An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1
"> Figure 1
<p>Layout of the trial with neoadjuvant intratumoral ac-PD1 and CPMV/ac-PD1 injections. Before treatment, patient evaluation included the collection of a blood sample, thoracic radiographs, tumor measurements, QOL evaluation, and collection of an FNA. During a four-week treatment period, three dogs (P1–P3) received IT acPD-1 weekly and three dogs (P4–P6) received IT CPMV (D0) and, two days later, IT acPD-1 (D2). Three dogs (P1, P5, and P6) were treated further after D29 with CPMV/acPD-1 as a single weekly IT injection for 9 to 11 weeks.</p> "> Figure 2
<p>acPD-1 and CPMV/acPD-1 treatments are associated with tumor control. Weekly acPD-1 as monotherapy (patients P1-P3; purple arrows; (<b>A</b>)) or CPMV (light green arrows in (<b>C</b>)) plus acPD-1 (purple arrows in (<b>C</b>)) was administered for four weeks to patients P4-P6; in P5, tumors P5.1 and P5.2 were treated. Starting on D29, long-term weekly IT CPMV/acPD-1 treatment ((<b>E</b>); dark green arrows) was administered to target tumors in patients P1, P6, and P5 (P5.1 and P52 were treated). The %TGI (relative to D0) in (<b>B</b>,<b>D</b>,<b>F</b>) indicates the SD in the dotted areas (−30 to 20), above 20% indicates PD, and below −30% indicates a partial response.</p> "> Figure 3
<p>CPMV/acPD-1 treatments had a variable abscopal effect on established lung metastases. Of the five established lung metastatic nodules in P5, M1, M2, M4, and M5, nodules were responsive to CPMV/acPD-1 treatments, while M3 was not and had steady tumor growth (<b>A</b>). During treatment, we observed CR in M2 and M4, PR in M1 and M5, and PD in M3 (<b>B</b>). After surgery on D113, we observed CR in M5, PR in M1, and PD in M3 (<b>B</b>). In P6, M1 and M3 nodules showed transient responses, and M2 slowly grew during treatment and after surgery on D79 (<b>C</b>). In this patient, we observed transient SD in the largest M1, and a rapid transition from SD to PD in M2 and M3 (<b>D</b>). The vertical dotted line on the x-axis indicates palliative surgery (mastectomy or tumor resection) of the primary tumors. Representative radiographs illustrate tumor changes in the left (<b>E</b>–<b>H</b>) and right (<b>I</b>–<b>L</b>) lung metastatic nodules in P5 before (D-2), during (up to D94), and after surgery (D254-D315). Note changes in tumor volume in M1 and M5, as well as the absence of M2, M4, and M5.</p> "> Figure 4
<p>acPD-1 and CPMV/acPD-1 treatments induced transcriptomic changes in the tumor microenvironment. During the four-week treatment period, acPD-1 and CPMV/acPD-1 treatments affected gene expression in injected tumors (<b>A</b>). Extended CPMV/acPD-1 treatments affected gene expression in injected tumors, noninjected lung metastases (<b>B</b>), and noninjected tumors and inguinal nodes (<b>C</b>). Details in text. Legends: Each row indicates a gene; each column, an individual patient. Patient characteristics are indicated on the right side of the graphs. Patients are identified by a number (P3–P6), followed by the number of the treated or untreated tumor or metastatic lesion, and the day the sample was collected. P3 and P6 had a single treated tumor and are represented as P3.0 and P6.0, while P4 and P5 had injected tumors (P4.1, P5.1, and P5.2), noninjected tumors (P5.3.113 and P5.4.113), and inguinal nodes in P5 (P5.5) and P6 (P6.2). The numbers at the end of each sample represent the day when the sample was collected. Metastatic lesions are represented by the letter M. Gene expression levels are represented by z-scores.</p> "> Figure 5
