Mosc. 2016, 81, 1118–1135. [Google Scholar] [CrossRef]
- Acosta-Ramírez, E.; Pérez-Flores, R.; Majeau, N.; Pastelin-Palacios, R.; Gil-Cruz, C.; Ramírez-Saldaña, M.; Manjarrez-Orduño, N.; Cervantes-Barragán, L.; Santos-Argumedo, L.; Flores-Romo, L. Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus. Immunology 2008, 124, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Yusibov, V.; Mett, V.; Mett, V.; Davidson, C.; Musiychuk, K.; Gilliam, S.; Farese, A.; MacVittie, T.; Mann, D. Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine 2005, 23, 2261–2265. [Google Scholar] [CrossRef] [PubMed]
- Kemnade, J.O.; Seethammagari, M.; Collinson-Pautz, M.; Kaur, H.; Spencer, D.M.; McCormick, A.A. Tobacco mosaic virus efficiently targets DC uptake, activation and antigen-specific T cell responses in vivo. Vaccine 2014, 32, 4228–4233. [Google Scholar] [CrossRef]
- Brennan, F.; Jones, T.; Longstaff, M.; Chapman, S.; Bellaby, T.; Smith, H.; Xu, F.; Hamilton, W.; Flock, J.-I. Immunogenicity of peptides derived from a fibronectin-binding protein of S. aureus expressed on two different plant viruses. Vaccine 1999, 17, 1846–1857. [Google Scholar] [CrossRef] [PubMed]
- Brennan, F.R.; Bellaby, T.; Helliwell, S.M.; Jones, T.D.; Kamstrup, S.; Dalsgaard, K.; Flock, J.-I.; Hamilton, W.D. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice. J. Virol. 1999, 73, 930–938. [Google Scholar] [CrossRef]
- Steinmetz, N.F. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 634–641. [Google Scholar] [CrossRef]
- Young, M.; Debbie, W.; Uchida, M.; Douglas, T. Plant viruses as biotemplates for materials and their use in nanotechnology. Annu. Rev. Phytopathol. 2008, 46, 361–384. [Google Scholar] [CrossRef]
- Steinmetz, N.F.; Evans, D.J. Utilisation of plant viruses in bionanotechnology. Org. Biomol. Chem. 2007, 5, 2891–2902. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, S.; Hefferon, K. Application of plant viruses in biotechnology, medicine, and human health. Viruses 2021, 13, 1697. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ochoa, W.; Singh, P.; Hsu, C.; Schneemann, A.; Manchester, M.; Olson, M.; Reddy, V. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design. Virology 2009, 388, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Lebel, M.-È.; Chartrand, K.; Leclerc, D.; Lamarre, A. Plant viruses as nanoparticle-based vaccines and adjuvants. Vaccines 2015, 3, 620–637. [Google Scholar] [CrossRef]
- Balke, I.; Zeltins, A. Recent advances in the use of plant virus-like particles as vaccines. Viruses 2020, 12, 270. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.W.; Shukla, S.; Wallat, J.D.; Danda, C.; Steinmetz, N.F.; Maia, J.; Pokorski, J.K. Biodegradable viral nanoparticle/polymer implants prepared via melt-processing. ACS Nano 2017, 11, 8777–8789. [Google Scholar] [CrossRef]
- Lo, Y.-L.; Wang, C.-S.; Chen, Y.-C.; Wang, T.-Y.; Chang, Y.-H.; Chen, C.-J.; Yang, C.-P. Mitochondrion-directed nanoparticles loaded with a natural compound and a microRNA for promoting cancer cell death via the modulation of tumor metabolism and mitochondrial dynamics. Pharmaceutics 2020, 12, 756. [Google Scholar] [CrossRef]
- Ahmadi, F.; Ghasemi-Kasman, M.; Ghasemi, S.; Gholamitabar Tabari, M.; Pourbagher, R.; Kazemi, S.; Alinejad-Mir, A. Induction of apoptosis in hela cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan–alginate–sTPP nanoparticles. Int. J. Nanomed. 2017, 12, 8545–8556. [Google Scholar] [CrossRef]
- Ren, J.; Barton, C.D.; Sorenson, K.E.; Zhan, J. Identification of a novel glucuronyltransferase from Streptomyces chromofuscus ATCC 49982 for natural product glucuronidation. Appl. Microbiol. Biotechnol. 2022, 106, 1165–1183. [Google Scholar] [CrossRef]
- Ahmad, M.; Gani, A. Development of novel functional snacks containing nano-encapsulated resveratrol with anti-diabetic, anti-obesity and antioxidant properties. Food Chem. 2021, 352, 129323. [Google Scholar] [CrossRef]
- Valdés, R.; Gómez, L.; Padilla, S.; Brito, J.; Reyes, B.; Alvarez, T.; Mendoza, O.; Herrera, O.; Ferro, W.; Pujol, M. Large-scale purification of an antibody directed against hepatitis B surface antigen from transgenic tobacco plants. Biochem. Biophys. Res. Commun. 2003, 308, 94–100. [Google Scholar] [CrossRef]
- Peyret, H.; Lomonossoff, G.P. When plant virology met Agrobacterium: The rise of the deconstructed clones. Plant Biotechnol. J. 2015, 13, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Odon, V.; Kormelink, R. Plant viruses in plant molecular pharming: Toward the use of enveloped viruses. Front. Plant Sci. 2019, 10, 457269. [Google Scholar] [CrossRef]
- Morgenfeld, M.; Lentz, E.; Segretin, M.E.; Alfano, E.F.; Bravo-Almonacid, F. Translational fusion and redirection to thylakoid lumen as strategies to enhance accumulation of human papillomavirus E7 antigen in tobacco chloroplasts. Mol. Biotechnol. 2014, 56, 1021–1031. [Google Scholar] [CrossRef]
- Lico, C.; Giardullo, P.; Mancuso, M.; Benvenuto, E.; Santi, L.; Baschieri, S. A biodistribution study of two differently shaped plant virus nanoparticles reveals new peculiar traits. Colloids Surf. B Biointerfaces 2016, 148, 431–439. [Google Scholar] [CrossRef]
- Bruckman, M.A.; Randolph, L.N.; VanMeter, A.; Hern, S.; Shoffstall, A.J.; Taurog, R.E.; Steinmetz, N.F. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and-spheres in mice. Virology 2014, 449, 163–173. [Google Scholar] [CrossRef]
