Combination Anticancer Therapies Using Selected Phytochemicals
<p>Chemical structure of curcumin.</p> "> Figure 2
<p>Chemical structure of resveratrol. (<b>a</b>) <span class="html-italic">Trans</span>-resveratrol and (<b>b</b>) <span class="html-italic">Cis</span>-resveratrol.</p> "> Figure 3
<p>Chemical structure of genistein.</p> "> Figure 4
<p>Chemical structure of EGCG.</p> "> Figure 5
<p>Chemical structure of allicin.</p> "> Figure 6
<p>Chemical structure of thymoquinone.</p> "> Figure 7
<p>Chemical structure of piperine.</p> "> Figure 8
<p>Chemical structure of emodin.</p> "> Figure 9
<p>Chemical structure of parthenolide.</p> "> Figure 10
<p>Chemical structure of luteolin.</p> "> Figure 11
<p>Chemical structure of quercetin.</p> "> Figure 12
<p>Chemical structure of anthocyanins (cyanidin).</p> "> Figure 13
<p>A summary of the natural compounds with their combination therapy. QUR, quercetin; CUR, curcumin; TQ, Thymoquinone; LTN, Luteolin; ACN, anthocyanins; PTL, parthenolide; GNT, genistein; PIP, piperine; EMD, emodin; RES, resveratrol; ALN, allicin; CIS, cisplatin; DOX, doxorubicin; MT, melatonin; TMZ, temozolomide; Tmab, trastuzumab; TAM, tamoxifen; DTX, docetaxel; PTX, paclitaxel; CCB, celecoxib; CAPS, capsaicin; PF, photofrin; SFN, sulforaphane; GEF, gefitinib; ASC, ascorbic acid; ADM, Adriamycin; MSM, methylsulfonylmethane; RJ, royal jelly; PF, pentoxifylline; BV, bee venom; HES, hesperidin; BBR, berberine; SFB, sorafenib; AFT, afatinib; GEM, gemcitabine; ENDX, endoxifen; G-CK, ginsenoside compound k; G-Rh, ginsenoside Rh; EPR, epirubicin; ICG, indocyanine green; ATO, arsenic trioxide; BLZ, balsalazide; SB, silibinin; BCN, baicalein; VIN, vincristine; RT, radiotherapy.</p> ">
Abstract
:1. Introduction
2. Combination Therapies Based on Selected Natural Products
2.1. Curcumin
2.2. Resveratrol
2.3. Genistein
2.4. Epigallocatechin Gallate
2.5. Allicin
2.6. Thymoquinone
2.7. Piperine
2.8. Emodin
2.9. Parthenolide
2.10. Luteolin
2.11. Quercetin
2.12. Anthocyanins
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 23 July 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Hauner, K.; Maisch, P.; Retz, M. Side effects of chemotherapy. Der Urologe. Ausg. A 2017, 56, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Sauter, E.R. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev. Clin. Pharmacol. 2020, 13, 265–285. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.S.; Burgeiro, A.; Garcia, R.; Moreno, A.J.; Carvalho, R.A.; Oliveira, P.J. Doxorubicin-Induced Cardiotoxicity: From Bioenergetic Failure and Cell Death to Cardiomyopathy. Med. Res. Rev. 2014, 34, 106–135. [Google Scholar] [CrossRef]
- Nonnekens, J.; Hoeijmakers, J.H. After surviving cancer, what about late life effects of the cure? EMBO Mol. Med. 2017, 9, 4–6. [Google Scholar] [CrossRef]
- Wigmore, P.M.; Mustafa, S.; El-Beltagy, M.; Lyons, L.; Umka, J.; Bennett, G. Effects of 5-FU. Adv. Exp. Med. Biol. 2010, 678, 157–164. [Google Scholar] [CrossRef]
- Cragg, G.M.; Pezzuto, J.M. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pract. 2016, 25 (Suppl. 2), 41–59. [Google Scholar] [CrossRef]
- Talib, W.H.; Alsalahat, I.; Daoud, S. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020, 25, 5319. [Google Scholar] [CrossRef]
- Irshad, R.; Husain, M. Natural products in the reprogramming of cancer epigenetics. Toxicol. Appl. Pharmacol. 2021, 417, 115467. [Google Scholar] [CrossRef]
- Talib, W.H.; Alsayed, A.R.; Barakat, M.; Abu-Taha, M.I.; Mahmod, A.I. Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021, 9, 1353. [Google Scholar] [CrossRef]
- Dasari, S.; Njiki, S.; Mbemi, A.; Yedjou, C.G.; Tchounwou, P.B. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int. J. Mol. Sci. 2022, 23, 1532. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. Epigallocatechin 3-gallate and green tea catechins: United they work, divided they fail. Cancer Prev. Res. 2009, 2, 514–517. [Google Scholar] [CrossRef]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef]
- Nikanjam, M.; Liu, S.; Yang, J.; Kurzrock, R. Dosing three-drug combinations that include targeted anti-cancer agents: Analysis of 37,763 patients. Oncologist 2017, 22, 576–584. [Google Scholar] [CrossRef]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment. Int. J. Mol. Sci. 2015, 16, 9236. [Google Scholar] [CrossRef]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.M.; Ouhtit, A. The Power of Phytochemicals Combination in Cancer Chemoprevention. J. Cancer 2020, 11, 4521–4533. [Google Scholar] [CrossRef]
- Alibeiki, F.; Jafari, N.; Karimi, M.; Peeri Dogaheh, H. Potent anti-cancer effects of less polar Curcumin analogues on gastric adenocarcinoma and esophageal squamous cell carcinoma cells. Sci. Rep. 2017, 7, 2559. [Google Scholar] [CrossRef]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809. [Google Scholar] [CrossRef]
- Pawar, H.; Karde, M.; Mundle, N.; Jadhav, P.; Mehra, K.J.M.C. Phytochemical evaluation and curcumin content determination of turmeric rhizomes collected from Bhandara District of Maharashtra (India). Med. Chem. 2014, 4, 588–591. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012, 39, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.C.; Kumar, N.A.; Thakur, G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur. J. Med. Chem. 2019, 177, 76–104. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, K.; Utsumi, T.; Kumano, T.; Maekawa, S.; Oyama, N.; Kawakami, J. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency. Sci. Rep. 2016, 6, 30962. [Google Scholar] [CrossRef] [PubMed]
- Mirakabad, F.S.T.; Akbarzadeh, A.; Milani, M.; Zarghami, N.; Taheri-Anganeh, M.; Zeighamian, V.; Badrzadeh, F.; Rahmati-Yamchi, M. A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif. Cells Nanomed. Biotechnol. 2016, 44, 423–430. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Wang, N.; Li, L.; Song, L.; He, T.; Sun, L.; Wang, Z.; Wu, Q.; Luo, N.J.S.r. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci. Rep. 2015, 5, 10322. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Pilehvar-Soltanahmadi, Y.; Akbarzadeh, A.; Dariushnejad, H.; Sanjarian, F.; Zarghami, N.J.A.-C.A.i.M.C. The effects of nanoencapsulated curcumin-Fe3O4 on proliferation and hTERT gene expression in lung cancer cells. Anti-Cancer Agents Med. Chem. 2017, 17, 1363–1373. [Google Scholar] [CrossRef]
- Sax, N.I.; Lewis, R.J. Dangerous Properties of Industrial Materials; Van Nostrand Reinhold: New York, NY, USA, 1989; Volume 3. [Google Scholar]
- Harishkumar, R.; Reddy, L.P.K.; Karadkar, S.H.; Al Murad, M.; Karthik, S.S.; Manigandan, S.; Selvaraj, C.I.; Christopher, J.G. Toxicity and selective biochemical assessment of quercetin, gallic acid, and curcumin in zebrafish. Biol. Pharm. Bull. 2019, 42, 1969–1976. [Google Scholar] [CrossRef]
- Fetoni, A.R.; Eramo, S.L.; Paciello, F.; Rolesi, R.; Podda, M.V.; Troiani, D.; Paludetti, G. Curcuma longa (curcumin) decreases in vivo cisplatin-induced ototoxicity through heme oxygenase-1 induction. Otol. Neurotol. 2014, 35, e169–e177. [Google Scholar] [CrossRef]
- Panahi, Y.; Saadat, A.; Beiraghdar, F.; Sahebkar, A. Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: A randomized double-blind placebo-controlled trial. Phytother. Res. 2014, 28, 1461–1467. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef] [Green Version]
- Kuttikrishnan, S.; Siveen, K.S.; Prabhu, K.S.; Khan, A.Q.; Ahmed, E.I.; Akhtar, S.; Ali, T.A.; Merhi, M.; Dermime, S.; Steinhoff, M. Curcumin induces apoptotic cell death via inhibition of PI3-kinase/AKT pathway in B-precursor acute lymphoblastic leukemia. Front. Oncol. 2019, 9, 484. [Google Scholar] [CrossRef]
- Kang, Y.; Hu, W.; Bai, E.; Zheng, H.; Liu, Z.; Wu, J.; Jin, R.; Zhao, C.; Liang, G. Curcumin sensitizes human gastric cancer cells to 5-fluorouracil through inhibition of the NFκB survival-signaling pathway. Onco Targets Ther. 2016, 9, 7373. [Google Scholar] [CrossRef]
- Bava, S.V.; Puliappadamba, V.T.; Deepti, A.; Nair, A.; Karunagaran, D.; Anto, R.J. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-κB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J. Biol. Chem. 2005, 280, 6301–6308. [Google Scholar] [CrossRef]
- Punfa, W.; Suzuki, S.; Pitchakarn, P.; Yodkeeree, S.; Naiki, T.; Takahashi, S.; Limtrakul, P. Curcumin-loaded PLGA nanoparticles conjugated with anti-P-glycoprotein antibody to overcome multidrug resistance. Asian Pac. J. Cancer Prev. 2014, 15, 9249–9258. [Google Scholar] [CrossRef]
- Dang, Y.-P.; Yuan, X.-Y.; Tian, R.; Li, D.-G.; Liu, W. Curcumin improves the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cells via the NF-κB-p53-caspase-3 pathway. Exp. Ther. Med. 2015, 9, 1470–1476. [Google Scholar] [CrossRef]
- Banerjee, S.; Singh, S.K.; Chowdhury, I.; Lillard, J.W., Jr.; Singh, R. Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer. Front. Biosci. 2017, 9, 235. [Google Scholar]
- Lindsay, C.; Kostiuk, M.; Conrad, D.; O’Connell, D.A.; Harris, J.; Seikaly, H.; Biron, V.L. Antitumour effects of metformin and curcumin in human papillomavirus positive and negative head and neck cancer cells. Mol. Carcinog. 2019, 58, 1946–1959. [Google Scholar] [CrossRef]
- Eslami, S.S.; Jafari, D.; Montazeri, H.; Sadeghizadeh, M.; Tarighi, P. Combination of Curcumin and Metformin Inhibits Cell Growth and Induces Apoptosis without Affecting the Cell Cycle in LNCaP Prostate Cancer Cell Line. Nutr. Cancer 2021, 73, 1026–1039. [Google Scholar] [CrossRef]
- Soheilifar, M.H.; Moshtaghian, A.; Maadi, H.; Izadi, F.; Saidijam, M. BMI1 Roles in Cancer Stem Cells and Its Association with MicroRNAs Dysregulation in Cancer: Emphasis on Colorectal Cancer. Int. J. Cancer Manag. 2018, 11, e82926. [Google Scholar] [CrossRef]
- Shakibaei, M.; Buhrmann, C.; Kraehe, P.; Shayan, P.; Lueders, C.; Goel, A. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PLoS ONE 2014, 9, e85397. [Google Scholar]
- Shemesh, N.; Arber, N. Curcumin alone and in combination for prevention of colorectal cancer. Curr. Color. Cancer Rep. 2014, 10, 62–67. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, H.; Yin, X.; Long, L.; Xie, C.; Liu, Y.; Hui, L.; Lin, X.; Fang, Y.; Cao, Y.; et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene 2016, 35, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Guorgui, J.; Wang, R.; Mattheolabakis, G.; Mackenzie, G.G. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch. Biochem. Biophys. 2018, 648, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ran, M.; Wang, B.; Lin, Y.; Cheng, Y.; Zheng, S. Co-delivery of docetaxel and curcumin via nanomicelles for enhancing anti-ovarian cancer treatment. Int. J. Nanomed. 2020, 15, 9703. [Google Scholar] [CrossRef]
- Toden, S.; Okugawa, Y.; Buhrmann, C.; Nattamai, D.; Anguiano, E.; Baldwin, N.; Shakibaei, M.; Boland, C.R.; Goel, A. Novel evidence for curcumin and boswellic acid–induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prev. Res. 2015, 8, 431–443. [Google Scholar] [CrossRef]
- Ide, H.; Tokiwa, S.; Sakamaki, K.; Nishio, K.; Isotani, S.; Muto, S.; Hama, T.; Masuda, H.; Horie, S. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 2010, 70, 1127–1133. [Google Scholar] [CrossRef]
- Arena, A.; Romeo, M.A.; Benedetti, R.; Masuelli, L.; Bei, R.; Gilardini Montani, M.S.; Cirone, M. New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects. Pharmaceuticals 2021, 14, 1068. [Google Scholar] [CrossRef]
- Piwowarczyk, L.; Stawny, M.; Mlynarczyk, D.T.; Muszalska-Kolos, I.; Goslinski, T.; Jelińska, A. Role of Curcumin and (−)-Epigallocatechin-3-O-Gallate in Bladder Cancer Treatment: A Review. Cancers 2020, 12, 1801. [Google Scholar] [CrossRef]
