Potato virus X (PVX) is a flexuous plant virus-based nanotechnology with promise in cancer therapy. As a high aspect ratio biologic (13 × 515 nm), PVX has excellent spatial control in structures and functions, offering high-precision nanoengineering for multivalent display of functional moieties. Herein, we demonstrate the preparation of the PVX-based nanocarrier for delivery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a promising protein drug that induces apoptosis in cancer cells but not healthy cells. TRAIL bound to PVX by coordination bonds between nickel-coordinated nitrilotriacetic acid on PVX and His-tag on the protein could mimic the bioactive "membrane-bound" state in native TRAIL, resulting in an elongated nanoparticle displaying up 490 therapeutic protein molecules. Our data show that PVX-delivered TRAIL activates caspase-mediated apoptosis more efficiently compared to soluble TRAIL; also in vivo the therapeutic nanoparticle outperforms in delaying tumor growth in an athymic nude mouse model bearing human triple-negative breast cancer xenografts. This proof-of-concept work highlights the potential of filamentous plant virus nanotechnologies, particularly for targeting protein drug delivery for cancer therapy.
Keywords: anticancer therapy; death receptor; drug delivery; nanomedicine; plant viral nanoparticle; potato virus X; tumor necrosis factor-related apoptosis-inducing ligand.