- Balke, I.; Zeltins, A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug Deliv. Rev. 2019, 145, 119–129. [Google Scholar] [CrossRef]
- Gulati, N.; Pitek, A.; Czapar, A.; Stewart, P.; Steinmetz, N. The in vivo fates of plant viral nanoparticles camouflaged using self-proteins: Overcoming immune recognition. J. Mater. Chem. B 2018, 6, 2204–2216. [Google Scholar] [CrossRef]
- Pitek, A.S.; Wen, A.M.; Shukla, S.; Steinmetz, N.F. The protein corona of plant virus nanoparticles influences their dispersion properties, cellular interactions, and in vivo fates. Small 2016, 12, 1758–1769. [Google Scholar] [CrossRef]
- Gonzalez, M.J.; Plummer, E.M.; Rae, C.S.; Manchester, M. Interaction of Cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS ONE 2009, 4, e7981. [Google Scholar] [CrossRef]
- Hwang, C.; Sanda, M. Prospects and limitations of recombinant poxviruses for prostate cancer immunotherapy. Curr. Opin. Mol. Ther. 1999, 1, 471–479. [Google Scholar]
- Fausther-Bovendo, H.; Kobinger, G.P. Pre-existing immunity against Ad vectors: Humoral, cellular, and innate response, what’s important? Hum. Vaccines Immunother. 2014, 10, 2875–2884. [Google Scholar] [CrossRef]
- Gulati, N.M.; Stewart, P.L.; Steinmetz, N.F. Bioinspired shielding strategies for nanoparticle drug delivery applications. Mol. Pharm. 2018, 15, 2900–2909. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S. Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 2016, 89, 89–97. [Google Scholar]
- Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 2019, 10, 47. [Google Scholar] [CrossRef]
- Apolone, G.; Joppi, R.; Bertele, V.; Garattini, S. Ten years of marketing approvals of anticancer drugs in Europe: Regulatory policy and guidance documents need to find a balance between different pressures. Br. J. Cancer 2005, 93, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.; Carmichael, A.R.; Griffiths, H.R. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS ONE 2012, 7, e40152. [Google Scholar] [CrossRef] [PubMed]
- Farrell, A.; Papadouli, I.; Hori, A.; Harczy, M.; Harrison, B.; Asakura, W.; Marty, M.; Dagher, R.; Pazdur, R. The advisory process for anticancer drug regulation: A global perspective. Ann. Oncol. 2006, 17, 889–896. [Google Scholar] [CrossRef]
- Calixto, J. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res. 2000, 33, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.C.d.; Silva, J.M.d.; Ramos, M.A. What factors guide the selection of medicinal plants in a local pharmacopoeia? A case study in a rural community from a historically transformed atlantic forest landscape. Evid.-Based Complement. Altern. Med. 2018, 2018, 2519212. [Google Scholar] [CrossRef]
- Khan, T.; Abbasi, B.H.; Khan, M.A.; Shinwari, Z.K. Differential effects of thidiazuron on production of anticancer phenolic compounds in callus cultures of Fagonia indica. Appl. Biochem. Biotechnol. 2016, 179, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Abbasi, B.H.; Khan, M.A.; Azeem, M. Production of biomass and useful compounds through elicitation in adventitious root cultures of Fagonia indica. Ind. Crops Prod. 2017, 108, 451–457. [Google Scholar] [CrossRef]
- Liskova, A.; Kubatka, P.; Samec, M.; Zubor, P.; Mlyncek, M.; Bielik, T.; Samuel, S.M.; Zulli, A.; Kwon, T.K.; Büsselberg, D. Dietary phytochemicals targeting cancer stem cells. Molecules 2019, 24, 899. [Google Scholar] [CrossRef] [PubMed]
- Cojocneanu Petric, R.; Braicu, C.; Raduly, L.; Zanoaga, O.; Dragos, N.; Monroig, P.; Dumitrascu, D.; Berindan-Neagoe, I. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. OncoTargets Ther. 2015, 8, 2053–2066. [Google Scholar] [CrossRef]
- Kapinova, A.; Stefanicka, P.; Kubatka, P.; Zubor, P.; Uramova, S.; Kello, M.; Mojzis, J.; Blahutova, D.; Qaradakhi, T.; Zulli, A. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed. Pharmacother. 2017, 96, 1465–1477. [Google Scholar] [CrossRef]
- Bag, A.; Chattopadhyay, R.R. Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination. PLoS ONE 2015, 10, e0131321. [Google Scholar] [CrossRef]
- Rescigno, T.; Tecce, M.F.; Capasso, A. Protective and restorative effects of nutrients and phytochemicals. Open Biochem. J. 2018, 12, 46. [Google Scholar] [CrossRef]
- Al-Gubory, K.H.; Blachier, F.; Faure, P.; Garrel, C. Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes. J. Sci. Food Agric. 2016, 96, 3462–3468. [Google Scholar] [CrossRef]
- Chandel, P.; Rawal, R.K.; Kaur, R. Natural products and their derivatives as cyclooxygenase-2 inhibitors. Future Med. Chem. 2018, 10, 2471–2492. [Google Scholar] [CrossRef] [PubMed]
- Kapinova, A.; Kubatka, P.; Liskova, A.; Baranenko, D.; Kruzliak, P.; Matta, M.; Büsselberg, D.; Malicherova, B.; Zulli, A.; Kwon, T.K. Controlling metastatic cancer: The role of phytochemicals in cell signaling. J. Cancer Res. Clin. Oncol. 2019, 145, 1087–1109. [Google Scholar] [CrossRef]
- Kubatka, P.; Uramova, S.; Kello, M.; Kajo, K.; Samec, M.; Jasek, K.; Vybohova, D.; Liskova, A.; Mojzis, J.; Adamkov, M. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int. J. Mol. Sci. 2019, 20, 1749. [Google Scholar] [CrossRef] [PubMed]
- Uramova, S.; Kubatka, P.; Dankova, Z.; Kapinova, A.; Zolakova, B.; Samec, M.; Zubor, P.; Zulli, A.; Valentova, V.; Kwon, T.K. Plant natural modulators in breast cancer prevention: Status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 2018, 9, 403–419. [Google Scholar] [CrossRef]