<p>CPMV/acPD-1 treatments induced changes in immune cell contents in injected tumors and noninjected, established metastases. CPMV/acPD-1 treatments increased immune cell content in both P5 (<b>A</b>) and P6 (<b>B</b>) patients with variations observed in the type of immune cells and the intensity of the increase, with some immune cells having a high content from D0 up to surgery day in P5 (D113), but not in P6 (D79) (comparing CD8 T cells, mast cells, plasmacytoid dendritic cells (pDCs), myeloid dendritic cells (mDC) between P5 and P6) or an increase from D0 to D29 and then a decrease in the content (compare plasma cells between P5 and P6). It is also noticeable that the cell contents from surgery to metastases decreased in P5, while an increase was observed in most of the immune cells in P6 metastases.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Canine Patient Recruitment and Selection Criteria
2.2. Safety Evaluation
2.3. Study Design
2.4. Treatment
2.5. Tumor Response Evaluation
2.6. Histopathology and Immunohistochemistry (IHC) Assays
2.7. Transcriptome Analysis of the TME
2.8. Statistical Analyses
3. Results
3.1. Clinico-Pathological Characteristics of CMC Patients
3.2. acPD-1 Monotherapy or acPD-1/CPMV Combined Therapy Is Safe
3.3. acPD-1 or acPD-1/CPMV Therapy Controls Tumor Burden in Injected and Noninjected CMC Tumors
3.4. Abscopal Effect of CPMV/acPD-1 Treatments on Established Lung Metastases
3.5. acPD-1 and CPMV/acPD-1 Treatments Induced Changes in the TME
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Sun, Q.; Hong, Z.; Zhang, C.; Wang, L.; Han, Z.; Ma, D. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. Sig. Transduct. Targeted Ther. 2023, 8, 320. [Google Scholar] [CrossRef]
- Debien, V.; De Caluwé, A.; Wang, X.; Piccart-Gebhart, M.; Tuohy, V.K.; Romano, E.; Buisseret, L. Immunotherapy in breast cancer: An overview of current strategies and perspectives. NPJ Breast Cancer 2023, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Mezni, E.; Behi, K.; Gonçalves, A. Immunotherapy and breast cancer: An overview. Curr. Opin. Oncol. 2022, 34, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Raposo, T.P.; Arias-Pulido, H.; Chaher, N.; Fiering, S.N.; Argyle, D.J.; Prada, J.; Pires, I.; Queiroga, F.L. Comparative aspects of canine and human inflammatory breast cancer. Semin. Oncol. 2017, 44, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Khanna, C.; London, C.; Vail, D.; Mazcko, C.; Hirschfeld, S. Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin. Cancer Res. 2009, 15, 5671–5677. [Google Scholar] [CrossRef]
- Rowell, J.L.; McCarthy, D.O.; Alvarez, C.E. Dog models of naturally occurring cancer. Trends Mol. Med. 2011, 17, 380–388. [Google Scholar] [CrossRef]
- Alvarez, C.E. Naturally occurring cancers in dogs: Insights for translational genetics and medicine. ILAR J. 2014, 55, 16–45. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Breen, M. Comparative oncology: What dogs and other species can teach us about humans with cancer. Philos. Trans. R. Soc. B 2015, 370, 20140231. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Withers, S.S.; Modiano, J.F.; Kent, M.S.; Chen, M.; Luna, J.I.; Culp, W.T.N.; Sparger, E.E.; Rebhun, R.B.; Monjazeb, A.M.; et al. Canine cancer immunotherapy studies: Linking mouse and human. J. Immunother. Cancer 2016, 4, 97. [Google Scholar] [CrossRef] [PubMed]