- Ahn, J.-C.; Biswas, R.; Kim, J.-S. The enhanced apoptotic effect of photodynamic therapy using photofrin combined with genistein in human ovarian cancer cell SK-OV-3. Biomed. Res. 2014, 25, 51–57. [Google Scholar]
- Gianfredi, V.; Nucci, D.; Vannini, S.; Villarini, M.; Moretti, M. In vitro biological effects of sulforaphane (SFN), epigallocatechin-3-gallate (EGCG), and curcumin on breast cancer cells: A systematic review of the literature. Nutr. Cancer 2017, 69, 969–978. [Google Scholar] [CrossRef]
- Mokbel, K.; Wazir, U.; Mokbel, K. Chemoprevention of prostate cancer by natural agents: Evidence from molecular and epidemiological studies. Anticancer. Res. 2019, 39, 5231–5259. [Google Scholar] [CrossRef]
- Somers-Edgar, T.J.; Scandlyn, M.J.; Stuart, E.C.; Le Nedelec, M.J.; Valentine, S.P.; Rosengren, R.J. The combination of epigallocatechin gallate and curcumin suppresses ERα-breast cancer cell growth in vitro and in vivo. Int. J. Cancer 2008, 122, 1966–1971. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Shi, H.; Xie, X.; Li, L.; Tang, H.; Wu, M.; Kong, Y.; Yang, L.; Gao, J.; et al. Correction to: Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a. Mol. Cell. Biochem. 2022, 477, 979–980. [Google Scholar] [CrossRef]
- El-Far, A.H.; Saddiq, A.A.; Mohamed, S.A.; Almaghrabi, O.A.; Mousa, S.A. Curcumin and Thymoquinone Combination Attenuates Breast Cancer Cell Lines’ Progression. Integr. Cancer Ther. 2022, 21, 15347354221099537. [Google Scholar] [CrossRef]
- Xiong, H.Q.; Abbruzzese, J.L.; Lin, E.; Wang, L.; Zheng, L.; Xie, K. NF-κB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int. J. Cancer 2004, 108, 181–188. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Guha, S.; Krishnan, S.; Diagaradjane, P.; Gelovani, J.; Aggarwal, B.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-κB–regulated gene products. Cancer Res. 2007, 67, 3853–3861. [Google Scholar] [CrossRef]
- Bartik, L.; Whitfield, G.K.; Kaczmarska, M.; Lowmiller, C.L.; Moffet, E.W.; Furmick, J.K.; Hernandez, Z.; Haussler, C.A.; Haussler, M.R.; Jurutka, P.W. Curcumin: A novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention. J. Nutr. Biochem. 2010, 21, 1153–1161. [Google Scholar] [CrossRef]
- Srivastava, N.S.; Srivastava, R.A.K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine 2019, 52, 117–128. [Google Scholar] [CrossRef]
- Kollár, P.; Hotolová, H. Biological effects of resveratrol and other constituents of wine. Ceska Slov. Farm. 2003, 52, 272–281. [Google Scholar]
- Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012, 3, 141. [Google Scholar] [CrossRef]
- Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.F.; Nunes, T.; Wright, L.; et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res. 2009, 53, S7–S15. [Google Scholar] [CrossRef]
- A Kroon, P.; Iyer, A.; Chunduri, P.; Chan, V.; Brown, L. The cardiovascular nutrapharmacology of resveratrol: Pharmacokinetics, molecular mechanisms and therapeutic potential. Curr. Med. Chem. 2010, 17, 2442–2455. [Google Scholar] [CrossRef]
- Chatterjee, K.; AlSharif, D.; Mazza, C.; Syar, P.; Al Sharif, M.; Fata, J.E. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein E6 in cervical cancer cells. Nutrients 2018, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Rimando, A.M.; Lee, H.J.; Ji, Y.; Reddy, B.S.; Suh, N. Anti-inflammatory action of pterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells. Cancer Prev. Res. 2009, 2, 650–657. [Google Scholar]
- Nutakul, W.; Sobers, H.S.; Qiu, P.; Dong, P.; Decker, E.A.; McClements, D.J.; Xiao, H. Inhibitory effects of resveratrol and pterostilbene on human colon cancer cells: A side-by-side comparison. J. Agric. Food Chem. 2011, 59, 10964–10970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawad, R.A.M.; Sahib, H.B. Estimation the Safety of Parenteral Resveratrol in Mice. Iraqi J. Pharm. Sci. 2022, 31, 167–175. [Google Scholar]
- Sun, L.; Chen, B.; Jiang, R.; Li, J.; Wang, B. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell. Immunol. 2017, 311, 86–93. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Martinez, M.; Stamos, M.J.; Moyer, M.P.; Planutis, K.; Hope, C.; Holcombe, R.F. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag. Res. 2009, 1, 25. [Google Scholar]
- Patel, K.R.; Brown, V.A.; Jones, D.J.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A. Clinical Pharmacology of Resveratrol and Its Metabolites in Colorectal Cancer PatientsResveratrol in Colorectal Cancer Patients. Cancer Res. 2010, 70, 7392–7399. [Google Scholar] [CrossRef]
- Howells, L.M.; Berry, D.P.; Elliott, P.J.; Jacobson, E.W.; Hoffmann, E.; Hegarty, B.; Brown, K.; Steward, W.; Gescher, A.J. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases—Safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. 2011, 4, 1419–1425. [Google Scholar] [CrossRef]
- Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr. 2016, 3, 8. [Google Scholar] [CrossRef]
- Chun, Y.J.; Kim, M.Y.; Guengerich, F. Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochem. Biophys. Res. Commun. 1999, 262, 20–24. [Google Scholar] [CrossRef]
- Diaz-Gerevini, G.T.; Repossi, G.; Dain, A.; Tarres, M.C.; Das, U.N.; Eynard, A.R. Beneficial action of resveratrol: How and why? Nutrition 2016, 32, 174–178. [Google Scholar] [CrossRef]
- Gupta, S.C.; Kannappan, R.; Reuter, S.; Kim, J.H.; Aggarwal, B.B. Chemosensitization of tumors by resveratrol. Ann. New York Acad. Sci. 2011, 1215, 150–160. [Google Scholar] [CrossRef]
- Fulda, S.; Debatin, K.-M. Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene 2004, 23, 6702–6711. [Google Scholar] [CrossRef]
- Lin, C.-J.; Lee, C.-C.; Shih, Y.-L.; Lin, T.-Y.; Wang, S.-H.; Lin, Y.-F.; Shih, C.-M. Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic. Biol. Med. 2012, 52, 377–391. [Google Scholar] [CrossRef]
- Gatouillat, G.; Balasse, E.; Joseph-Pietras, D.; Morjani, H.; Madoulet, C. Resveratrol induces cell-cycle disruption and apoptosis in chemoresistant B16 melanoma. J. Cell. Biochem. 2010, 110, 893–902. [Google Scholar] [CrossRef]
- Malhotra, A.; Nair, P.; Dhawan, D.K. Curcumin and resveratrol synergistically stimulate p21 and regulate cox-2 by maintaining adequate zinc levels during lung carcinogenesis. Eur. J. Cancer Prev. 2011, 20, 411–416. [Google Scholar] [CrossRef]
- Kisková, T.; Ekmekcioglu, C.; Garajová, M.; Orendas, P.; Bojková, B.; Bobrov, N.; Jäger, W.; Kassayová, M.; Thalhammer, T. A combination of resveratrol and melatonin exerts chemopreventive effects in N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Eur. J. Cancer Prev. 2012, 21, 163–170. [Google Scholar] [CrossRef]
- Castillo-Pichardo, L.; Dharmawardhane, S.F. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr. Cancer 2012, 64, 1058–1069. [Google Scholar] [CrossRef]
- Lampe, J.W.; Nishino, Y.; Ray, R.M.; Wu, C.; Li, W.; Lin, M.-G.; Gao, D.L.; Hu, Y.; Shannon, J.; Stalsberg, H.; et al. Plasma isoflavones and fibrocystic breast conditions and breast cancer among women in Shanghai, China. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2579–2586. [Google Scholar] [CrossRef]
- Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [Google Scholar] [CrossRef]
- Shin, S.B.; Woo, S.U.; Chin, Y.W.; Jang, Y.J.; Yim, H. Sensitivity of TP53-mutated cancer cells to the phytoestrogen genistein is associated with direct inhibition of Plk1 activity. J. Cell. Physiol. 2017, 232, 2818–2828. [Google Scholar] [CrossRef]
- Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.-i.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1987, 262, 5592–5595. [Google Scholar] [CrossRef]
- Paniagua-Pérez, R.; Reyes-Cadena, S.; Martínez-Canseco, C.; Reyes-Legorreta, C.; Martínez-Castro, J.; Madrigal-Santillán, E.; Morales-González, J.; Cristóbal-Luna, J.; Álvarez-González, I.; Madrigal-Bujaidar, E. Cellular protection induced by genistein in mouse and its antioxidant capacity. Pharmacogn. Mag. 2019, 15, 520. [Google Scholar]
- Hsiao, Y.C.; Peng, S.F.; Lai, K.C.; Liao, C.L.; Huang, Y.P.; Lin, C.C.; Lin, M.L.; Liu, K.C.; Tsai, C.C.; Ma, Y.-S.; et al. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. Environ. Toxicol. 2019, 34, 443–456. [Google Scholar] [CrossRef]
- Si, H.; Liu, D. Phytochemical genistein in the regulation of vascular function: New insights. Curr. Med. Chem. 2007, 14, 2581–2589. [Google Scholar] [CrossRef]
- Marini, H.; Minutoli, L.; Polito, F.; Bitto, A.; Altavilla, D.; Atteritano, M.; Gaudio, A.; Mazzaferro, S.; Frisina, A.; Frisina, N.; et al. Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: A randomized trial. Ann. Intern. Med. 2007, 146, 839–847. [Google Scholar] [CrossRef]
- Sakla, M.S.; Shenouda, N.S.; Ansell, P.J.; MacDonald, R.S.; Lubahn, D.B. Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells. Endocrine 2007, 32, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Abler, A.; Smith, J.; Randazzo, P.; Rothenberg, P.; Jarett, L. Genistein differentially inhibits postreceptor effects of insulin in rat adipocytes without inhibiting the insulin receptor kinase. J. Biol. Chem. 1992, 267, 3946–3951. [Google Scholar] [CrossRef]
- Okura, A.; Arakawa, H.; Oka, H.; Yoshinari, T.; Monden, Y. Effect of genistein on topoisomerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells. Biochem. Biophys. Res. Commun. 1988, 157, 183–189. [Google Scholar] [CrossRef]
- Evans, B.A.J.; Griffiths, K.; Morton, M. Inhibition of 5α-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J. Endocrinol. 1995, 147, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Nasr, M.; Kim, Y.; Matthews, H. Genistein inhibits protein histidine kinase. J. Biol. Chem. 1992, 267, 15511–15515. [Google Scholar] [CrossRef]
- Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol. 2019, 10, 1336. [Google Scholar] [CrossRef]
- Hwang, J.T.; Lee, Y.K.; Shin, J.I.; Park, O.J. Anti-inflammatory and Anticarcinogenic effect of genistein alone or in combination with capsaicin in TPA-treated rat mammary glands or mammary cancer cell line. Ann. N. Y. Acad. Sci. 2009, 1171, 415–420. [Google Scholar] [CrossRef]
- Sanaei, M.; Kavoosi, F.; Pourahmadi, M.; Moosavi, S.N. Effect of Genistein and 17-β Estradiol on the Viability and Apoptosis of Human Hepatocellular Carcinoma HepG2 cell line. Adv. Biomed. Res. 2017, 6, 163. [Google Scholar]
- Suzuki, R.; Kang, Y.a.; Li, X.; Roife, D.; Zhang, R.; Fleming, J.B. Genistein potentiates the antitumor effect of 5-Fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res. 2014, 34, 4685–4692. [Google Scholar]
- Ahn, J.C.; Biswas, R.; Chung, P.S. Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers Surg. Med. 2012, 44, 840–849. [Google Scholar] [CrossRef]
- Paul, B.; Li, Y.; Tollefsbol, T.O. The effects of combinatorial genistein and sulforaphane in breast tumor inhibition: Role in epigenetic regulation. Int. J. Mol. Sci. 2018, 19, 1754. [Google Scholar] [CrossRef]
- Eng, Q.Y.; Thanikachalam, P.V.; Ramamurthy, S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J. Ethnopharmacol. 2018, 210, 296–310. [Google Scholar] [CrossRef]
- Zhong, Y.; Ma, C.-M.; Shahidi, F. Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. J. Funct. Foods 2012, 4, 87–93. [Google Scholar] [CrossRef]
- Galati, G.; Lin, A.; Sultan, A.M.; O’Brien, P.J. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free. Radic. Biol. Med. 2006, 40, 570–580. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 2020, 25, 3146. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Han, Z.; Li, X.; Xie, H.-H.; Zhu, S.-S. Mechanism of EGCG promoting apoptosis of MCF-7 cell line in human breast cancer. Oncol. Lett. 2017, 14, 3623–3627. [Google Scholar] [CrossRef]
- Liu, L.; Hou, L.; Gu, S.; Zuo, X.; Meng, D.; Luo, M.; Zhang, X.; Huang, S.; Zhao, X. Molecular mechanism of epigallocatechin-3-gallate in human esophageal squamous cell carcinoma in vitro and in vivo. Oncol. Rep. 2015, 33, 297–303. [Google Scholar] [CrossRef]