- Jasek, K.; Kubatka, P.; Samec, M.; Liskova, A.; Smejkal, K.; Vybohova, D.; Bugos, O.; Biskupska-Bodova, K.; Bielik, T.; Zubor, P. DNA methylation status in cancer disease: Modulations by plant-derived natural compounds and dietary interventions. Biomolecules 2019, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Kubatka, P.; Uramova, S.; Kello, M.; Kajo, K.; Kruzliak, P.; Mojzis, J.; Vybohova, D.; Adamkov, M.; Jasek, K.; Lasabova, Z. Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J. Cell. Mol. Med. 2017, 21, 2837–2851. [Google Scholar] [CrossRef] [PubMed]
- Kubatka, P.; Kello, M.; Kajo, K.; Kruzliak, P.; Výbohová, D.; Mojžiš, J.; Adamkov, M.; Fialová, S.; Veizerová, L.; Zulli, A. Oregano demonstrates distinct tumour-suppressive effects in the breast carcinoma model. Eur. J. Nutr. 2017, 56, 1303–1316. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers 2018, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Kaur, V.; Kumar, M.; Kumar, A.; Kaur, K.; Dhillon, V.S.; Kaur, S. Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives. Biomed. Pharmacother. 2018, 97, 564–586. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bai, X.-Y.; Wang, C.-H. Traditional Chinese medicine: A treasured natural resource of anticancer drug research and development. Am. J. Chin. Med. 2014, 42, 543–559. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, E.; Badar, U.; Venkataraman, S.; Hefferon, K. Frontiers in bioengineering and biotechnology: Plant nanoparticles for anti-cancer therapy. Vaccines 2021, 9, 830. [Google Scholar] [CrossRef]
- Hefferon, K. Plant virus expression vectors: A powerhouse for global health. Biomedicines 2017, 5, 44. [Google Scholar] [CrossRef]
Phytochemicals and Plant Source | Type of Cancer | Activity/Effects |
---|---|---|
Artemisinin (sesquiterpene lactone) Artemisia annua | Human breast cancer cells | pH-sensitive nanoparticles (D/D NPs) containing dihydroartemisinin (DHA) and docetaxel (DTX) demonstrate anticancer activity in vitro in breast cancer cells by augmenting ROS, decreasing mitochondrial membrane potential, enhancing p53 expression, and eliciting release of cytochrome C into the cytoplasm that in turn activates caspase-3 [33]. |
Triterpene 3,7-dihydroxy-25-methoxycucurbita-5,23-diene-19-al of the cucurbitane-type (DMC) Momordica charantia L. | Human breast cancer cells | Inhibits mTOR-p70S6K signaling through activation of AMPK and downregulation of Akt, resulting in cytoprotective autophagy [34]. |
Furanodiene (sesquiterpene) Rhizoma curcumae | Lung cancer cell lines | Blocks cell proliferation and inhibits progression of the cell cycle in the G1 phase through downregulation of CDK6 and cyclin D1 protein levels and upregulation of the levels of p27 and p21 in 95-D cells [35]. Downregulates the levels of Bcl-2, survivin, pro-caspase-7, and full PARP and upregulates the level of cleaved PARP. It augments the light chain 3-II (LC3-II) protein levels, implicating the involvement of autophagy. |
Berberine (benzylisoquinoline alkaloid) Berberis vulgaris | Human gastric cancer cells in vivo and in vitro | Elicits cytostatic autophagy through inhibition of Akt and MAPK/mTOR/p70S6K pathways [36]. Notably downregulates HIF-1 and vascular endothelial growth factor (VEGF) expression, which reverses resistance to radiotherapy [37]. |
Caffeine Coffee beans | Human lung adenocarcinoma spheroid models | Decreases the expression of Nrf2 and Claudin-2, leading to impairment of mitochondrial respiration and generation of ROS [38]. Exaggerates cisplatin and doxorubicin toxicity in these spheroids [38]. |
Deguelin Peas and beans of the Leguminosae family | Lung cancer cells | Induces apoptosis by augmenting release of cytochrome C and protein levels of the apoptosis induction factors. Elicits PUMA expression [39] and inhibits the P13K/AKT pathway, triggering the binding of Foxo3a with the PUMA promoter to induce its transcription. In turn, PUMA stimulates both Bax and the intrinsic mitochondrial cellular death pathway. Augments doxorubicin chemotherapeutic sensitivity in vivo and in vitro. |
Piperlongumin Piper longum L. | Regulates STAT3 (signal transducer and activator of transcription 3), nuclear factor kappa B, phosphatidylino-sitol 3-kinase/protein kinase B, cyclooxygenase-2, cyclin D1, and the glutathione pathway, which are involved in cancer initiation, cellular proliferation, and tumor progression [40,41,42,43,44,45,46,47]. Induces antioxidant and immunity-promoting effects. | |
Vinblastine Catharantus roseus | Ovarian cancer, breast cancer, osteosarcoma, lung carcinoma, lymphoma, leukemia, and gastric cancer A549, CCF-STTG1, HGC-27, Hela, and MCF-7 cancer cell lines and murine cancer models | Microtubule targeting agent that disrupts microtubule polymerization; when loaded on to graphene quantum dots (GQD), enhanced its cytotoxicty in cancer cells while at the same time exhibiting lowered toxicity towards normal cells [48,49,50]. |
Vincristine Catharantus roseus | Acute lymphoblastic leukemia (ALL) in vitro and in vivo models | Daratumumab–polymersome–vincristine (DP-VCR) shows high selectivity for CD38+ ALL cells in vitro [51]. In vivo murine models treated with DP-VCR showed significant decrease in leukemia burden in the liver, spleen, blood, and bone marrow and improved survival along with fewer side effects. This proved DP-VCR to be a potent and safe nanotherapy for CD38+ ALL. |
Piperine Piper nigrum | Colon cancer cell lines | Suppresses glucuronidation of many chemopreventive substances, resulting in enhancement of their bioavailability; inhibits the cell cycle; and promotes apoptosis [52]. |