- Thamm, D.H. Canine Cancer: Strategies in Experimental Therapeutics. Front. Oncol. 2019, 9, 1257. [Google Scholar] [CrossRef] [PubMed]
- Gardner, H.L.; Londhe, P.; London, C.A. Chapter 15—Leveraging Dogs with Spontaneous Cancer to Advance Drug Development. In Animal Models in Cancer Drug Discovery; Azmi, A., Mohammad, R.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 343–372. [Google Scholar]
- Dow, S. A Role for Dogs in Advancing Cancer Immunotherapy Research. Front. Immunol. 2020, 10, 02935. [Google Scholar] [CrossRef]
- Gray, M.; Meehan, J.; Martínez-Pérez, C.; Kay, C.; Turnbull, A.K.; Morrison, L.R.; Pang, L.Y.; Argyle, D. Naturally-Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer. Front. Oncol. 2020, 10, 617. [Google Scholar] [CrossRef]
- LeBlanc, A.K.; Mazcko, C.N. Improving human cancer therapy through the evaluation of pet dogs. Nat. Rev. Cancer 2020, 20, 727–742. [Google Scholar] [CrossRef]
- Valdivia, G.; Alonso-Diez, Á.; Pérez-Alenza, D.; Peña, L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front. Vet. Sci. 2021, 8, 623800. [Google Scholar] [CrossRef]
- Mao, C.; Beiss, V.; Fields, J.; Steinmetz, N.F.; Fiering, S. Cowpea mosaic virus stimulates antitumor immunity through recognition by multiple MYD88-dependent toll-like receptors. Biomaterials 2021, 275, 120914. [Google Scholar] [CrossRef]
- Mao, C.; Beiss, V.; Ho, G.W.; Fields, J.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade. J. Immunother. Cancer 2022, 10, e005834. [Google Scholar] [CrossRef]
- Wang, C.; Steinmetz, N.F. A Combination of Cowpea Mosaic Virus and Immune Checkpoint Therapy Synergistically Improves Therapeutic Efficacy in Three Tumor Models. Adv. Funct. Mater. 2020, 30, 2002299. [Google Scholar] [CrossRef]
- Igase, M.; Nemoto, Y.; Itamoto, K.; Tani, K.; Nakaichi, M.; Sakurai, M.; Sakai, Y.; Noguchi, S.; Kato, M.; Tsukui, T.; et al. A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci. Rep. 2020, 10, 18311. [Google Scholar] [CrossRef]
- Nanda, R.; Chow, L.Q.M.; Dees, E.C.; Berger, R.; Gupta, S.; Geva, R.; Pusztai, L.; Pathiraja, K.; Aktan, G.; Cheng, J.D.; et al. Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J. Clin. Oncol. 2016, 34, 2460–2467. [Google Scholar] [CrossRef]
- Gumusay, O.; Callan, J.; Rugo, H.S. Immunotherapy toxicity: Identification and management. Breast Cancer Res. Treat. 2022, 192, 1–17. [Google Scholar] [CrossRef]
- Sheth, R.A.; Murthy, R.; Hong, D.S.; Patel, S.; Overman, M.J.; Diab, A.; Hwu, P.; Tam, A. Assessment of Image-Guided Intratumoral Delivery of Immunotherapeutics in Patients With Cancer. JAMA Netw. Open 2020, 3, e207911. [Google Scholar] [CrossRef] [PubMed]
- Tselikas, L.; Dardenne, A.; de Baere, T.; Faron, M.; Ammari, S.; Farhane, S.; Suzzoni, S.; Danlos, F.-X.; Raoult, T.; Susini, S.; et al. Feasibility, safety and efficacy of human intra-tumoral immuno-therapy. Gustave Roussy’s initial experience with its first 100 patients. Eur. J. Cancer 2022, 172, 1–12. [Google Scholar] [CrossRef]
- Stinson, J.; Sheen, A.; Momin, N.; Hampel, J.; Bernstein, R.; Kamerer, R.; Samuelson, J.; Selting, K.; Fan, T.M.; Wittrup, K.D. Treatment of Canine Soft Tissue Sarcomas and Melanomas with Intratumoral Collagen-Anchored IL-2 and IL-12 is Safe and Effective. In Proceedings of the 97th Annual Meeting of the American Association for Cancer Research, New Orleans, LO, USA, 8–13 April 2022. [Google Scholar]