- Landis-Piwowar, K.; Chen, D.; Foldes, R.; Chan, T.-H.; Dou, Q.P. Novel epigallocatechin gallate analogs as potential anticancer agents: A patent review (2009–present). Expert Opin. Ther. Pat. 2013, 23, 189–202. [Google Scholar] [CrossRef]
- Huang, J.; Chen, S.; Shi, Y.; Li, C.-H.; Wang, X.J.; Li, F.J.; Wang, C.H.; Meng, Q.H.; Zhong, J.N.; Liu, M. Epigallocatechin gallate from green tea exhibits potent an-ticancer effects in A-549 non-small lung cancer cells by inducing apoptosis, cell cycle arrest and inhibition of cell migration. J. BUON 2017, 22, 1422–1427. [Google Scholar]
- Moradzadeh, M.; Hosseini, A.; Erfanian, S.; Rezaei, H. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase. Pharmacol. Rep. 2017, 69, 924–928. [Google Scholar] [CrossRef]
- Isbrucker, R.A.; Edwards, J.A.; Wolz, E.; Davidovich, A.; Bausch, J. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: Dermal, acute and short-term toxicity studies. Food Chem. Toxicol. 2006, 44, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Shanafelt, T.D.; Lee, Y.K.; Geyer, S.M.; Grote, D.; Stenson, M.; Zincke, S.; Ansell, S.M.; Witzig, T.E.; Kay, N.E. The Green Tea Extract Epigallocatechin Induces In Vitro Cell Death in Primary Human Lymphoma Cells through an ROS Dependent Mechanism. Blood 2006, 108, 234. [Google Scholar] [CrossRef]
- Flores-Pérez, A.; Marchat, L.A.; Sánchez, L.L.; Romero-Zamora, D.; Arechaga-Ocampo, E.; Ramírez-Torres, N.; Chávez, J.D.; Carlos-Reyes, Á.; Astudillo-de la Vega, H.; Ruiz-García, E. Differential proteomic analysis reveals that EGCG inhibits HDGF and activates apoptosis to increase the sensitivity of non-small cells lung cancer to chemotherapy. PROTEOMICS–Clin. Appl. 2016, 10, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.-W.; Chen, W.; Lung, W.-Y.; Wei, X.-Y.; Cheng, B.-H.; Cai, Z.-M.; Huang, W.-R. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9. J. Nutr. Biochem. 2017, 41, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Zan, L.; Chen, Q.; Zhang, L.; Li, X. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered 2019, 10, 374–382. [Google Scholar] [CrossRef]
- Eom, D.-W.; Lee, J.H.; Kim, Y.-J.; Hwang, G.S.; Kim, S.-N.; Kwak, J.H.; Cheon, G.J.; Kim, K.H.; Jang, H.-J.; Ham, J.; et al. Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells. BMB Rep. 2015, 48, 461. [Google Scholar] [CrossRef]
- Moreira, L.; Araújo, I.; Costa, T.; Correia-Branco, A.; Faria, A.; Martel, F.; Keating, E. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp. Cell Res. 2013, 319, 1784–1795. [Google Scholar] [CrossRef]
- Tan, M.; Norwood, A.; May, M.Y.; Tucci, M.; Benghuzzi, H. Effects of (-) epigallocatechin gallate and thymoquinone on proliferation of a PANC-1 cell line in culture. Biomed. Sci. Instrum. 2006, 42, 363–371. [Google Scholar]
- Chen, H.; Landen, C.N.; Li, Y.; Alvarez, R.D.; Tollefsbol, T. Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp. Cell Res. 2013, 319, 697–706. [Google Scholar] [CrossRef]
- Amin, A.; Wang, D.; Nannapaneni, S.; Lamichhane, R.; Chen, Z.G.; Shin, D.M. Combination of resveratrol and green tea epigallocatechin gallate induces synergistic apoptosis and inhibits tumor growth in vivo in head and neck cancer models. Oncol. Rep. 2021, 45, 87. [Google Scholar] [CrossRef]
- Wei, R.; Wirkus, J.; Yang, Z.; Machuca, J.; Esparza, Y.; Mackenzie, G.G. EGCG sensitizes chemotherapeutic-induced cytotoxicity by targeting the ERK pathway in multiple cancer cell lines. Arch. Biochem. Biophys. 2020, 692, 108546. [Google Scholar] [CrossRef]
- La, X.; Zhang, L.; Li, Z.; Li, H.; Yang, Y. (−)-Epigallocatechin Gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway. J. Agric. Food Chem. 2019, 67, 2510–2518. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, P.; Wang, P.; Yang, C.S.; Wang, X.; Feng, Q. EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer. PloS ONE 2015, 10, e0125402. [Google Scholar]
- Hu, F.; Wei, F.; Wang, Y.; Wu, B.; Fang, Y.; Xiong, B. EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J. Pharmacol. Sci. 2015, 128, 27–34. [Google Scholar] [CrossRef]
- Kilic, U.; Sahin, K.; Tuzcu, M.; Basak, N.; Orhan, C.; Elibol-Can, B.; Kilic, E.; Sahin, F.; Kucuk, O. Enhancement of cisplatin sensitivity in human cervical cancer: Epigallocatechin-3-gallate. Front. Nutr. 2015, 1, 28. [Google Scholar] [CrossRef] [Green Version]
- Scandlyn, M.; Stuart, E.; Somers-Edgar, T.; Menzies, A.; Rosengren, R.J. A new role for tamoxifen in oestrogen receptor-negative breast cancer when it is combined with epigallocatechin gallate. Br. J. Cancer 2008, 99, 1056–1063. [Google Scholar] [CrossRef]
- Luo, T.; Wang, J.; Yin, Y.; Hua, H.; Jing, J.; Sun, X.; Li, M.; Zhang, Y.; Jiang, Y. (-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma. Breast Cancer Res. 2010, 12, R8. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, T.; Yi, P.; Fan, C.; Zhang, Z.; Liang, G.; Xu, Y.; Fan, Y. A new epigallocatechin gallate derivative isolated from Anhua dark tea sensitizes the chemosensitivity of gefitinib via the suppression of PI3K/mTOR and epithelial-mesenchymal transition. Fitoterapia 2020, 143, 104590. [Google Scholar] [CrossRef]
- Haque, A.; Rahman, M.A.; Chen, Z.G.; Saba, N.F.; Khuri, F.R.; Shin, D.M.; Ruhul Amin, A.J.A. Combination of erlotinib and EGCG induces apoptosis of head and neck cancers through posttranscriptional regulation of Bim and Bcl-2. Apoptosi 2015, 20, 986–995. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.; Nwachukwu, I.D.; Slusarenko, A.J. Allicin: Chemistry and biological properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef]
- Ha, M.W.; Yuan, Y. Allicin induced cell cycle arrest in human gastric cancer cell lines. Zhonghua Zhong Liu Za Zhi [Chin. J. Oncol.] 2004, 26, 585–589. [Google Scholar]
- Hirsch, K.; Danilenko, M.; Giat, J.; Miron, T.; Rabinkov, A.; Wilchek, M.; Mirelman, D.; Levy, J.; Sharoni, Y. Effect of purified allicin, the major ingredient offreshly crushed garlic, on cancer cell proliferation. Nutr. Cancer 2000, 38, 245–254. [Google Scholar] [CrossRef]
- Loría Gutiérrez, A.; Blanco Barrantes, J.; Porras Navarro, M.; Ortega Monge, M.C.; Cerdas Vargas, M.J.; Madrigal Redondo, G.L. Aspectos generales del Allium sativum-una revisión. Ars Pharm. (Internet) 2021, 62, 471–481. [Google Scholar]
- Jian, W.; Hui-juan, H.; Cheng-wei, H.; Ping, W.; Jian-jun, L. Effect of Allicin in antagonizing mice’s bladder cancer in vitro and in vivo. Chin. J. Integr. Med. 2004, 10, 208–212. [Google Scholar] [CrossRef]
- Cha, J.H.; Choi, Y.J.; Cha, S.H.; Choi, C.H.; Cho, W.H. Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway. Oncol. Rep. 2012, 28, 41–48. [Google Scholar] [CrossRef]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef]
- Marón, F.J.M.; Camargo, A.B.; Manucha, W. Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseases. Life Sci. 2020, 249, 117513. [Google Scholar] [CrossRef]
- Catanzaro, E.; Canistro, D.; Pellicioni, V.; Vivarelli, F.; Fimognari, C. Anticancer potential of allicin: A review. Pharmacol. Res. 2022, 177, 106118. [Google Scholar] [CrossRef]
- Sarvizadeh, M.; Hasanpour, O.; Ghale-Noie, Z.N.; Mollazadeh, S.; Rezaei, M.; Pourghadamyari, H.; Khooy, M.M.; Aschner, M.; Khan, H.; Rezaei, N.; et al. Allicin and digestive system cancers: From chemical structure to its therapeutic opportunities. Front. Oncol. 2021, 11, 650256. [Google Scholar] [CrossRef]
- Li, C.; Jing, H.; Ma, G.; Liang, P. Allicin induces apoptosis through activation of both intrinsic and extrinsic pathways in glioma cells. Mol. Med. Rep. 2018, 17, 5976–5981. [Google Scholar] [CrossRef]
- Mahdy, E.M.; Abdu, S.M.; El Baseer, M.A. Effect of thymoquinone and allicin on some antioxidant parameters in cancer prostate (PC3) and colon cancer (Caco2) cell lines. Sci. J. Al-Azhar Med Fac. Girls 2020, 4, 85. [Google Scholar]
- Talib, W.H. Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation. Nutrition 2017, 43, 89–97. [Google Scholar] [CrossRef]
- Sarkhani, E.; Najafzadeh, N.; Tata, N.; Dastan, M.; Mazani, M.; Arzanlou, M. Molecular mechanisms of methylsulfonylmethane and allicin in the inhibition of CD44±breast cancer cells growth. Funct. Foods 2017, 39, 50–57. [Google Scholar] [CrossRef]
- Pandey, N.; Tyagi, G.; Kaur, P.; Pradhan, S.; Rajam, M.V.; Srivastava, T. Allicin overcomes hypoxia mediated cisplatin resistance in lung cancer cells through ROS mediated cell death pathway and by suppressing hypoxia inducible factors. Cell. Physiol. Biochem. 2020, 54, 748–766. [Google Scholar] [PubMed]
- Țigu, A.B.; Toma, V.-A.; Moț, A.C.; Jurj, A.; Moldovan, C.S.; Fischer-Fodor, E.; Berindan-Neagoe, I.; Pârvu, M. The synergistic antitumor effect of 5-fluorouracil combined with allicin against lung and colorectal carcinoma cells. Molecules 2020, 25, 1947. [Google Scholar] [CrossRef] [PubMed]
- Khakbaz, P.; Panahizadeh, R.; Vatankhah, M.A.; Najafzadeh, N. Allicin Reduces 5-fluorouracil-resistance in Gastric Cancer Cells through Modulating MDR1, DKK1, and WNT5A Expression. Drug Res. 2021, 71, 448–454. [Google Scholar] [CrossRef]
- Fayin, W.U.; Haili, X.U. Effect and mechanism of allicin combined with 5-fluorouracil on proliferation and apoptosis of the MEC-1 cell line in mucoepidermoid carcinoma. J. Prev. Treat. Stomatol. Dis. 2020, 28, 355. [Google Scholar]
- Zhang, X.; Shao, S.; Li, F.; Zhang, W. Combination of Allicin and Adriamycin Inhibits Proliferation and Induces Apoptosis in Human Gastric SGC-7901cell. Nat. Prod. Res. Dev. 2014, 26, 309. [Google Scholar]
- Rahimi, M.P.; Hashemi, S.H.; Ghazinejhadian, S.F. Effect of Allicin on Tamoxifen-sensitive MCF-7 Breast Cancer Cells. J. Med. Plants 2015, 14, 101–110. [Google Scholar]
- Wu, X.; Li, X.; Song, Y.; Li, H.; Bai, X.; Liu, W.; Han, Y.; Xu, L.; Li, J.; Zhang, D.; et al. Allicin protects auditory hair cells and spiral ganglion neurons from cisplatin-induced apoptosis. Neuropharmacology 2017, 116, 429–440. [Google Scholar] [CrossRef]
- Wu, X.; Cai, J.; Li, X.; Li, H.; Li, J.; Bai, X.; Liu, W.; Han, Y.; Xu, L.; Zhang, D.; et al. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway. Eur. J. Pharmacol. 2017, 805, 108–117. [Google Scholar] [CrossRef]
- Abdel-Daim, M.M.; Abushouk, A.I.; Donia, T.; Alarifi, S.; Alkahtani, S.; Aleya, L.; Bungau, S.G. The nephroprotective effects of allicin and ascorbic acid against cisplatin-induced toxicity in rats. Environ. Sci. Pollut. Res. 2019, 26, 13502–13509. [Google Scholar] [CrossRef]
- Abdel-Daim, M.M.; Khalifa, H.A.; Ahmed, A.A. Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother. Pharmacol. 2017, 80, 745–753. [Google Scholar] [CrossRef]
- Zou, X.; Liang, J.; Sun, J.; Hu, X.; Lei, L.; Wu, D.; Liu, L. Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway. J. Pharmacol. Sci. 2016, 131, 233–240. [Google Scholar] [CrossRef]
- Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. Phytother. Res. 2021, 35, 1739–1753. [Google Scholar] [CrossRef]
- Badary, O.A.; Hamza, M.S.; Tikamdas, R. Thymoquinone: A promising natural compound with potential benefits for COVID-19 prevention and cure. Drug Des. Dev. Ther. 2021, 15, 1819. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Samarghandian, S.; Shahri, A.M.P.; Samini, F. The neuroprotective effects of thymoquinone: A review. Dose-Response 2018, 16, 1559325818761455. [Google Scholar] [CrossRef]
- Alobaedi, O.H.; Talib, W.H.; Basheti, I.A. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pac. J. Trop. Med. 2017, 10, 400–408. [Google Scholar] [CrossRef]
- Kou, B.; Liu, W.; Zhao, W.; Duan, P.; Yang, Y.; Yi, Q.; Guo, F.; Li, J.; Zhou, J.; Kou, Q. Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway. Oncol. Rep. 2017, 38, 3592–3598. [Google Scholar] [CrossRef]