Aged black garlic extract Allium sativum S-Allyl-Mercapto-Cysteine (SAMC) Black garlic extract | MDA-MB-361 and MCF-7 cell line ER+ breast cancer cells U937 human leukemia cells HT29 colon cancer cells SW620 human colon cancer cell line Mouse macrophage line (TIB-71), MCF-7 breast cancer, prostate cancer (PC-3), and Hep-G2 cells HL-60 leukemia cells Human gastric cancer cells SGC-7901 and in murine models | Induces apoptosis of these cells through blockage of BCL-2 and MCL-1 anti-apoptotic protein expression while eliciting the expression of BAK and BIM pro-apoptotic proteins [53]. The decrease in MCL-1 expression is mediated by the activation of JNK caused by an enhancement of ROS production in cancer cells [53]. Stimulates caspase-based apoptosis initiated by both extrinsic and intrinsic pathways [54]. Blocks proliferation and stimulates apoptosis, possibly by modulating the PI3K/Akt signaling pathway, promoting PTEN expression, and decreasing Akt and p-Akt expression [55]. Induces apoptosis via the p38 and JNK pathways, which in turn activate the p53 and Bax [56]. Inhibits cell cycle and cell proliferation, finally leading to apoptosis [57,58]. Dose-determined cytotoxic effects [59]. Exhibits immunomodulatory and anticancer effects wherein ABGE augmented GSH-Px and SOD activity and led to apoptosis and inhibition of cancer cell growth [60]. |
Sulforaphane Cruciferous vegetables, including broccoli and brussels sprouts | Breast cancer stem cells and triple negative breast cancer cells | Exhibits anti-inflammatory and antioxidant potentials and represses the growth of cancer and associated cell-proliferative capabilities. Particularly, Notch and wnt/β-catenin BCSC-associated pathways are abrogated [61]. |
Isothiocyanates Cruciferous vegetables | Colon, liver, breast, prostate, bladder, pancreatic, lung, endometrial, and glioblastoma cancer | Induces anticancer activities [62,63,64,65,66,67,68,69,70,71] |
Curcumin (polyphenol) Curcuma longa | Myeloid leukemia cell line HT-29 and AGS human cancer cell lines Glioma cell lines Breast cancer stem cells (BCSCs) Head and neck cancer cells | Elicits apoptosis and autophagy by negative regulation of the Bcl-2 protein [72]. Induces ER stress and malfunction of mitochondria to trigger apoptosis [73]. Increases expression of ING4 and p21, following which it upregulates BAX and downregulates the NF-B and Bcl-2 signaling pathways resulting in apoptosis [74,75]. Terminates the recognized wnt/β-catenin pathway, thus precluding β-catenin nuclear translocation and Slug transcription factor activation. This leads to restoration of the expression of E-cadherin and blockage of BCSC and EMT migration [76]. Inhibits the PI3K/Akt/mTOR pathway [77], nuclear factor-kappa B (NF-κB), and p38 mitogen-activated protein kinase (MAPK) pathways [78]. |
Epigallocatechin-3-gallate (EGCG), (polyphenol) Camellia sinensis (green tea) | Breast cancer cells ER+ breast cancer cells | Blocks proliferation of tumor cells, triggers apoptosis, precludes angiogenesis and cytokine synthesis [79], blocks the proliferative and angiogenic capability of breast cancer cells, wherein it inhibits the expression of hypoxiainducible factor 1 subunit alpha (HIF-1α), activates NF-kB, and expresses vascular endothelial growth factor (VEGF) in mouse models [80,81]. Downregulates matrix metalloproteinase-9 (MMP9) induced by EGF, resulting in cessation of metastasis and cellular invasion [82]; interferes with the PI3K/Akt pathway, impeding cancer cell survival and proliferation [83,84]. |
Gallic acid Onions, red fruits, and tea | Lung cancer cells and murine models of lung cancer | Gallic acid and cisplatin block colony formation and formation of tumor spheroids [85], elicit apoptosis, and inhibit the P13K/Akt pathway, which upregulates the tumor suppressor protein, p53, that, in turn, controls proteins related to the cell cycle, such as E1, Cyclin D1, p21, and p27 as well as intrinsic apoptotic proteins, including cleaved caspase-3, Bax, and Bcl-2. Blocks progression of lung cancer by arresting cell cycle and inducing apoptosis, thereby making it a promising therapeutic candidate to confront non-small cell lung cancer; functions as an adjuvant to promote the cytotoxicity of cisplatin towards lung cancer cells [85] |
Honokiol (biphenolic neolignane) Magnolia officinalis | Human glioblastoma | Blocks glioblastoma cell proliferation by inciting slight arrest of the G0/G1 phase cell cycle and causing apoptosis through both caspase-dependent and caspase-independent pathways [86]; the apoptotic effect involves blockage of STAT3 signaling and ERK1/2 in addition to the activation of p38 MAPK signaling pathway. |
Oleocanthal Virgin olive oils | Prostate and breast cancer cells | Suppresses proliferation, invasion, and migration of cancer cells by inhibiting c-Met phosphorylation, blocks progression of the cell cycle as well as cell proliferation, elicits oxidative stress, and induces apoptosis while stimulating the immune system, thereby precluding carcinogenesis [87]. |
Cinnamaldehyde from Cinnaomomum species and chlorogenic acid from green coffee | Breast cancer cell lines and experimental models of breast cancer | Blocks initiation of tumor formation by detoxifying carcinogens, preventing the formation of DNA adducts, scouring electrophilic species, preventing peroxidation of lipids, and protecting against mutagenesis; tumor suppressing by inhibiting the growth of preneoplastic tissues, vascularization, capability of stemness, tumor metastasis and invasion, promoting autophagy and apoptosis, repressing tumor cell invasion and migration, disrupting the energy metabolism of cancerous tissues, and blocking estrogen receptors [88,89,90,91]. |