- Stinson, J.A.; Sheen, A.; Momin, N.; Hampel, J.; Bernstein, R.; Kamerer, R.; Fadl-Alla, B.; Samuelson, J.; Fink, E.; Fan, T.M.; et al. Collagen-Anchored Interleukin-2 and Interleukin-12 Safely Reprogram the Tumor Microenvironment in Canine Soft-Tissue Sarcomas. Clin. Cancer Res. 2023, 29, 2110–2122. [Google Scholar] [CrossRef] [PubMed]
- Boss, M.K.; Watts, R.; Harrison, L.G.; Hopkins, S.; Chow, L.; Trageser, E.; Easton, C.; LaRue, S.M.; Regan, D.; Dewhirst, M.W.; et al. Immunologic Effects of Stereotactic Body Radiotherapy in Dogs with Spontaneous Tumors and the Impact of Intratumoral OX40/TLR Agonist Immunotherapy. Int. J. Mol. Sci. 2022, 23, 826. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.A. Adjuvant Ipilimumab for Melanoma—The $1.8 Million per Patient Regimen. JAMA Oncol. 2017, 3, 1628–1629. [Google Scholar] [CrossRef]
- Mantooth, S.M.; Abdou, Y.; Saez-Ibañez, A.R.; Upadhaya, S.; Zaharoff, D.A. Intratumoral delivery of immunotherapy to treat breast cancer: Current development in clinical and preclinical studies. Front. Immunol. 2024, 15, 1385484. [Google Scholar] [CrossRef]
- Luke, J.J.; Davar, D.; Andtbacka, R.H.; Bhardwaj, N.; Brody, J.D.; Chesney, J.; Coffin, R.; Baere, T.d.; Gruijl, T.D.d.; Fury, M.; et al. Society for Immunotherapy of Cancer (SITC) recommendations on intratumoral immunotherapy clinical trials (IICT): From premalignant to metastatic disease. J. Immunother. Cancer 2024, 12, e008378. [Google Scholar] [CrossRef]
- Alonso-Miguel, D.; Valdivia, G.; Guerrera, D.; Perez-Alenza, M.D.; Pantelyushin, S.; Alonso-Diez, A.; Beiss, V.; Fiering, S.; Steinmetz, N.F.; Suarez-Redondo, M.; et al. Neoadjuvant in situ vaccination with cowpea mosaic virus as a novel therapy against canine inflammatory mammary cancer. J. Immunother. Cancer 2022, 10, e004044. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, G.; Alonso-Miguel, D.; Perez-Alenza, M.D.; Zimmermann, A.B.E.; Schaafsma, E.; Kolling, F.W.; Barreno, L.; Alonso-Diez, A.; Beiss, V.; Affonso de Oliveira, J.F.; et al. Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Induces Local and Systemic Antitumor Efficacy in Canine Mammary Cancer Patients. Cells 2023, 12, 2241. [Google Scholar] [CrossRef]
- Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021, 11, 1368–1397. [Google Scholar] [CrossRef]
- Jacob, S.L.; Huppert, L.A.; Rugo, H.S. Role of Immunotherapy in Breast Cancer. JCO Oncol. Pract. 2023, 19, 167–179. [Google Scholar] [CrossRef]
- Zappulli, V.; Pena, L.; Rassoto, R.; Goldschmidt, M.; Gama, A.; Seruggs, J.; Kiupel, M. Classification of Canine Mammary Tumors. In Surgical Pathology of Tumors of Domestic Animals. Volume 2: Mammary Tumors; Kiupel, M., Ed.; Davis-Thompson DVM Foundation: Gurnee, IL, USA, 2019; Volume 2, Chapter H; pp. 60–196. [Google Scholar]
- Peña, L.; De Andrés, P.J.; Clemente, M.; Cuesta, P.; Pérez-Alenza, M.D. Prognostic value of histological grading in noninflammatory canine mammary carcinomas in a prospective study with two-year follow-up: Relationship with clinical and histological characteristics. Vet. Pathol. 2013, 50, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Rutteman, G.R.; Withrow, S.J.; MacEwen, E.G. Tumors of the Mammary Gland. In Small Animal Clinical Oncology, 3rd ed.; Withrow, S.J., MacEwen, E.G., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2001; pp. 455–477. [Google Scholar]