- Feng, L.-M.; Wang, X.-F.; Huang, Q.-X. Thymoquinone induces cytotoxicity and reprogramming of EMT in gastric cancer cells by targeting PI3K/Akt/mTOR pathway. J. Biosci. 2017, 42, 547–554. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Huang, Z.; Zhang, P.; Yue, Y.; Wang, W.; Liu, W.; Zeng, J.; Ma, J.; Chen, G. Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. Chem. -Biol. Interact. 2018, 292, 65–75. [Google Scholar] [CrossRef]
- Ismail, N.; Abdel–Mottaleb, Y.; Ahmed, A.A.E.; El-Maraghy, N.N. Novel combination of thymoquinone and resveratrol enhances anticancer effect on hepatocellular carcinoma cell line. Future J. Pharm. Sci. 2018, 4, 41–46. [Google Scholar] [CrossRef]
- Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. An overview of in vivo toxicological profile of thymoquinone. Toxin Rev. 2018, 39, 115–122. [Google Scholar] [CrossRef]
- Attoub, S.; Sperandio, O.; Raza, H.; Arafat, K.; Al-Salam, S.; Al Sultan, M.A.; Al Safi, M.; Takahashi, T.; Adem, A. Thymoquinone as an anticancer agent: Evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam. Clin. Pharmacol. 2013, 27, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Tania, M.; Fu, J. Epigenetic role of thymoquinone: Impact on cellular mechanism and cancer therapeutics. Drug Discov. Today 2019, 24, 2315–2322. [Google Scholar] [CrossRef]
- Mahmoud, Y.K.; Abdelrazek, H.M. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed. Pharmacother. 2019, 115, 108783. [Google Scholar] [CrossRef]
- Farghaly, M.E.; Khowailed, A.A.; Aboulhoda, B.E.; Rashed, L.A.; Gaber, S.S.; Ashour, H. Thymoquinone potentiated the anticancer effect of cisplatin on hepatic tumorigenesis by modulating tissue oxidative stress and endoplasmic GRP78/CHOP signaling. Nutr. Cancer 2022, 74, 278–287. [Google Scholar] [CrossRef]
- Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A.; Ajabnoor, G.M.; Al-Abd, A.M. Thymoquinone enhances paclitaxel anti-breast cancer activity via inhibiting tumor-associated stem cells despite apparent mathematical antagonism. Molecules 2020, 25, 426. [Google Scholar] [CrossRef]
- Fatfat, M.; Fakhoury, I.; Habli, Z.; Mismar, R.; Gali-Muhtasib, H. Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms. Life Sci. 2019, 232, 116628. [Google Scholar] [CrossRef]
- Mosalam, E.M.; Zidan, A.-A.A.; Mehanna, E.T.; Mesbah, N.M.; Abo-Elmatty, D.M. Thymoquinone and pentoxifylline enhance the chemotherapeutic effect of cisplatin by targeting Notch signaling pathway in mice. Life Sci. 2020, 244, 117299. [Google Scholar] [CrossRef]
- Odeh, L.H.; Talib, W.H.; Basheti, I.A. Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J. Cancer Res. Ther. 2018, 14, 324. [Google Scholar]
- Moubarak, M.M.; Chanouha, N.; Abou Ibrahim, N.; Khalife, H.; Gali-Muhtasib, H. Thymoquinone anticancer activity is enhanced when combined with royal jelly in human breast cancer. World J. Clin. Oncol. 2021, 12, 342. [Google Scholar] [CrossRef]
- Al-Mutairi, A.; Rahman, A.; Rao, M.S. Low doses of thymoquinone and ferulic acid in combination effectively inhibit proliferation of cultured MDA-MB 231 breast adenocarcinoma cells. Nutr. Cancer 2021, 73, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Mohammad, T.; Padder, R.A.; Hassan, M.I.; Husain, M. Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade. J. Cell. Biochem. 2022, 123, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Aumeeruddy, M.Z.; Mahomoodally, M.F. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer 2019, 125, 1600–1611. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.-P.; Li, S.; Li, H.-B. Spices for prevention and treatment of cancers. Nutrients 2016, 8, 495. [Google Scholar] [CrossRef]
- Tammina, S.K.; Mandal, B.K.; Ranjan, S.; Dasgupta, N. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J. Photochem. Photobiol. B Biol. 2017, 166, 158–168. [Google Scholar] [CrossRef]
- Gunasekaran, V.; Elangovan, K.; Devaraj, S.N. Targeting hepatocellular carcinoma with piperine by radical-mediated mitochondrial pathway of apoptosis: An in vitro and in vivo study. Food Chem. Toxicol. 2017, 105, 106–118. [Google Scholar] [CrossRef]
- Li, N.; Wen, S.; Chen, G.; Wang, S. Antiproliferative potential of piperine and curcumin in drug-resistant human leukemia cancer cells are mediated via autophagy and apoptosis induction, S-phase cell cycle arrest and inhibition of cell invasion and migration. J. BUON 2020, 25, 401–406. [Google Scholar]
- Zhang, W.; Zheng, Q.; Song, M.; Xiao, J.; Cao, Y.; Huang, Q.; Ho, C.-T.; Lu, M. A review on the bioavailability, bio-efficacies and novel delivery systems for piperine. Food Funct. 2021, 12, 8867–8881. [Google Scholar] [CrossRef]
- Talib, W.H. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm. 2017, 85, 27. [Google Scholar] [CrossRef]
- Lai, L.-H.; Fu, Q.-H.; Liu, Y.; Jiang, K.; Guo, Q.-M.; Chen, Q.-Y.; Yan, B.; Wang, Q.-Q.; Shen, J.-G. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin. 2012, 33, 523–530. [Google Scholar] [CrossRef]
- Pradeep, C.; Kuttan, G. Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin. Exp. Metastasis 2002, 19, 703–708. [Google Scholar] [CrossRef]
- Samykutty, A.; Shetty, A.V.; Dakshinamoorthy, G.; Bartik, M.M.; Johnson, G.L.; Webb, B.; Zheng, G.; Chen, A.; Kalyanasundaram, R.; Munirathinam, G. Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS ONE 2013, 8, e65889. [Google Scholar]
- Chowanski, S.; Adamski, Z.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Slocinska, M.; Spochacz, M.; Szymczak, M.; Urbanski, A.; Walkowiak-Nowicka, K.; et al. Insect peptides–perspectives in human diseases treatment. Curr. Med. Chem. 2017, 24, 3116–3152. [Google Scholar] [CrossRef]
- Mittal, R.; Gupta, R. In vitro antioxidant activity of piperine. Methods Find. Exp. Clin. Pharmacol. 2000, 22, 271–274. [Google Scholar] [CrossRef]
- Srinivasan, K. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 2007, 47, 735–748. [Google Scholar] [CrossRef]
- Fofaria, N.M.; Kim, S.-H.; Srivastava, S.K. Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation. PLoS ONE 2014, 9, e94298. [Google Scholar] [CrossRef]
- Motiwala, M.; Rangari, V. Combined effect of paclitaxel and piperine on a MCF-7 breast cancer cell line in vitro: Evidence of a synergistic interaction. Synergy 2015, 2, 1–6. [Google Scholar] [CrossRef]
- Khamis, A.A.; Ali, E.M.; Abd El-Moneim, M.A.; Abd-Alhaseeb, M.M.; El-Magd, M.A.; Salim, E.I. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed. Pharmacother. 2018, 105, 1335–1343. [Google Scholar] [CrossRef]
- Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H.B. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS ONE 2013, 8, e75356. [Google Scholar]
- Makhov, P.; Golovine, K.; Canter, D.; Kutikov, A.; Simhan, J.; Corlew, M.M.; Uzzo, R.G.; Kolenko, V.M. Co-administration of piperine and docetaxel results in improved anti-tumor efficacy via inhibition of CYP3A4 activity. Prostate 2012, 72, 661–667. [Google Scholar] [CrossRef]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A. Emodin-A natural anthraquinone derivative with diverse pharmacological activities. Phytochemistry 2021, 190, 112854. [Google Scholar] [CrossRef]
- Fang, L.; Zhao, F.; Iwanowycz, S.; Wang, J.; Yin, S.; Wang, Y.; Fan, D. Anticancer activity of emodin is associated with downregulation of CD155. Int. Immunopharmacol. 2019, 75, 105763. [Google Scholar] [CrossRef]
- Luo, N.; Fang, J.; Wei, L.; Sahebkar, A.; Little, P.J.; Xu, S.; Luo, C.; Li, G. Emodin in atherosclerosis prevention: Pharmacological actions and therapeutic potential. Eur. J. Pharmacol. 2021, 890, 173617. [Google Scholar] [CrossRef]
- Ya, C.; Liu-Jing, C.; Huang, T.; Jian-Qiong, Y.; Juan, L. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin. J. Nat. Med. 2020, 18, 425–435. [Google Scholar]
- Mitra, S.; Anjum, J.; Muni, M.; Das, R.; Rauf, A.; Islam, F.; Emran, T.B.; Semwal, P.; Hemeg, H.A.; Alhumaydhi, F.A. Exploring the journey of emodin as a potential neuroprotective agent: Novel therapeutic insights with molecular mechanism of action. Biomed. Pharmacother. 2022, 149, 112877. [Google Scholar] [CrossRef]
- Li, Q.S.; Zhang, Y.; Zhang, S. Direct ab initio dynamics studies of the hydrogen abstraction reactions of hydrogen atom with n-propyl radical and isopropyl radical. J. Mol. Modeling 2005, 11, 41–47. [Google Scholar] [CrossRef]
- Chen, C.; Gao, J.; Wang, T.-S.; Guo, C.; Yan, Y.-J.; Mao, C.-Y.; Gu, L.-W.; Yang, Y.; Li, Z.-F.; Liu, A. NMR-based metabolomic techniques identify the toxicity of emodin in HepG2 cells. Sci. Rep. 2018, 8, 9379. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.H.; Li, X.; Hwangbo, K.; Hwang, S.-L.; Taketomi, Y.; Murakami, M.; Chang, Y.-C.; Kim, C.-H.; Son, J.-K. Emodin, a naturally occurring anthraquinone derivative, suppresses IgE-mediated anaphylactic reaction and mast cell activation. Biochem. Pharmacol. 2011, 82, 1700–1708. [Google Scholar] [CrossRef]
- Liu, T.; Jin, H.; Sun, Q.-R.; Xu, J.-H.; Hu, H.-T. Neuroprotective effects of emodin in rat cortical neurons against β-amyloid-induced neurotoxicity. Brain Res. 2010, 1347, 149–160. [Google Scholar] [CrossRef]
- Xue, J.; Ding, W.; Liu, Y. Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2010, 81, 173–177. [Google Scholar] [CrossRef]
- Hyun, S.K.; Lee, H.; Kang, S.S.; Chung, H.Y.; Choi, J.S. Inhibitory activities of Cassia tora and its anthraquinone constituents on angiotensin-converting enzyme. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Galiardi-Campoy, A.E.B.; Machado, F.C.; Carvalho, T.; Tedesco, A.C.; Rahal, P.; Calmon, M.F. Effects of photodynamic therapy mediated by emodin in cervical carcinoma cells. Photodiagnosis Photodyn. Ther. 2021, 35, 102394. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Z.; Chen, K.J.; Tong, H.F.; Jing, H.; Li, H.; Zheng, S.S. Emodin attenuates acute rejection of liver allografts by inhibiting hepatocellular apoptosis and modulating the Th1/Th2 balance in rats. Clin. Exp. Pharmacol. Physiol. 2010, 37, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, F.; Yang, S.; Xue, T. Emodin alleviates gemcitabine resistance in pancreatic cancer by inhibiting MDR1/P-glycoprotein and MRPs expression. Oncol. Lett. 2020, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Lee, Y.-M.; Oh, T.-I.; Shin, D.H.; Kim, G.-H.; Kan, S.-Y.; Kang, H.; Kim, J.H.; Kim, B.M.; Yim, W.J. Emodin sensitizes hepatocellular carcinoma cells to the anti-cancer effect of sorafenib through suppression of cholesterol metabolism. Int. J. Mol. Sci. 2018, 19, 3127. [Google Scholar] [CrossRef]
- Gupta, S.C.; Rai, V. Role of Emodin in Chemosensitization of Cancer. In Role of Nutraceuticals in Cancer Chemosensitization; Elsevier: Amsterdam, The Netherlands, 2018; pp. 241–257. [Google Scholar]
- Narender, T.; Sukanya, P.; Sharma, K.; Bathula, S.R. Apoptosis and DNA intercalating activities of novel emodin derivatives. RSC Adv. 2013, 3, 6123–6131. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Zhou, Q.; Lu, Y.; Zhang, H.; Chen, Q.; Zhao, M.; Su, S. Inhibitory effect of emodin on migration, invasion and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo. Oncol. Rep. 2015, 33, 338–346. [Google Scholar] [CrossRef]
- McDonald, S.J.; VanderVeen, B.N.; Velazquez, K.T.; Enos, R.T.; Fairman, C.M.; Cardaci, T.D.; Fan, D.; Murphy, E.A. Therapeutic Potential of Emodin for Gastrointestinal Cancers. Integr. Cancer Ther. 2022, 21, 15347354211067469. [Google Scholar] [CrossRef]
- Saunders, I.T.; Mir, H.; Kapur, N.; Singh, S. Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways. Cancer Cell Int. 2019, 19, 98. [Google Scholar] [CrossRef]