Resveratrol Grapes, blueberries and cranberries | Ovarian cancer cell lines Breast cancer stem cells | Initiates autophagy, wherein it lowers the amount of mTOR and phosphorylated Akt [92]. Induces the downregulation of the Wnt/β-Catenin signaling pathway and causes autophagy; has antitumor, antioxidant, and anti-inflammatory properties [93]. |
Anacardic acid (2-hydroxy-6-pentadecylbenzoic acid) Cashew nut shells | A549 human lung cancer cells | Induces ER stress, which promotes CHOP expression as well as cleavage of caspase-12 in addition to the disruption of Ca2+ homeostasis, resulting in apoptosis [94]. |
Ampelopsin Ampelopsis grossedentata | MCF-7 and MDA-MB-231 breast cancer cells | Induces intracellular ROS production and apoptosis associated with malfunction of mitochondria in breast cancer cells including loss of mitochondrial membrane potential, build-up of high levels of ROS and augmented expression of Bcl-2/Bax expression [95]. |
Apigenin Bell pepper, garlic, cabbage and celery | A549 lung cancer cells | Inhibits cell growth and promotes apoptosis likely though enhancement of ROS generation while having no effect on normal cells, following which caspases 3 and 9 are induced, leading to the death of A549 cells through apoptosis [96]. |
Artocarpin Artocarpus species | Non-small cell lung carcinoma (NSCLC, A549) cell lines | Phosphorylates and activates cellular protein kinases AktS473, p38, and Erk1/2, followed by apoptosis mediated by the elicitation of ROS [97]; activates p53-dependent apoptotic proteins Apaf-1, caspase-3, cytochrome c, and PUMA; elicits apoptosis mediated by the augmentation of both independent AktS473/NF-κB/c-Myc/Noxa and ERK/p38/p53-dependent cascades by ROS. |
Butein Butea monosperma | Human ovarian cancer cells and mouse xenografts | Inhibits interaction between IL-6/IL-6Rα and regulates the IL-6/STAT3/FoxO3a pathway; reduces cell proliferation, invasion, and migration in addition to enhancement of apoptosis and cell cycle arrest [98]. |
Chrysin Blue passionflower, propolis and honey | In vivo tumor models and cancer cell lines | Inhibits tumor growth by inducing apoptosis, altering cell cycle, inhibiting invasion, angiogenesis, and metastasis while being non-toxic to normal, healthy cells; augments the ratio of Bax/Bcl2, induces caspases 3 and 9, and stimulates lung cancer cell apoptosis [99]. |
Delphinidin Bilberry (Vaccinium myrtillus), jamun (Syzygium cumini), and blackcurrant (Ribes nigrum) | HCT116 human colon cancer cells | Elicits apoptosis through the generation of ROS, activates cytochrome C, caspase 3, 8, and 9, and pro-apoptotic Bax and inhibits the expression of anti-apoptotic proteins, including ERK1/2, p38, and STAT-3 [100]. |
Genistein Soybeans | Ovarian cancer cells, prostate and breast cancer | Induces cell death in cancer cells via the caspase-independent pathway by inhibiting glucose uptake and leading to autophagy and apoptosis [101,102,103,104,105,106,107]; induces apoptotic effects by modulating the Fas-FasL pathway, TRAIL-DR pathway, TNF-α-TNFR1 pathway, Bcl2-Bax pathway, and targeting the PI3K-Akt-mTOR pathway and the JAK-STAT3 signal pathway. It exerts notable antiproliferative activities against ER+ human breast cancer cells by inducing G2-M arrest, p21 expression, followed by apoptosis. |
Kuwanon Mulberry root | NCI-H292 and A549 lung cancer cells | Decreases cell migration and proliferation, while augmenting apoptosis via the mitochondrial pathway, paraptosis by incrementing cytoplasmic vacuolation and by inducing ER stress [108,109] |
Quercetin Many vegetables, onion, apples, green tea, berries and red wine | Gastric cancer cells Triple-negative and ER+ breast cancer cell lines Colorectal adenocarcinoma and hepatocellular cell lines Breast cancer cells | Augments the accretion of hypoxia-induced factor 1 (HIF-1), in turn inhibiting mTOR signaling and stimulating the biosynthesis of BNIP3/BNIP3L. This process disrupts the Beclin 1/Bcl-2 (Bcl-xL) complex, leading to the activation of autophagy [110]. Initiates apoptotic cell death [111]. Quercetin–zinc(II) complex induces apoptosis [112,113]. Downregulates ALDH1A1 activity; suppresses Mucin 1 (MUC1) expression by inhibiting cell proliferation and cancer metastasis; downregulates the expression of epithelial cell adhesion molecule (EpCAM) implicated to be actively involved in inducing cancer stemness, cellular proliferation, angiogenesis, metabolism, drug resistance, and epithelial to mesenchymal transition (EMT); shuts down the stemness of breast tumor progenitor cells [114]. |
Silibinin Silybum marianum (milk thistle) and Cynara scolymus (artichoke) | Breast cancer cells | Interacts with Erα and influences RAS/ERK and P13K/AKT/mTOR pathways of signal transduction, thereby inducing autophagy. Its interaction with Erβ enhances apoptosis. Silibinin blocks metastasis through EMT suppression by inhibiting the expression of TGF-β2. The anti-metastatic effects of silibinin is also associated with the Jak2/STAT3 pathway [115]. |