- Lynch, S.; Savary-Bataille, K.; Leeuw, B.; Argyle, D.J. Development of a questionnaire assessing health-related quality-of-life in dogs and cats with cancer. Vet. Comp. Oncol. 2011, 9, 172–182. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.K.; Atherton, M.; Bentley, R.T.; Boudreau, C.E.; Burton, J.H.; Curran, K.M.; Dow, S.; Giuffrida, M.A.; Kellihan, H.B.; Mason, N.J.; et al. Veterinary Cooperative Oncology Group-Common Terminology Criteria for Adverse Events (VCOG-CTCAE v2) following investigational therapy in dogs and cats. Vet. Comp. Oncol. 2021. [Google Scholar] [CrossRef]
- Murray, A.A.; Sheen, M.R.; Veliz, F.A.; Fiering, S.N.; Steinmetz, N.F. In Situ Vaccination of Tumors Using Plant Viral Nanoparticles. Methods Mol. Biol. 2019, 2000, 111–124. [Google Scholar] [CrossRef]
- Simon, R.; Freidlin, B.; Rubinstein, L.; Arbuck, S.G.; Collins, J.; Christian, M.C. Accelerated titration designs for phase I clinical trials in oncology. J. Natl. Cancer Inst. 1997, 89, 1138–1147. [Google Scholar] [CrossRef]
- Goldmacher, G.V.; Khilnani, A.D.; Andtbacka, R.H.I.; Luke, J.J.; Hodi, F.S.; Marabelle, A.; Harrington, K.; Perrone, A.; Tse, A.; Madoff, D.C.; et al. Response Criteria for Intratumoral Immunotherapy in Solid Tumors: ItRECIST. J. Clin. Oncol. 2020, 38, 2667–2676. [Google Scholar] [CrossRef]
- Club, A.K. How to Calculate Dog Years to Human Years. 2023. Available online: https://www.akc.org/expert-advice/health/how-to-calculate-dog-years-to-human-years/#:~:text=As%20a%20general%20guideline%2C%20though,five%20years%20for%20a%20dog (accessed on 30 May 2024).
- Armbrust, L.J.; Biller, D.S.; Bamford, A.; Chun, R.; Garrett, L.D.; Sanderson, M.W. Comparison of three-view thoracic radiography and computed tomography for detection of pulmonary nodules in dogs with neoplasia. J. Am. Vet. Med. Assoc. 2012, 240, 1088–1094. [Google Scholar] [CrossRef]
- Igase, M.; Inanaga, S.; Tani, K.; Nakaichi, M.; Sakai, Y.; Sakurai, M.; Kato, M.; Tsukui, T.; Mizuno, T. Long-term survival of dogs with stage 4 oral malignant melanoma treated with anti-canine PD-1 therapeutic antibody: A follow-up case report. Vet. Comp. Oncol. 2022, 20, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Igase, M.; Inanaga, S.; Nishibori, S.; Itamoto, K.; Sunahara, H.; Nemoto, Y.; Tani, K.; Horikirizono, H.; Nakaichi, M.; Baba, K.; et al. Proof-of-concept study of the caninized anti-canine programmed death 1 antibody in dogs with advanced non-oral malignant melanoma solid tumors. J. Vet. Sci. 2024, 25, e15. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Xie, J.; Wang, S.; Tang, N.; Feng, J.; Su, Y.; Li, G. Reversing stage III oral adenocarcinoma in a dog treated with anti-canine PD-1 therapeutic antibody: A case report. Front. Vet. Sci. 2023, 10, 1144869. [Google Scholar] [CrossRef] [PubMed]
- London, C.A.; Hannah, A.L.; Zadovoskaya, R.; Chien, M.B.; Kollias-Baker, C.; Rosenberg, M.; Downing, S.; Post, G.; Boucher, J.; Shenoy, N.; et al. Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin. Cancer Res. 2003, 9, 2755–2768. [Google Scholar] [PubMed]
- Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [Google Scholar] [CrossRef]
- Dawood, S.; Broglio, K.; Ensor, J.; Hortobagyi, G.N.; Giordano, S.H. Survival differences among women with de novo stage IV and relapsed breast cancer. Ann. Oncol. 2010, 21, 2169–2174. [Google Scholar] [CrossRef]