- Gu, J.; Cui, C.-f.; Yang, L.; Wang, L.; Jiang, X.-h. Emodin inhibits colon cancer cell invasion and migration by suppressing epithelial–mesenchymal transition via the Wnt/β-Catenin pathway. Oncol. Res. 2019, 27, 193. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Q.; He, X.; Wei, H.; Wang, T.; Shao, J.; Jiang, X. Emodin induces apoptosis of colon cancer cells via induction of autophagy in a ROS-dependent manner. Oncol. Res. 2018, 26, 889. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, M.S.; Cha, E.Y.; Sul, J.Y.; Lee, J.S.; Kim, J.S.; Park, J.B.; Kim, J.Y. Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol. Med. Rep. 2017, 15, 2163–2173. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Chen, J.; Hong, Z.; Liao, Y.; Zhang, Q.; Tong, H. Emodin sensitizes human pancreatic cancer cells to EGFR inhibitor through suppressing Stat3 signaling pathway. Cancer Manag. Res. 2019, 11, 8463. [Google Scholar] [CrossRef]
- Teng, X.; Wang, S.Y.; Shi, Y.Q.; Fan, X.F.; Liu, S.; Xing, Y.; Guo, Y.Y.; Dong, M. The role of emodin on cisplatin resistance reversal of lung adenocarcinoma A549/DDP cell. Anti-Cancer Drugs 2021, 32, 939–949. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, H.; Su, S.; Ding, Y.; Yu, X.; Tang, Y.; Wang, Q.; Liu, P. Emodin enhances the chemosensitivity of endometrial cancer by inhibiting ROS-mediated Cisplatin-resistance. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2018, 18, 1054–1063. [Google Scholar] [CrossRef]
- Peng, S.; Wang, J.; Lu, C.; Xu, Z.; Chai, J.-J.; Ke, Q.; Deng, X.-Z. Emodin enhances cisplatin sensitivity in non-small cell lung cancer through Pgp downregulation. Oncol. Lett. 2021, 21, 230. [Google Scholar] [CrossRef]
- Ponnusamy, L.; Kothandan, G.; Manoharan, R. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165897. [Google Scholar]
- Sztiller-Sikorska, M.; Czyz, M. Parthenolide as cooperating agent for anti-cancer treatment of various malignancies. Pharmaceuticals 2020, 13, 194. [Google Scholar] [CrossRef]
- Alwaseem, H.; Frisch, B.J.; Fasan, R. Anticancer activity profiling of parthenolide analogs generated via P450-mediated chemoenzymatic synthesis. Bioorganic Med. Chem. 2018, 26, 1365–1373. [Google Scholar] [CrossRef]
- Karam, L.; Abou Staiteieh, S.; Chaaban, R.; Hayar, B.; Ismail, B.; Neipel, F.; Darwiche, N.; Abou Merhi, R. Anticancer activities of parthenolide in primary effusion lymphoma preclinical models. Mol. Carcinog. 2021, 60, 567–581. [Google Scholar] [CrossRef]
- Seca, A.M.; Silva, A.M.; Pinto, D.C. Parthenolide and parthenolide-like sesquiterpene lactones as multiple targets drugs: Current knowledge and new developments. Stud. Nat. Prod. Chem. 2017, 52, 337–372. [Google Scholar]
- Al-Fatlawi, A.A.; Al-Fatlawi, A.A.; Irshad, M.; Rahisuddin; Ahmad, A. Effect of parthenolide on growth and apoptosis regulatory genes of human cancer cell lines. Pharm. Biol. 2015, 53, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Pooja, S.; Prashanth, S.; Suchetha, K.; Vidya, V.; Krishna, B. Evaluation of acute and sub acute toxicity of the leaf extract of Tanacetum parthenium (Asteraceae) and synthetic parthenolide. World J. Pharm. Pharm. Sci. 2016, 5, 703–713. [Google Scholar]
- Nakabayashi, H.; Shimizu, K. Involvement of Akt/NF-κB pathway in antitumor effects of parthenolide on glioblastoma cells in vitro and in vivo. BMC Cancer 2012, 12, 453. [Google Scholar] [CrossRef]
- Che, S.-T.; Bie, L.; Li, X.; Qi, H.; Yu, P.; Zuo, L. Parthenolide inhibits the proliferation and induces the apoptosis of human uveal melanoma cells. Int. J. Ophthalmol. 2019, 12, 1531. [Google Scholar] [CrossRef]
- Jafari, N.; Nazeri, S.; Enferadi, S.T. Parthenolide reduces metastasis by inhibition of vimentin expression and induces apoptosis by suppression elongation factor α−1 expression. Phytomedicine 2018, 41, 67–73. [Google Scholar] [CrossRef]
- Talib, W.H.; Al Kury, L.T. Parthenolide inhibits tumor-promoting effects of nicotine in lung cancer by inducing P53-dependent apoptosis and inhibiting VEGF expression. Biomed. Pharmacother. 2018, 107, 1488–1495. [Google Scholar] [CrossRef]
- Kouhpaikar, H.; Sadeghian, M.H.; Rafatpanah, H.; Kazemi, M.; Iranshahi, M.; Delbari, Z.; Khodadadi, F.; Ayatollahi, H.; Rassouli, F.B. Synergy between parthenolide and arsenic trioxide in adult T-cell leukemia/lymphoma cells in vitro. Iran. J. Basic Med. Sci. 2020, 23, 616. [Google Scholar]
- Kim, S.-L.; Kim, S.H.; Park, Y.R.; Liu, Y.-C.; Kim, E.-M.; Jeong, H.-J.; Kim, Y.N.; Seo, S.Y.; Kim, I.H.; Lee, S.O. Combined parthenolide and balsalazide have enhanced antitumor efficacy through blockade of NF-κB activation. Mol. Cancer Res. 2017, 15, 141–151. [Google Scholar] [CrossRef]
- Jin, X.; Zhou, J.; Zhang, Z.; Lv, H. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artif. Cells Nanomed. Biotechnol. 2018, 46, S931–S942. [Google Scholar] [CrossRef]
- Freund, R.R.; Gobrecht, P.; Fischer, D.; Arndt, H.-D. Advances in chemistry and bioactivity of parthenolide. Nat. Prod. Rep. 2020, 37, 541–565. [Google Scholar] [CrossRef]
- Cook, M.T. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer Targets Ther. 2018, 10, 89. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef]
- da Silva, J.B.; de Freitas Mendes, R.; Tomasco, V.; Pinto, N.d.C.C.; de Oliveira, L.G.; Rodrigues, M.N.; de Oliveira Aragão, D.M.; de Aguiar, J.A.K.; Alves, M.S.; Castañon, M.C.N.M. New aspects on the hepatoprotective potential associated with the antioxidant, hypocholesterolemic and anti-inflammatory activities of Vernonia condensata Baker. J. Ethnopharmacol. 2017, 198, 399–406. [Google Scholar] [CrossRef]
- Seo, Y.; Ryu, K.; Park, J.; Jeon, D.-k.; Jo, S.; Lee, H.K.; Namkung, W. Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS ONE 2017, 12, e0174935. [Google Scholar] [CrossRef]
- Moayeri, A.; Azimi, M.; Karimi, E.; Aidy, A.; Abbasi, N. Attenuation of morphine withdrawal syndrome by prosopis farcta extract and its bioactive component luteolin in comparison with clonidine in rats. Med. Sci. Monit. Basic Res. 2018, 24, 151. [Google Scholar] [CrossRef]
- Chian, S.; Thapa, R.; Chi, Z.; Wang, X.J.; Tang, X. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem. Biophys. Res. Commun. 2014, 447, 602–608. [Google Scholar] [CrossRef]
- Ganai, S.A.; Sheikh, F.A.; Baba, Z.A.; Mir, M.A.; Mantoo, M.A.; Yatoo, M.A. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated. Phytother. Res. 2021, 35, 3509–3532. [Google Scholar] [CrossRef]
- Mishan, M.A.; Khazeei Tabari, M.A.; Mahrooz, A.; Bagheri, A. Role of microRNAs in the anticancer effects of the flavonoid luteolin: A systematic review. Eur. J. Cancer Prev. 2021, 30, 413–421. [Google Scholar] [CrossRef]
- You, Y.; Wang, R.; Shao, N.; Zhi, F.; Yang, Y. Luteolin suppresses tumor proliferation through inducing apoptosis and autophagy via MAPK activation in glioma. OncoTargets Ther. 2019, 12, 2383. [Google Scholar] [CrossRef]
- Xu, H.; Yang, T.; Liu, X.; Tian, Y.; Chen, X.; Yuan, R.; Su, S.; Lin, X.; Du, G. Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism. Life Sci. 2016, 144, 138–147. [Google Scholar] [CrossRef]
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef]
- Erdoğan, M.K.; Ağca, C.A.; Aşkın, H. Quercetin and luteolin improve the anticancer effects of 5-fluorouracil in human colorectal adenocarcinoma in vitro model: A mechanistic insight. Nutr. Cancer 2022, 74, 660–676. [Google Scholar] [CrossRef]
- Fan, J.-J.; Hsu, W.-H.; Lee, K.-H.; Chen, K.-C.; Lin, C.-W.; Lee, Y.-L.A.; Ko, T.-P.; Lee, L.-T.; Lee, M.-T.; Chang, M.-S. Dietary flavonoids luteolin and quercetin inhibit migration and invasion of squamous carcinoma through reduction of Src/Stat3/S100A7 signaling. Antioxidants 2019, 8, 557. [Google Scholar] [CrossRef]
- Lin, T.-H.; Hsu, W.-H.; Tsai, P.-H.; Huang, Y.-T.; Lin, C.-W.; Chen, K.-C.; Tsai, I.-H.; Kandaswami, C.C.; Huang, C.-J.; Chang, G.-D. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial–mesenchymal transition signaling. Food Funct. 2017, 8, 1558–1568. [Google Scholar] [CrossRef]
- Magura, J.; Moodley, R.; Mackraj, I. The effect of hesperidin and luteolin isolated from Eriocephalus africanus on apoptosis, cell cycle and miRNA expression in MCF-7. J. Biomol. Struct. Dyn. 2022, 40, 1791–1800. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Ray, S.K. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells. Brain Res. 2015, 1629, 85–93. [Google Scholar] [CrossRef]
- Kelly, G.S. Quercetin. Monograph. Altern. Med. Rev. 2011, 16, 172–195. [Google Scholar]
- Boly, R.; Gras, T.; Lamkami, T.; Guissou, P.; Serteyn, D.; Kiss, R.; Dubois, J. Quercetin inhibits a large panel of kinases implicated in cancer cell biology. Int. J. Oncol. 2011, 38, 833–842. [Google Scholar]
- Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Fang, L.; Liao, J.; Li, L.; Yao, W.; Xiong, Z.; Zhou, X. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo. PLoS ONE 2017, 12, e0172838. [Google Scholar] [CrossRef] [PubMed]
- Palko-Labuz, A.; Sroda-Pomianek, K.; Uryga, A.; Kostrzewa-Suslow, E.; Michalak, K. Anticancer activity of baicalein and luteolin studied in colorectal adenocarcinoma LoVo cells and in drug-resistant LoVo/Dx cells. Biomed. Pharmacother. 2017, 88, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Mittal, S.; Sak, K.; Singhal, P.; Tuli, H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumor Biol. 2016, 37, 12927–12939. [Google Scholar] [CrossRef] [PubMed]
- Kedhari Sundaram, M.; Raina, R.; Afroze, N.; Bajbouj, K.; Hamad, M.; Haque, S.; Hussain, A. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci. Rep. 2019, 39, BSR20190720. [Google Scholar] [CrossRef]
- Kundur, S.; Prayag, A.; Selvakumar, P.; Nguyen, H.; McKee, L.; Cruz, C.; Srinivasan, A.; Shoyele, S.; Lakshmikuttyamma, A. Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J. Cell. Physiol. 2019, 234, 11103–11118. [Google Scholar] [CrossRef]
- Mutlu Altundağ, E.; Yılmaz, A.M.; Koçtürk, S.; Taga, Y.; Yalçın, A.S. Synergistic induction of apoptosis by quercetin and curcumin in chronic myeloid leukemia (K562) cells. Nutr. Cancer 2018, 70, 97–108. [Google Scholar] [CrossRef]
- Singh, V.; Singh, R.; Kujur, P.K.; Singh, R.P. Combination of resveratrol and quercetin causes cell growth inhibition, DNA damage, cell cycle arrest, and apoptosis in oral cancer cells. ASSAY Drug Dev. Technol. 2020, 18, 226–238. [Google Scholar] [CrossRef]
- Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm. 2020, 587, 119705. [Google Scholar] [CrossRef]
- Xu, W.; Xie, S.; Chen, X.; Pan, S.; Qian, H.; Zhu, X. Effects of quercetin on the efficacy of various chemotherapeutic drugs in cervical cancer cells. Drug Des. Dev. Ther. 2021, 15, 577. [Google Scholar] [CrossRef]
- Lotfi, M.; Kazemi, S.; Ebrahimpour, A.; Shirafkan, F.; Pirzadeh, M.; Hosseini, M.; Moghadamnia, A.A. Protective Effect of Quercetin Nanoemulsion on 5-Fluorouracil-Induced Oral Mucositis in Mice. J. Oncol. 2021, 2021, 5598230. [Google Scholar] [CrossRef]
- Wang, H.; Tao, L.; Qi, K.; Zhang, H.; Feng, D.; Wei, W.; Kong, H.; Chen, T.; Lin, Q. Quercetin reverses tamoxifen resistance in breast cancer cells. J. BUON 2015, 20, 707–713. [Google Scholar]
- Li, S.; Yuan, S.; Zhao, Q.; Wang, B.; Wang, X.; Li, K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother. 2018, 100, 441–447. [Google Scholar] [CrossRef]
- Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep. 2016, 43, 99–105. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, S.; Xue, X.; Zhu, X.; Song, S.; Wang, B.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int. J. Nanomed. 2018, 13, 5113. [Google Scholar] [CrossRef]
- Zhao, J.-l.; Zhao, J.; Jiao, H. Synergistic growth-suppressive effects of quercetin and cisplatin on HepG2 human hepatocellular carcinoma cells. Appl. Biochem. Biotechnol. 2014, 172, 784–791. [Google Scholar] [CrossRef]