Juglone Carya catharsis | Human endometrial cancer cells | Upregulates the expression of p21 mRNA and protein, concomitant with diminished levels of cyclin A, CHK1, cdc25A, and CDK2. Furthermore, it leads to the downregulation of Bcl-xL and Bcl-2 and upregulation of cytochrome C, Bax, and Bad, suggesting its association with the mitochondrial pathway during apoptosis [116]. |
2-Methoxy6acetyl7methyljuglone (MAM) Polygonum cuspidatum | A549 lung cancer cells | Results in necroptosis and production of nitric oxide through activation of JNK; this augments peroxidation of lipids, leading to the generation of peroxynitrite (ONOO–), which triggers apoptosis [117]. |
Dioscin Polygonatum sibiricum | Breast cancer | Reduces breast cancer stemness by arresting the cell cycle through regulation of AKT/mTOR and p38 MAPK signaling pathways [118]. Dioscin elicits the expression of p53 and p21 and blocks the expression of many cyclin-dependent kinases and cyclins. |
Ginsenosides Panax ginseng | Cancer cells | Controls the p53 pathway, neutralizes ROS, modulates miRNAs through decrease in Smad2 expression, regulates Bcl-2 expression through NF-kB pathway normalization, blocks inflammatory pathways through reduction in cytokine production, incites cell cycle arrest by restriction of CDC2 and cyclin E1, and induces apoptosis of cancerous cells [119]. |
Garcinol Garcinia indica | SKBR3A, MDAMB231, and MCF7 breast cancer cell lines | Downregulates the expression of anti-apoptotic proteins like Bax and Bcl-XL; elicits cell cycle arrest followed by apoptosis in breast cancer cells overexpressing Her-2; causes loss of fragmentation of mitochondria and mitochondrial transmembrane potential, leading to apoptosis in MCF-7 cells [120]. |
Propolis Honey bees from substances collected from parts of plants, buds, and exudates | MCF-7 human breast cancer cells | Causes ER stress whereupon CCAAT/enhancer binding homologous protein (CHOP) in turn elicits apoptosis in response to the ER stress [121]. |
Thymoquinone Nigella sativa | Head and neck squamous cell cancer cells Oral cancer cells and breast cancer cells | Elicits cell death through autophagy dependent on LC3-II activation and apoptosis dependent on caspase activation [122]; causes strong cytotoxicity; and incites apoptotic cell death, as shown by increased caspase-9 activation and Bax expression. Causes cell death by means of anti-neoplastic effects that can elicit autophagy and apoptosis; blocks bone metastasis associated with breast cancer cells by mediating disruption of NF-kB and CXCR4 signaling axis [123]. |
6-Shogaol Zingiber officinale Rosc | SMMC-7721 cells (human hepatocellular carcinoma cell line) | Induces ER stress; PERK/eIF2α dephosphorylation and induction of the expression of the downstream CHOP generate a caspase cascade effect that results in apoptosis [124]. |
γ–Tocotrienol (Vitamin E) Annatto seeds, palm oil and rice bran oil | LNCaP and PC-3 human prostate cancer cells | Elicits autophagy, apoptosis and necrosis accompanied by enhancement of intracellular dihydrosphingosine and dihydroceramide levels. indicating modulation of the sphingolipid biosynthetic pathway [125]. |
ω-Hydroxyundec-9-enoic acid (ω-HUA) Oryza officinalis | Human non-small cell lung cancer (NSCLC) | Induces ROS whereupon biosynthesis of CHOP and phosphorylated p-eIF2α were suppressed by ROS along with NAC, revealing that ROS is vital for x-HUA-stimulated ER stress and caspase-enabled apoptosis [126] |
Carotenoids such as lutein, lycopene, zeaxanthin, α-carotene, β-Carotene and astaxanthin [127] Vegetables, fruits, milk, meats, eggs, some crustacean seafoods and fish [128,129] Saffron extract from Crocus sativus | Cancer cells Liver cancer | Suppress the biosynthesis of pro-inflammatory cytokine molecules as well as enzymes, including COX-2 and NO in LPS-elicited cells; further, carotenoid extract showed anti-inflammatory potential by inhibiting JNK phosphorylation and NF-κB activation [130]. Decreases cell proliferation, oxidative stress, and inflammation; elicits apoptosis in addition to the downregulation of inflammatory markers like NF-κB-p65, iNOS, and COX-2 in vivo [131]. |
Emodin Rheum officinale and Polygonum cuspidatum | Triple-negative breast cancer (TNBC) murine models MDA-MB-435S cells in vitro and in mouse models Colorectal cancer | Targets transcriptional regulators SerRS and NCOR2 to inhibit the transcription of anti-vascular endothelial growth factor A (VEGFA) as well as tumor angiogenesis in murine models [132]. Emodin liposomes and daunorubicin liposomes modified with arginine8-glycine-aspartic acid (R8GD) were strongly cytotoxic and efficiently suppressed the generation of VM (vasculogenic mimicry) channels and tumor cell metastasis occurring in invasive breast cancer [133]. Additionally, they induced the downregulation of some metastasis-associated proteins such as HIF-1α, TGF-β1, VE-cad and MMP-2. Inhibits cell proliferation and elicits apoptosis [134]; reduces GSH content and expression of GPX4 and xCT while augmenting the generation of ROS, lipid peroxidation, and MDA; inactivates the NF-κb pathway in these cells and in murine models wherein it inhibited tumor growth and elicited in vivo ferroptosis through the inactivation of the NF-κb pathway. |
Phytochemical | Preparation and Extraction Methods |
---|---|
Curcumin | Traditional methods using extraction with ethanol, distillation with steam, hot and cold percolation, utilizing alkaline solution [152] and hydrotrope [153]. Advanced methodologies such as extraction with supercritical fluid bereft of organic solvents, microwave and ultrasonic extraction, Soxhlet extraction, enzyme-mediated extraction [154,155]; chromatography for separation of curcuminoids from the co-extracted oleoresins and volatile oils, bisdemethoxycurcumin, and demethoxycurcumin [156,157]. |