- Tevaarwerk, A.J.; Gray, R.J.; Schneider, B.P.; Smith, M.L.; Wagner, L.I.; Fetting, J.H.; Davidson, N.; Goldstein, L.J.; Miller, K.D.; Sparano, J.A. Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy. Cancer 2013, 119, 1140–1148. [Google Scholar] [CrossRef]
- Marconato, L.; Lorenzo, R.M.; Abramo, F.; Ratto, A.; Zini, E. Adjuvant gemcitabine after surgical removal of aggressive malignant mammary tumours in dogs. Vet. Comp. Oncol. 2008, 6, 90–101. [Google Scholar] [CrossRef]
- CB, D.E.C.; Lavalle, G.E.; Monteiro, L.N.; Pêgas, G.R.A.; Fialho, S.L.; Balabram, D.; Cassali, G.D. Adjuvant Thalidomide and Metronomic Chemotherapy for the Treatment of Canine Malignant Mammary Gland Neoplasms. In Vivo 2018, 32, 1659–1666. [Google Scholar] [CrossRef]
- Damasceno, K.A.; Santos-Conceição, A.M.D.; Silva, L.P.; Cardoso, T.M.S.; Vieira-Filho, C.; Figuerêdo, S.H.S.; Martins-Filho, E.; Faria, B.G.O.; Costa-Neto, J.M.D.; Cassali, G.D.; et al. Factors related to the suppression of the antitumour immune response in female dogs with inflammatory mammary carcinoma. PLoS ONE 2022, 17, e0267648. [Google Scholar] [CrossRef] [PubMed]
- Philibert, J.C.; Snyder, P.W.; Glickman, N.; Glickman, L.T.; Knapp, D.W.; Waters, D.J. Influence of host factors on survival in dogs with malignant mammary gland tumors. J. Vet. Intern. Med. 2003, 17, 102–106. [Google Scholar] [CrossRef] [PubMed]
Patient | Age, y | Weight, kg | Vol.; cm | Histopath. Type | Clinical Stage | Histo. Grade | Receptor Status | Adj. Ther. | OS, Days |
---|---|---|---|---|---|---|---|---|---|
P1 | 13 | 28.9 | 6.3 | N/A | N/A | N/A | TN | No | 162 |
P2 | 11 | 28.0 | 1.5 | Mixed carcinoma | I | I | ER+PR+HER2- | No | 501 ¥ |
P3 | 10 | 5.5 | 4.2 | Comedocarcinoma | IV | II | ER+PR+HER2- | Yes | 133 |
P4 | 11 | 2.1 | 3.4 | Mixed carcinoma | II | I | ER+PR+HER2- | No | 501 ¥ |
P5 | 11 | 30.0 | 6.2; 5.4 † | Mixed carcinoma | V | II | TN ††; ER+PR+ | Yes | 386 |
P6 | 9 | 7.2 | 3.5 | Mixed carcinoma | V | III | ER+PR+HER2- | Yes | 212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergent, P.; Pinto-Cárdenas, J.C.; Carrillo, A.J.A.; Dávalos, D.L.; Pérez, M.D.G.; Lechuga, D.A.M.; Alonso-Miguel, D.; Schaafsma, E.; Cuarenta, A.J.; Muñoz, D.C.; et al. An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1. Cells 2024, 13, 1478. https://doi.org/10.3390/cells13171478
Sergent P, Pinto-Cárdenas JC, Carrillo AJA, Dávalos DL, Pérez MDG, Lechuga DAM, Alonso-Miguel D, Schaafsma E, Cuarenta AJ, Muñoz DC, et al. An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1. Cells. 2024; 13(17):1478. https://doi.org/10.3390/cells13171478
Chicago/Turabian StyleSergent, Petra, Juan Carlos Pinto-Cárdenas, Adhara Jaciel Arreguin Carrillo, Daniel Luna Dávalos, Marisa Daniela González Pérez, Dora Alicia Mendoza Lechuga, Daniel Alonso-Miguel, Evelien Schaafsma, Abigail Jiménez Cuarenta, Diana Cárdenas Muñoz, and et al. 2024. "An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1" Cells 13, no. 17: 1478. https://doi.org/10.3390/cells13171478
APA StyleSergent, P., Pinto-Cárdenas, J. C., Carrillo, A. J. A., Dávalos, D. L., Pérez, M. D. G., Lechuga, D. A. M., Alonso-Miguel, D., Schaafsma, E., Cuarenta, A. J., Muñoz, D. C., Zarabanda, Y., Palisoul, S. M., Lewis, P. J., Kolling, F. W., IV, Affonso de Oliveira, J. F., Steinmetz, N. F., Rothstein, J. L., Lines, L., Noelle, R. J., ... Arias-Pulido, H. (2024). An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1. Cells, 13(17), 1478. https://doi.org/10.3390/cells13171478