- Yardim, A.; Kandemir, F.M.; Ozdemir, S.; Kucukler, S.; Comakli, S.; Gur, C.; Celik, H. Quercetin provides protection against the peripheral nerve damage caused by vincristine in rats by suppressing caspase 3, NF-κB, ATF-6 pathways and activating Nrf2, Akt pathways. NeuroToxicology 2020, 81, 137–146. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Yu, C.; Xiang, L.; Li, L.; Shi, D.; Lin, F. Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. OncoTargets Ther. 2020, 13, 513. [Google Scholar] [CrossRef]
- Liu, M.; Fu, M.; Yang, X.; Jia, G.; Shi, X.; Ji, J.; Liu, X.; Zhai, G.J. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces 2020, 196, 111284. [Google Scholar] [CrossRef]
- Huang, C.; Chen, T.; Zhu, D.; Huang, Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front. Chem. 2020, 8, 225. [Google Scholar] [CrossRef]
- Li, X.; Guo, S.; Xiong, X.-K.; Peng, B.-Y.; Huang, J.-M.; Chen, M.-F.; Wang, F.-Y.; Wang, J.-N. Combination of quercetin and cisplatin enhances apoptosis in OSCC cells by downregulating xIAP through the NF-κB pathway. J. Cancer 2019, 10, 4509. [Google Scholar] [CrossRef]
- Liu, H.; Lee, J.I.; Ahn, T.-G. Effect of quercetin on the anti-tumor activity of cisplatin in EMT6 breast tumor-bearing mice. Obstet. Gynecol. Sci. 2019, 62, 242–248. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, P.D.; Lopez-Hernandez, F.J.; Perez-Barriocanal, F.; Morales, A.I.; Lopez-Novoa, J.M. Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrol. Dial. Transplant. 2011, 26, 3484–3495. [Google Scholar] [CrossRef]
- Mottaghipisheh, J.; Doustimotlagh, A.H.; Irajie, C.; Tanideh, N.; Barzegar, A.; Iraji, A. The promising therapeutic and preventive properties of anthocyanidins/anthocyanins on prostate cancer. Cells 2022, 11, 1070. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Wallace, T.C. Anthocyanins in cardiovascular disease. Adv. Nutr. 2011, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Feng, D.; Yang, D.; Li, X.; Sun, J.; Wang, G.; Tian, L.; Jiang, X.; Bai, W. Protective effects of anthocyanins on neurodegenerative diseases. Trends Food Sci. Technol. 2021, 117, 205–217. [Google Scholar] [CrossRef]
- Jiang, X.; Li, X.; Zhu, C.; Sun, J.; Tian, L.; Chen, W.; Bai, W. The target cells of anthocyanins in metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2019, 59, 921–946. [Google Scholar] [CrossRef]
- Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. J. Cereb. Blood Flow Metab. 2017, 174, 1226–1243. [Google Scholar] [CrossRef]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Cladis, D.P.; Li, S.; Reddivari, L.; Cox, A.; Ferruzzi, M.G.; Weaver, C.M. A 90 day oral toxicity study of blueberry polyphenols in ovariectomized sprague-dawley rats. Food Chem. Toxicol. 2020, 139, 111254. [Google Scholar] [CrossRef] [PubMed]
- Ha, U.S.; Bae, W.J.; Kim, S.J.; Yoon, B.I.; Hong, S.H.; Lee, J.Y.; Hwang, T.-K.; Hwang, S.Y.; Wang, Z.; Kim, S.W. Anthocyanin induces apoptosis of DU-145 cells in vitro and inhibits xenograft growth of prostate cancer. Yonsei Med. J. 2015, 56, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.-X. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 2003, 3, 149–159. [Google Scholar] [CrossRef]
- Luo, L.-P.; Han, B.; Yu, X.-P.; Chen, X.-Y.; Zhou, J.; Chen, W.; Zhu, Y.-F.; Peng, X.-L.; Zou, Q.; Li, S.-Y. Anti-metastasis activity of black rice anthocyanins against breast cancer: Analyses using an ErbB2 positive breast cancer cell line and tumoral xenograft model. Asian Pac. J. Cancer Prev. 2014, 15, 6219–6225. [Google Scholar] [CrossRef]
- Yin, H.; Wang, L.; Wu, M.; Liu, Y.; Li, N.; Chen, T. Cyanidin-3-O-glucoside chloride acts synergistically with luteolin to inhibit the growth of colon and breast carcinoma cells. Die Pharm. 2019, 74, 54–61. [Google Scholar]
- Li, X.; Chen, L.; Gao, Y.; Zhang, Q.; Chang, A.K.; Yang, Z.; Bi, X. Black raspberry anthocyanins increased the antiproliferative effects of 5-Fluorouracil and Celecoxib in colorectal cancer cells and mouse model. J. Funct. Foods 2021, 87, 104801. [Google Scholar] [CrossRef]
- Paramanantham, A.; Kim, M.J.; Jung, E.J.; Kim, H.J.; Chang, S.-H.; Jung, J.-M.; Hong, S.C.; Shin, S.C.; Kim, G.S.; Lee, W.S. Anthocyanins isolated from vitis coignetiae pulliat enhances cisplatin sensitivity in MCF-7 human breast cancer cells through inhibition of Akt and NF-κB activation. Molecules 2020, 25, 3623. [Google Scholar] [CrossRef]
- Qian, P.; Yan, L.J.; Li, Y.Q.; Yang, H.T.; Duan, H.Y.; Wu, J.T.; Fan, X.W.; Wang, S.-L. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp. Ther. Med. 2018, 15, 1959–1965. [Google Scholar] [CrossRef]
- Pepe, G.; Salviati, E.; Rapa, S.F.; Ostacolo, C.; Cascioferro, S.; Manfra, M.; Marzocco, S.; Campiglia, P. Citrus sinensis and vitis vinifera protect cardiomyocytes from doxorubicin-induced oxidative stress: Evaluation of onconutraceutical potential of vegetable smoothies. Antioxidants 2020, 9, 378. [Google Scholar] [CrossRef]
- Tancharoen, S.; Shakya, P.; Narkpinit, S.; Dararat, P.; Kikuchi, K.J. Anthocyanins extracted from Oryza sativa L. prevent fluorouracil-induced nuclear factor-κB activation in oral mucositis: In vitro and in vivo studies. Int. J. Mol. Sci. 2018, 19, 2981. [Google Scholar] [CrossRef]
- Tang, S.; Kan, J.; Sun, R.; Cai, H.; Hong, J.; Jin, C.; Zong, S. Anthocyanins from purple sweet potato alleviate doxorubicin-induced cardiotoxicity in vitro and in vivo. J. Food Biochem. 2021, 45, e13869. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Liu, Y.; Yu, X.; Tang, X.; Wang, Z.; Li, X. Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo. Mol. Med. Rep. 2014, 10, 1921–1926. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Tang, X.; Liu, Y.; Yu, X.; Wang, Z.; Liu, W. Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo. Mol. Med. Rep. 2016, 13, 4007–4013. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.L.; Wang, Z.; Li, W.; Hou, J.G.; Liu, Y.; Li, X.D.; Li, H.P.; Wang, Y.P. Nephroprotective effects of anthocyanin from the fruits of Panax ginseng (GFA) on cisplatin-induced acute kidney injury in mice. Phytotherapy Res. 2017, 31, 1400–1409. [Google Scholar] [CrossRef]
- de Gomes, M.G.; Del Fabbro, L.; Goes, A.T.R.; Souza, L.C.; Donato, F.; Boeira, S.P.; Prigol, M.; Jesse, C.R. Blackberry juice anthocyanidins limit cisplatin-induced renal pathophysiology in mice. Pathophysiology 2019, 26, 137–143. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Y.-E.; Tan, D.-H.; Yan, T.-C.; Song, D.-Q.; Hou, M.-X.; Meng, X.-J. Blueberry anthocyanins ameliorate cyclophosphamide-induced liver damage in rats by reducing inflammation and apoptosis. J. Funct. Foods 2014, 11, 71–81. [Google Scholar] [CrossRef]
- Kim, Y.G.; Park, Y.H.; Yang, E.Y.; Park, W.S.; Park, K.S. Inhibition of tamoxifen’s therapeutic effects by emodin in estrogen receptor-positive breast cancer cell lines. Ann. Surg. Treat. Res. 2019, 97, 230–238. [Google Scholar] [CrossRef]
Natural Compounds | Chemical Classification | Combination Therapy | Concentrations Used | Type of Cancer | Experimental Model | Outcomes of the Combination | Intersecting Mechanisms | References |
---|---|---|---|---|---|---|---|---|
Curcumin | Diarylheptanoid, phenolic compound | Curcumin/Resveratrol | Curcumin 15 mM Resveratrol 15 μM | Breast cancer Salivary cancer | In vitro | Reducing cancer cell viability, increased ER stress and activation of the pro-death UPR protein CHOP | Apoptosis | [49] |
Curcumin/Soy isoflavones | Curcumin 20 mM Isoflavones 10 mg/mL | Prostate adenocarcinoma | In vitro | Reduced the concentration of PSA | Anti-androgen effect | [48] | ||
Curcumin/Emodin | Curcumin 30 μM Emodin 80 μM | Breast cancer | In vitro | Reduced tumor growth and invasion by inducing the expression of miR-34a | Inhibition of proliferation and invasion of breast cancer cells through upregulation of miR-34a | [55] | ||
Curcumin/ EGCG | Curcumin 3 mM EGCG 25 μM | Breast cancer | In vitro In vivo | Suppress ERα-breast cancer cell growth | G2/M-phase cell cycle arrest | [54] | ||
Curcumin/Thmoquinone | Curcumin 24.91 µM TQ 41.16 µM | Breast cancer | In vitro | Showed synergistic effect in reducing tumor cells growth via increasing caspase-3 and decrease PI3K and AKT | Cell proliferation inhibition Apoptosis induction | [56] | ||
Curcumin/Gemcitabine | Curcumin 10 μmol/L Gemcitabine 50 nmol/L | Pancreatic cancer | In vitro In vivo | Prevent the production, development, invasion, and metastasis of proteins (NF-B, EGFR, VEGF, COX-2, miRNA-22, Bcl-2, Bcl-xL, and others) upregulating Bax and caspases | Inhibition of proliferation, angiogenesis, and invasion | [58] | ||
Curcumin/Vitamin D | Curcumin 10−5 M 1.25D 10−7 M | Colon cancer | In vitro | Improved anticancer effect by interacting with vitamin D receptors | Activating vitamin D receptor (VDR) inducing the VDR target genes CYP3A4, CYP24, p21 and TRPV6. In the colon, some of these yet-to-be identified genes may play a role in cancer chemoprevention | [59] | ||
Curcumin/Quercetin | curcumin 3.1 μM and 6.2 μM Quercetin 25 μM and 50 μM | Human malignant melanoma | In vitro | Inhibition of proliferation, modulation of Wnt/β-catenin signaling and apoptotic pathway | Inhibition of cell proliferation through down-regulation of Wnt/β-catenin signaling pathway proteins, DVL2, β-catenin, cyclin D1, Cox2, and Axin2 | [60] | ||
Curcumin/Boswellic acid | curcumin, 10 μmol/L AKBA 30 μmol/L | Colorectal cancer | In vitro In vivo | Induced chemoprevention through modulating miRNAs and their downstream target genes involved in cell-cycle control | Suppression of tumor growth by Induction the upregulation of tumor-suppressive miR-34a and downregulation of miR-27a in colorectal cancer cells | [47] | ||
Resveratrol | Stilbeniod, phenolic compound, and a phytoalexin | Resveratrol/Curcumin | Resveratrol dose level of 5.7 mg/mL three times a week Curcumin dose level of 60 mg/kg of body weight three times a week | Lung cancer | In vivo | Synergistically stimulated p21 and modulated Cox-2 expression | expression of p21 significant decrease in tumor incidence and multiplicity curcumin and resveratrol have been reported to modulate p21 expression by a p53-dependen pathway adequate zinc levels along with phytochemicals resulted in efficient cell cycle arrest by p21 to control rapid cell proliferation | [80] |
Resveratrol/Melatonin | Resveratrol pellets in a concentration of 100 mg/kg Melatonin Drinking water pellets in a concentration of 100 mg/kg | Breast cancer | In vivo | NMU-induced mammary carcinogenesis was not affected by either agent alone, but when they were combined it resulted in a significant decrease in tumor incidence. | reduced tumor incidence by approximately 17% and significantly decreased the quantity of invasive and in-situ carcinomas returned food intake to the level of intact controls (significantly increased food intake) protective effects on NMU-induced rodent breast cancer | [81] | ||
Genistein | Phytoestrogenic isoflavone | Genistein/Capsaicin | genistein 50 μmol/L Capsaicin 50 μmol/L | Breast cancer | In vitro | Synergistic apoptotic and anti-inflammatory effects | Reduced cell viability chromatin condensation and nuclear fragmentation stimulating AMPKα1 | [97] |
Genistein/Sulforaphane | Genistein 15 µM Sulforaphane 5 µM | Breast cancer | In vitro | Promoted cell cycle arrest | downregulated KLF4 downregulated HDAC activity especially HDAC2 and HDAC3 downregulated hTERT | [101] | ||
EGCG | Catechin/polyphenol | EGCG/curcumin |
EGCG 50 and 100 μM curcumin 50 μM | Prostate cancer | In vitro | Arrested S and G2/M cycles | Arrested both S and G2/M phases of cell cycle Synergic up-regulation of p21 and followed cell growth arrest | [116] |