Resveratrol | Extraction with organic solvents [158,159], enzyme-mediated ultrasonic extraction [160], maceration [161], thermal heating and subsequent enzyme treatment of grape peel extracts with pectinases and glucanase [162]; solid-phase extraction HPLC methodology coupled with a nanofibrous sorbent [163]; quick magnetic solid phase extraction using mesoporous nanoparticles grafted with alendronate sodium to efficiently identify trans-resveratrol [164]. |
EGCG (Epigallocatechin Gallate) | Traditional solvent extraction, ultrasound-enabled extraction, microwave-assisted extraction, supercritical CO2, Soxhlet extraction, processing under high pressure, subcritical water extraction [165,166,167]; green extracting compound like cyclodextrin augmented the yield of EGCG [168]; polymeric electrode PAN/PPY laden with TiO2 and rGO nanoparticles improved the efficacy of extraction of EGCG to high purity [169]. |
Allicin | Supercritical CO2 extraction [170], pressurized liquid extraction [171], supercritical fluid extraction [172], ultrasonic assisted extraction [173]; HPLC-MTT assay [174], salting-out extraction [175]; water extraction followed by ultrasound-enabled binding with isolates from whey protein improved the solubility, stability, and emulsifying properties [176]. |
Emodin | Maceration, reflux extraction, microwave-enabled extraction, ultrasonication extraction, ultrasonic nebulization extraction, stirring extraction, preparative liquid chromatography, and supercritical CO2 extraction [177,178,179,180]. |
Genistein | Treatment with enzymes and/or acid followed by extraction with solvent [181], ultrasonication [182], extraction with supercritical fluid with and without enzyme hydrolysis [183,184]; chemical synthesis utilizing microwave ovens [185], germinating soybean seeds, and transgenic rice with high content of genistein [185]. |
Parthenolide | Feverfew extraction using petroleum ether and chloroform [186], gradient HPLC [187], and supercritical CO2 extraction; bottle stirring methods using acetonitrile with 10% water (v/v) gave the highest yield [188,189,190]. |
Luteolin | Maceration, followed by heat reflux Soxhlet extraction; reflux with methanol proved to be superior to other extraction techniques [191]; other techniques include hydrodistillation [192] ultrasonic-assisted extraction [193], microwave-assisted method [194], and enzyme-assisted extraction [195]. |
Quercitin | Simple ethyl acetate cold extraction [196], supercritical CO2 extraction [197], ultrasound-assisted extraction [198], subcritical water extraction [199], microwave extraction [200], and ionic liquid-based extraction with pressurized liquid combined with HPLC [201]. |
Study | Drugs Involved | Conditions/Effects | Status | Identifier | References |
---|---|---|---|---|---|
Therapeutic effect of luteolin natural extract versus its nanoparticles on tongue squamous cell carcinoma cell line | Luteolin Nano-luteolin | Tongue neoplasms Carcinoma | Unknown | NCT03288298 | [202] |
Artemisinin derivative SM934 inhibits expression of cathepsin K after forming a complex with testosterone | SM934 (a novel water-soluble artemisinin analog) | Inhibits proliferation and metastasis in breast cancer | Phase II | NA | [203,204] |
Study of Liposomal Curcumin in combination with RT and TMZ in patients with newly diagnosed high-grade gliomas | Curcumin combined with radiotherapy (RT) and Temozolomide (TMZ) | Glioblastoma | Phase I/Phase II | NCT05768919 | [205] |
Curcumin Bioavailability in Glioblastoma Patients | Curcumin | Glioblastoma | Unknown | NCT01712542 | [206] |
Phase I Assay-guided Trial of Anti-inflammatory Phytochemicals in Patients With Advanced Cancer | Grape seed extract and vitamin D | Solid cancers (gastrointestinal, lung, breast, prostate, lymphoma, or cancer of the lymph nodes) | Phase 1 Completed | NCT01820299 | [207] |
Dietary Intervention With Phytochemicals and Polyunsaturated Fatty Acids in Prostate Cancer Patients | Tomato or a multi-diet consisting of grape juice, pomegranate juice, tomato, green tea, black tea, soy, selenium, and PUFAs | Prostate cancer | Phase 1 and Phase 2 Completed | NCT00433797 | [208] |
Clinical Trial of Lung Cancer Chemoprevention With Sulforaphane in Former Smokers | Sulforaphane | Lung cancer | Phase 2 Completed | NCT03232138 | [209] |
Black Raspberry Confection in Preventing Oral Cancer in Healthy Volunteers | Black raspberry confection | Oral cancer | Phase 1, Active, not recruiting | NCT01961869 | [209] |
Docetaxel With a Phytochemical in Treating Patients With Hormone Independent Metastatic Prostate Cancer (PROTAXY) | Phytochemical dietary supplement with docetaxel | Prostate cancer | Phase 2, Completed | NCT01012141 | [209] |
Tangerine or Red Tomato Juice in Treating Patients With Prostate Cancer Undergoing Surgery | Tangerine tomato juice or red tomato juice rich in lycopene | Prostate cancer | Not applicable | NCT02144649 | [209] |
Type of Cancer | Plant System Used | Effects | Reference |
---|---|---|---|
Colorectal cancer | Transgenic tobacco expressing large single chain (LSC) antibody CO17-1A (LSC CO) and LSC CO tagged with the endoplasmic reticulum (ER) retention signal KDEL (LSC COK) | In vitro binding activity towards human colon cancer cell lines | [268] |