EGCG/Quercetin | EGCG 100 μM Quercetin 10 and 100 μM | Breast cancer | In vitro | EGCG had improved the anti-metabolic effect of quercetin in ER-negative breast cancers also it had decreased the viability and proliferation of MCF7 cells | Decreased cellular proliferation Inhibit glucose uptake by cells Metabolic antagonists in breast cancer cells, independently of estrogen signaling | [117] | ||
EGCG/Resveratrol | EGCG 30 μM resveratrol 15 μM | Head and neck cancer | In vivo | Enhanced apoptotic effect and reduced tumor growth | Increased apoptosis | [120] | ||
EGCG/Sulforaphane | EGCG 20 mM Sulforaphane 10 mM | Ovarian cancer | In vitro | Provoked apoptosis in ovarian resistant cells through human telomerase reverse transcriptase(hTERT) and Bcl-2 down regulation | arrest cells in both G2/M and S phase increases apoptosis in paclitaxel-resistant SKOV3TR-ip2 cells by down-regulating of hTERT and Bcl-2 and promote DNA damage response reducing the expression of hTERT | [119] | ||
Allicin | Thiosulfinate | Allicin/ Thymoquinone | PC3 cells Allicin 24 g/mL Thymoquinone 500 g/mL CaCo2 cell Allicin 12 g/mL Thymoquinone 500 g/mL | Prostate and colon cancer | In vitro | Modulated antioxidant parameters | Increase of catalase activity in both PC3 cells and Caco2 cell | [141] |
Allicin/Methylsulfonylmethane | They used the IC50 MSM/allicin For CD44− 55.71 ± 8.47 mg/mL MSM/allicin For CD44+ 68.83 ± 9.78 mg/mL | Breast cancer | In vitro | Increased expression of caspase-3 mRNA expression | Enhanced more caspase-3 mRNA expression than allicin alone in both CD44± cells. Modulating the expression of the key apoptotic factors. | [143] | ||
Thymoquinone | Monoterpenoid | Thymoquinone/Royal jelly | Thymoquinone 15 µmol/L Royal jelly 5 µg/mL | Breast cancer | In vitro | Enhanced anticancer activity | cell viability inhibition and PreG1 increase | [172] |
Thymoquinone/Quercetin | Thymoquinone 5 μM Quercetin 22.49 and 25.9 μM | Non-small cell lung cancer | In vitro | Induced apoptosis by modulating Bax/Bcl2 cascade | reduce the expression of antiapoptotic protein Bcl2 and induce proapoptotic Bax | [174] | ||
Thymoquinone/ferulic acid |
Thymoquinone 50 and 100 µM ferulic acid 450 µM | Breast adenocarcinoma | In vitro | Synergic growth inhibition | decreased cell proliferation | [173] | ||
Thymoquinone/Melatonin | Thymoquinone 10 mg/kg/day Melatonin 1 mg/kg twice daily | Breast cancer | In vitro In vivo | Synergic antitumor effect by reducing tumor size with a 60% cure | induction of apoptosis, angiogenesis inhibition, and activation of T helper 1 anticancer immune response | [171] | ||
Thymoquinone/Resveratrol | TQ 46.03 μM Resveratrol 64.54 μM | Hepatocellular carcinoma | In vitro | Significant cell inhibition and increased caspase-3 | cell inhibition and increase in caspase-3 indicating cell apoptosis raised reactive oxygen species leading to decrease of glutathione | [162] | ||
Piperine | Alkaloids | Piperine/Thymoquinone | Piperine 425 μM Thymoquinone 80 μM | Breast cancer | In vivo | Inhibition of angiogenesis, induction of apoptosis, and shift toward T helper1 immune response |
decrease VEGF expression and increased serum INF-γ levels angiogenesis inhibition, apoptosis induction, and shifting the immune response toward T helper1 response. | [181] |
Emodin | Anthraquinonoe/phenolic compound | Emodin/berberine | Emodin 5–20 μM berberine 5–30 μM | Breast cancer | In vitro | Synergic inhibition of SIK3/mTOR pathway and induction of apoptosis | Attenuated aerobic glycolysis and cell growth as well as induce cell death by suppressing the SIK3/mTOR/Akt signaling pathway | [220] |
Parthenolide | Sesquiterpene/germacranolide class | Parthenolide/ginsenoside compound k | parthenolide 7.5 mg/kg ginsenoside compound k 37.5 mg/kg | Lung cancer | In vitro In vivo | Increased tumor targeting | induce mitochondria-mediated lung cancer apoptosis | [233] |
Parthenolide/betulinic acid/honokiol/ginsenoside Rh2 | Parthenolide 20.5 mg/kg, betulinic acid 20.3 mg/kg Honokiol 20.7 mg/kg ginsenoside Rh2 20 mg/kg | Lung cancer | In vitro In vivo | Displayed a synergistic activity in liposome systems for lung cancer treatment | cocktail liposome systems may provide a more efficient and safer treatment for lung cancer. | [234] | ||
Luteolin | Digitoflavone/flavonoid | Luteolin/Baicalein | Luteolin 2.5, 5, 12.5, 25, 50, 80 and 100 mM Baicalein 2.5, 5, 12.5, 25, 50, 80 and 100 mM | Colorectal adenocarcinoma | In vitro | Synergic growth inhibition | inhibit cancer cells proliferation | [255] |
Luteolin 10 or 20 μM Quercetin 10, 20, and 40 μM | Cervical cancer | In vitro | Reduction in ubiquitin E2S expression led eventually to metastatic inhibition of cervical cancer | inhibited UBE2S expression | [247] | |||
Luteolin/Hesperidin | Hesperidin 100 μg/mL Luteolin 100 μg/mL | Breast cancer | In vitro | Induced cell cycle arrest by mediating apoptosis and downregulation the miR-21 expression | inhibition of cell proliferation, migration, and invasion reduced cell viability accumulation of apoptotic cells into the G0/G1 and sub-G1 cell cycle phases induced apoptosis through the intrinsic and extrinsic pathways, down-regulated anti-apoptotic, Bcl-2, and upregulated pro-apoptotic, Bax downregulated the expression of miR-21 and upregulated that of miR-16 and -34a in MCF-7 | [249] | ||
Luteolin/Silibinin | Luteolin 20 µM Silibinin 50 µM | Glioblastoma | In vitro | Synergic inhibition of cell proliferation, migration, and invasion | inhibition of cell migration block angiogenesis block survival pathways leading to induction of apoptosis. | [247] | ||
Quercetin | Flavonol/flavonoid | Quercetin/Curcumin | Quercetin 20 µM Curcumin 10 µM | Breast cancer | In vitro | Altered the BRCA1 deficiency and therefore augment the activity of anti-cancer drugs | synergistic action was observed in modulating the BRCA1 level and in inhibiting the cell survival and migration of TNBC cell lines | [258] |
Quercetin 11.39, 0.419 µM, Curcumin 2.85, 53.89 µM | Myeloid leukemia | In vitro | Enhanced apoptotic effect increasing ROS production | act indirectly on inhibition of STAT3 in a number of leukaemia cell lines (HL-60, U-937 and K562) | [259] | |||
Quercetin/Resveratrol | Quercetin 10 µM Resveratrol 10 µM | Oral cancer | In vitro | Cell growth inhibition, stimulation of apoptosis also it had been noticed to downregulate Histone deacetylase (HDAC)1, HDAC3, and HDAC8 | Cell Growth Inhibition, DNA Damage, Cell Cycle Arrest, and Apoptosis in Oral Cancer Cells | [260] | ||
Quercetin 2 μg/mL Resveratrol 50 μg/mL | Skin cancer | In vivo Ex vivo | Synergistic effect over the use of single drugs | dual drug-loaded nanostructured lipid carrier (NLC) gel of quercetin and resveratrol enhanced their disposition in dermal and epidermal layers | [261] | |||
Quercetin/Thymoquinone | Quercetin 22.49 µM TQ 22.49 µM | Non-small lung cancer | In vitro | Downregulated BcL2, and activated BAX protein | reduce the expression of antiapoptotic protein Bcl2 and induce proapoptotic Bax, suggestive of sensitizing NSCLS cells toward apoptosis. | [174] | ||
Quercetin/Luteolin | Luteolin 10 or 20 μM Quercetin 10, 20, and 40 μM | Cervical cancer | In vitro | Lowered the ubiquitin E2S ligase (UBE2S) expression | inhibited UBE2S expression | [248] | ||
Anthocyanins | Flavylium/flavonoid | Anthocyanins/luteolin | Anthocyanins Cyanidin-3-O-glucoside chloride 35 μmol/L luteolin 10 μmol/L | Breast cancer Colon cancer | In vitro | Increased apoptosis and inhibited proliferation | inhibited proliferation and increased apoptosis | [287] |
Natural Compound | Combination Therapy | Concentration Used | Type of Cancer | Outcomes of the Combination | Intersecting Mechanism | References |
---|---|---|---|---|---|---|
Curcumin | Curcumin/Paclitaxel | Curcumin 5 µM Taxol 5 nM | Cervical cancer | Curcumin enhanced paclitaxel-induced apoptosis by increasing p53 expression, activation of caspase-3, 7, 8, and 9, cleavage of poly(ADP-ribose) polymerase (PARP), and cytochrome c release | Non intersecting Curcumin enhanced paclitaxel-induced apoptosis by down-regulation of Nuclear Factor-κB and the Serine/Threonine Kinase Akt | [35,36] |
Curcumin/Docetaxel | Curcumin 20 μM Docetaxel 10 nM | Prostate cancer | Reduced docetaxel-induced drug resistance and side effects | Non intersecting curcumin enhances the efficacy of docetaxel treatment by inhibiting proliferation and inducing apoptosis through modulation of tumor-suppressor proteins, transcription factors and oncogenic protein kinases compared to each treatment alone | [38] | |
Curcumin/Metformin | Curcumin 5–40 μM Metformin 0.4–12 mM | Prostate cancer | Synergistic impact on growth inhibition by apoptotic induction than curcumin and metformin alone | Apoptosis | [40] | |
Curcumin/5-FU |
curcumin 5 µM 5-FU 0.1 µM | Colorectal cancer | Overcome the drug resistance caused by 5-FU | Non-intersecting Curcumin decreases cancer stem cells and making cancer cells more sensitive to 5-FU | [42] | |
Curcumin/Celecoxib | Curcumin 10–15 μmol/L Celecoxib 5 μmol/L | Colorectal cancer | Inhibited cancer cell proliferation | Growth inhibition was associated with inhibition of proliferation and induction of apoptosis. Curcumin augmented celecoxib inhibition of prostaglandin E2 synthesis. The drugs synergistically down-regulated COX-2 mRNA expression. | [43] | |
Curcumin/Cisplatin |
Curcumin 10 M Cisplatin 10 M | Bladder cancer | Stimulated caspase-3 and overexpression phospho-mitogen-activated protein kinase (p-MEK) and phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) signaling | activating caspase-3 and upregulating phospho-mitogen-activated protein kinase (p-MEK) and phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) signaling | [44] | |
Curcumin/Doxorubicin | Curcumin 5 M Doxorubicin 0.4 mg/mL | Hodgkin lymphoma | Reduced cell growth by 79% | reduced cell growth by 79%, whereas each drug alone reduced L540 cell growth by 44% and 23% | [45] | |
Resveratrol | Resveratrol/Temozolomide | Resveratrol 12.5 mg/kg Temozolomide 10 mg/kg TMZ | Malignant glioma | Enhanced temozolomide’s therapeutic efficacy by inhibiting ROS/ERK-mediated autophagy and improving apoptosis |
reduced tumor volumes by suppressing ROS/ERK-mediated autophagy and subsequently inducing apoptosis protected glioma cells from apoptosis, thus improving the efficacy of chemotherapy for brain tumors. | [78] |
Resveratrol/Doxorubicin | Resveratrol 25 µM Resveratrol 10–100 µM Resveratrol 12.5 mg/kg | Melanoma | Induced cell cycle disruption and apoptosis, resulting in decreased melanoma growth and increased mouse survival |
Non intersecting resveratrol inhibits the growth of a doxorubicin-resistant B16 melanoma cell subline (B16/DOX) induced G1-phase arrest followed by the induction of apoptosis reduced the growth of an established B16/DOX melanoma and prolonged survival (32% compared to untreated mice). | [79] | |
Genistein | Genistein/5-FU | genistein 1.3 mg/day intraperitoneally FU 60 mg/kg, intraperitoneally | Pancreatic cancer | Tumor cells were augmented by the addition of genistein, which increased both apoptosis and autophagy | Non intersecting Genistein can potentiate the antitumor effect of 5-FU by inducing apoptotic as well as autophagic cell death. | [99] |
Genistein/Photofrin | genistein (0, 50, 100 μM) Photofrin (0–50 μg/mL) | Ovarian cancer Thyroid cancer | Enhanced the efficacy of photofrin-mediated photodynamic therapy | Non intersecting genistein sensitizes the activity of photodynamic therapy by photofrin in SK-OV-3 cells by inducing apoptosis through the activation of caspase-8 and caspase-3 | [51] | |
Genistein/Estradiol | Genistein 20 μM Estradiol 20 μM | Human liver cancer | Enhanced apoptosis | Enhanced apoptosis | [98] | |