Breast cancer | Transgenic tobacco expressing anti-HER2 VHH-FcK MAB | Bound to cancer cells in vitro and inhibited cell migration | [269] |
Colorectal cancer and breast cancer | Transgenic tobacco expressing both MABs LSC CO17-1AK and anti-HER2 VHH-FcK in the same plant | Demonstrated binding to human SW620 and SKBR-3 cancer cells and inhibition of cell migration in vitro | [270] |
Mouse colorectal cancer | Transient expression of recombinant bispecific monoclonal antibody for dual inhibition of programmed cell death protein 1/programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 axes in Nicotiana benthamiana | Significant inhibition of tumor growth in vivo and reduction in tumor weight and volume | [267] |
Murine colon cancer | Transient expression of anti-CTLA-4 2C8 MAB in N. benthamiana by agroinfiltration | Recognition and binding to both human and murine CTLA-4 in vitro as well as inhibition of in vivo tumor growth | [267] |
Mouse colorectal tumor | Atezolizumab anti-PD-L1 antibody transiently produced in N. benthamiana | Mouse tumor growth inhibition and in vitro binding to PD-L1 | [271] |
Mouse MC38 colon cancer | Recombinant anti-PD-1 Nivolumab was produced in Nicotiana benthamiana by transgenic technology | Reduced in vivo mouse tumor growth | [272] |
Gastric and colorectal cancer | Transient expression of Durvalumab variants in Nicotiana benthamiana | Recognition and binding to recombinant PD-L1 and to PD-L1 expressed in gastrointestinal cancer cells, precluding its interaction with PD-1 on T cells, thereby augmenting T-cell immunity | [273] |
Breast cancer | Trastuzumab transgenically expressed in glycoengineered rice | Inhibition of BT-474 cancer cell line proliferation, increased ADCC efficacy against Jurkat cells, and efficacious tumor uptake with lower liver uptake compared to TMab in a xenograft assay using the BT-474 murine model. | [274] |
Hodgkin lymphoma, melanoma, lung colorectal, and breast and cancer | Transient expression of pembrolizumab and nivolumab in Nicotiana benthamiana | PD-1/PD-L1 inhibitory activity in vitro; both immune checkpoint inhibitors (ICIs) inhibit the PD-1/PD-L1 immune checkpoint leading to CTL activation and the elicitation of apoptosis in tumorigenic cells via T-cell-mediated cytotoxicity | [275] |
CD27-expressing lymphoma and leukemia, recurrent glioblastoma, advanced solid tumors | Transient generation of Varlilumab (anti-human CD27) in N. benthamiana | Co-expression with chimeric beta 1,4-GALT (beta 1,4-galactosyltransferase) successfully achieved biantennary b1,4-galactosylated Varlilumab | [276] |
Therapeutic Mechanism | Description | Example | Advantages | Challenges | Ref |
---|---|---|---|---|---|
Targeted Drug Delivery | PVNPs are engineered to deliver drugs directly to tumor cells, minimizing side effects and enhancing treatment efficacy. | Chemotherapy drugs encapsulated in PVNP | Reduces systemic toxicity—increases drug concentration at tumor site | Requires precise targeting | [292] |
Gene Therapy | PVNPs deliver genetic material to correct or modify defective genes within cells. | siRNA delivered via PVNPs | Potential to cure genetic disorders—can provide long-term effects | Delivery efficiency—risk of off-target effects | [293] |
Delivery of cancer antigens (vaccines) | PVNPs can stimulate the immune system to attack cancer cells | PVNPs loaded with cancer antigens | Harnesses body’s natural defenses—can provide long-lasting protection | Risk of autoimmune reactions—requires careful modulation of immune response | [294] |
In situ Vaccination | PVNPs are used as vaccines directly at the tumor site, inducing a localized immune response against cancer cells. | Monotherapy with PVNPs or combined with tumor-associated antigens | Induces strong local immune response—minimizes systemic side effects | Requires precise administration—potential for local inflammation | [295,296] |
Delivery of immunoadjuvants | PVNPs modulate the immune system to enhance its response to cancer. | PVNPs or loading with Toll-like receptor (TLR) agonists | Enhances efficacy of existing treatments—can overcome immune evasion by tumors | Risk of over-stimulation of the immune system—balancing immune activation and suppression | [297] |
Combination Therapy | PVNPs are used in combination with other treatments (e.g., chemotherapy, radiation) to enhance overall therapeutic efficacy. | PVNPs combined with chemotherapy drugs, Immune Checkpoint Inhibitors | Synergistic effects—can target multiple pathways | Complexity of treatment regimen—potential for increased side effects | [298,299] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashim, G.M.; Shahgolzari, M.; Hefferon, K.; Yavari, A.; Venkataraman, S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering 2025, 12, 7. https://doi.org/10.3390/bioengineering12010007
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering. 2025; 12(1):7. https://doi.org/10.3390/bioengineering12010007
Chicago/Turabian StyleHashim, Ghyda Murad, Mehdi Shahgolzari, Kathleen Hefferon, Afagh Yavari, and Srividhya Venkataraman. 2025. "Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals" Bioengineering 12, no. 1: 7. https://doi.org/10.3390/bioengineering12010007
APA StyleHashim, G. M., Shahgolzari, M., Hefferon, K., Yavari, A., & Venkataraman, S. (2025). Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering, 12(1), 7. https://doi.org/10.3390/bioengineering12010007