EGCG | EGCG/5-FU | EGCG 50 μM 5-FU 10 μM | Colorectal cancer | Improved tumor cell’s sensitivity to 5-FU through inhibition of 78-kDa glucose-regulated protein (GRP78), NF-KB, miR-155-p5 and multidrug resistance mutation 1 (MDR1) pathways | Non intersecting EGCG enhanced the chemo-sensitivity of 5-FU in low doses by inhibiting cancer proliferation, promoting apoptosis and DNA damage EGCG blocked GRP78 expression, followed by enhancement of NF-κBand miR-155–5p level, which further inhibited the MDR1 expression and promoted the 5-FU accumulation in tumor cell | [87] |
EGCG/Cisplatin | EGCG 10 μM Cisplatin 10 μM | Ovarian cancer | Enhanced cisplatin sensitivity in ovarian cancer by regulating the expression of copper and cisplatin influx transport which is well-known as copper transporter 1 (CTR1) | DNA damage | [125] | |
EGCG/Tamoxifen | EGCG 25 mg kg−1 Tamoxifen 75 μg kg−1 | Breast cancer | Decreased the expression of EGFR, mTOR, and CYP1B | Decreased the expression of EGFR, mTOR, and CYP1B | [126] | |
EGCG/Paclitaxel | EGCG 20 μM Paclitaxel 1 μM | Breast cancer | EGCG had synergistically encouraged the effect of paclitaxel by enhancing the phosphorylation of c-Jun N-terminal kinase (JNK) | induced 4T1 cells apoptosis | [127] | |
EGCG/Gefitinib | EGCG 20 μM Gefitinib 1.25 μM | Non-small cell lung cancer | Inhibition of epithelial-Mesenchymal transition (EMT), and blocking of mTOR pathway | inhibit proliferation of HCC827-Gef cells | [128] | |
EGCG/Erlotinib | EGCG 30 μM Erlotinib 1 μM | Head and neck cancer | enhanced apoptosis through the regulation of Bcl-2-like protein11(BIM) and B-cell lymphoma 2(Bcl-2) | inhibiting the phosphorylation of ERK and AKT and expression induces apoptosis of SCCHN cells by regulating Bim and Bcl-2 at the posttranscriptional level. | [129] | |
Allicin | Allicin/Cisplatin | Allicin 10 μg/mL Cisplatin 2 μg/mL | Lung cancer | Allicin overcome hypoxia mediated cisplatin resistance by increasing ROS production | shifts the mechanism of cell death towards more apoptosis allicin induced increase in ROS accumulation thus enhances cisplatin sensitivity even at low doses in A549 cells. | [144] |
Allicin/5-FU | Allicin 5 mg/kg/d; every two days for 3 weeks 5-FU 20 mg/kg/d 5 consecutive days | Hepatic cancer | Improved its sensitivity in hepatic cancer cells due to induction of apoptosis by ROS-mediated mitochondrial pathways | increased intracellular reactive oxygen species (ROS) level, reduced mitochondrial membrane potential (ΔΨm), activated caspase-3 and PARP, and down-regulated Bcl-2 | [154] | |
Allicin/Adriamycin | Allicin 25 μg/mL Adriamycin 2.5 μg/mL | Gastric cancer | Inhibited the proliferation and induced apoptosis | induced apoptosis and inhibited proliferation | [148] | |
Allicin/Tamoxifen | Allicin 10 nM Tamoxifen 1 μM | Breast cancer | Improved the effectiveness of tamoxifen | Non intersecting Allicin in MCF-7 cells enhances the effectiveness of tamoxifen in the presence and absence of 17-b estradiol | [149] | |
Thymoquinone | Thymoquinone/Doxorubicin | For most experiments Thymoquinone 10 µM TQ Doxorubicin 50 nM for 24 h for the treatment of HuT102 cells for 48 h Thymoquinone 40 µM Doxorubicin 100 nM | Adult T-cell leukemia | Increased ROS production resulting in disruption of the mitochondrial membrane | Increased ROS production resulting in disruption of the mitochondrial membrane inhibition of cell viability and increased sub-G1 cells reduced tumor volume | [169] |
Thymoquinone/Cisplatin | Thymoquinone 20 mg·kg−1 oral cisplatin 2 mg·kg−1 ip | Hepatocellular carcinoma | Improved the effectiveness of Cisplatin via controlling the GRP78/CHOP/caspase-3 pathway | reduced the elevated GRP78 and induced CHOP-mediated apoptosis in the diseased liver tissues normalized alpha-fetoprotein (AFP) levels and improved liver functions | [167] | |
Thymoquinone/Cisplatin/Pentoxifyllin | Thymoquinone i.p. (20 mg/kg) Cisplatin 7.5 mg/kg twice Pentoxifyllin s.c. route 15 mg/kg | Breast carcinoma | Enhance the effect of the treatment by Notch pathway suppression | reduced Notch1, Hes1, Jagged1, β-catenin, TNF-α, IL-6, IFN-γ, and VEGF with increment in IL-2, CD4, CD8, and apoptotic cells Notch suppression. | [170] | |
Thymoquinone/Paclitaxel | 100:1 μM of TQ with PTX | Breast cancer | increased the rate of apoptotic/necrotic cell death | Non intersecting Thymoquinone does not improve Paclitaxel potency against MCF-7 or T47D cells and apparently antagonizes its killing effects. However, TQ significantly abolishes tumor-associated resistant cell clones Thymoquinone enhanced Paclitaxel induced cell death including autophagy TQ significantly increased the percent of apoptotic/necrotic cell death in T47D cells after combination with paclitaxel induced a significant increase in the S-phase cell population | [168] | |
Piperine | Piperine/Paclitaxel | 5:1 | Breast cancer | Synergistic anticancer effect | Non intersecting piperine can improve the bioavailability of paclitaxel and can potentiate the antitumor effect of paclitaxel | [189] |
Piperine/hesperidin/bee venom/Tamoxifen | Piperine 34.89 μg/mL Hesperidin 12.14 μg/mL bee venom 10.19 μg/mL Tamoxifen 2.98 μg/mL | Breast cancer | Enhance the anti-cancer effects of tamoxifen | Enhance the anti-cancer effects of tamoxifen | [190] | |
Piperine/Doxorubicin | Piperine 50 µM Doxorubicin 10 µM | Breast cancer | Inhibited tumor growth | Piperine enhanced the cytotoxicity effect of doxorubicin | [191] | |
Piperine/Docetaxel | Piperine 50 mg/kg p.o. Docetaxel 12.5 mg/kg | Prostate cancer | Improved the antitumor efficacy of docetaxel | Improved Anti-Tumor Efficacy Via Inhibition of CYP3A4 Activity | [192] | |
Emodin | Emodin/Sorafenib | Emodin 20 μM Sorafenib 0.5 μM and 1 μM | Hepatocellular carcinoma | Improving the anti-cancer effect of sorafenib by increasing apoptosis and cell cycle arrest | Non intersecting emodin synergistically increased cell cycle arrest in the G1 phase and apoptotic cells in the presence of sorafenib | [207] |
Emodin/Afatinib | Emodin 50 mg/kg/day for 4 weeks Afatinib 50 mg/kg/day for 4 weeks; | Pancreatic cancer | Inhibited cell proliferation | Regulating the Stat3 expression. | [216] | |
Emodin/Cisplatin | Emodin A549 cells:5 µM H460 cells, 2.5 µM Cisplatin A549: 8, 10 and 15 µM H460 cells:2, 4, 6, 8 and 10 µM | Lung adenocarcinoma | Increased cisplatin sensitivity through P-glycoprotein downregulation | Non intersecting Emodin inhibited the proliferation of A549 and H460 cells emodin enhanced cisplatin-induced apoptosis and DNA damage in A549 and H460 cells emodin can increase A549 and H460 cell sensitivity to cisplatin by inhibiting Pgp expression | [219] | |
Emodin/Paclitaxel | Emodin 10 μM Paclitaxel 4 μM | Non-small cell lung cancer | Enhanced the antiproliferative effect of paclitaxel | Inhibited the proliferation of A549 cells | [212] | |
Emodin/Gemcitabin | Emodin 40 μM Gemcitabine 20 μM | Pancreatic cancer | Emodin inhibited IKKβ/NF-κB signaling pathway and reverses Gemcitabine resistance | Increase the apoptosis rate | [213] | |
Emodin/Endoxifen | Emodin 0, 15, 30, 60 µM Endoxifen 0, 2, 4 µM | Breast cancer | Elevation of cyclin D1 and phosphorylated extracellular signal-regulated kinase (pERK) | Emodin attenuated tamoxifen’s treatment effect via cyclin D1 and pERK up-regulation in ER-positive breast cancer cell lines. | [294,299] | |
Parthenolide | Parthenolide/Epirubicin | Parthenolide 2.5, 0.75 and 0.2 µM Epirubicin (9, 7, and 5 µM | Breast cancer | improved cytotoxicity and apoptosis as well as reduced the undesirable side effects | Up-regulated the expression of Bax as a pro-apoptotic gene in MDA-MB cells down-regulated the expression of Bcl2 as an anti-apoptotic gene in MDA-MB cells increasing the fracture of caspase 3 and improving the apoptosis pathway | [221] |
Parthenolide/Indocyanine | Breast cancer | Synergistic antitumor activity | More ROS-mediated killing of the tumor cells by exerting a synergistic effect for treating triple-negative breast cancer | [270] | ||
Parthenolide/Arsenic trioxide | Parthenolide 1 μg/mL Arsenic trioxide 2 µM | Adult T-cell leukemia/lymphoma | Enhanced the activity | Non intersecting parthenolide significantly enhanced the toxicity of ATO in MT2 cells. | [231] | |
Parthenolide/Balsalazide | Parthenolide 5 and 10 μmol/L Balsalazide 20 mmol/L | Colorectal cancer | Improved the anticancer activity via blocking NF-κB activation | Exhibits synergistic suppression of NF-κB and NF-κB–regulated gene products that are associated with apoptosis, proliferation, invasion, angiogenesis, and inflammation | [232] | |
Luteolin | Luteolin/Cisplatin |
Luteolin 0, 10, 50, 100 μM Cisplatin 2 μg/mL | Ovarian cancer | Significantly sensitized the antineoplastic effect of cisplatin by initiating apoptosis and inhibiting cell invasion and migration |
Suppressing CAOV3/DDP cell growth and metastasis inducing apoptosis by decreasing Bcl-2 expression. | [245] |
Luteolin/5-FU | Luteolin:5-fluorouracil 10:1, 20:1, 40:1 luteolin:100, 50, 25, 12.5, 6.25, 3.125 µM 5-FU: 10, 5, 2.5, 1.25, 0.5, 0.25 µg/mL | Hepatocellular carcinoma | synergistic anticancer effect | Apoptosis induction and metabolism | [244] | |
Quercetin | Quercetin/Cisplatin | Quercetin 100 μM cisplatin 5 μg/mL | Oral squamous cell carcinoma | Inhibition of NF-κB thus downregulating of X-linked inhibitor of apoptosis protein(xIAP) | Induced apoptosis in human OSCC (cell lines Tca-8113 and SCC-15) by down-regulating NF-κB | [273] |
Quercetin 50 μM cisplatin 10 μM | Hepatocellular carcinoma | potentiated the growth suppression effect of cisplatin | Inducing growth suppression and apoptosis in HepG2 cells | [268] | ||
quercetin 15 μM cisplatin 10 μM | Cervical cancer | Induced apoptosis by downregulation of MMP2, METTL3, P-Gp and ezrin production | Promoting apoptosis and inhibiting proliferation, migration and invasion of cervical cancer cells | [262] | ||
Quercetin/Tamoxifen | Quercetin 50 μM Tamoxifen 10–6 mol/L | Breast cancer | Enhanced the activity | Proliferation inhibition and apoptosis in MCF-7Ca/TAM-R cells | [264] | |
Quercetin/Vincristine | Vincristine 50 mg Quercetin 50 mg | Lymphoma | Potentiated the effect of vincristine | Synergistic effect through lipid-polymeric nanocarriers (LPNs) for the lymphoma combination chemotherapy | [269] | |
Quercetin/Doxorubicin | Quercetin 0.7 μM Doxorubicin 2 μg/mL | Breast cancer | Suppression of efflux receptors (BCRP, P-gp, MRP1), and reduced the side effects of doxorubicin | Down-regulating the expression of efflux ABC transporters including P-gp, BCRP and MRP1 and attenuating the toxic side effects of high dose doxorubicin to non-tumor cells | [265] | |
Quercetin and Doxorubicin 5 mg/kg | Gastric cancer | Improved the efficacy | Improved the efficacy of gastric carcinoma chemotherapy | [267] | ||
Doxorubicin 0.75 μM Quercetin 230 μM | Breast cancer | Improved the efficacy | Induction of apoptosis in cancer cells | [266] | ||
Quercetin/Radiotherapy | Theranostic system (CQM ) 50 μm | Breast cancer | Improved the tumor targeting and radiotherapy treatment | Promoted tumor cell apoptosis | [272] | |
Quercetin/Paclitaxel | Quercetin 20 µM Paclitaxel 5 nM | Prostate cancer | Improved efficacy by by ROS production, induction of apoptosis, preventing cell migration and causing cell arrest in G2/M phase | Induction of apoptosis cell arrest in G2/M phase ROS production Preventing cell migration | [270] | |
Quercetin 2, 10, 20 mg/kg Paclitaxel 40 mg/kg | Breast cancer | had enhanced the multi-drug resistance in breast cancer by decreasing P-gp expression | Lower IC50 value, higher apoptosis rate, obvious G2M phase arrest as well as stronger microtubule destruction in MCF-7/ADR cells | [271] | ||
Anthocyanins | Anthocyanins/ 5-FU | Caco2 cells BRB Anthocyanins 50 μg/mL 5-FU 25 μM or 50 μM SW480 cells BRB Anthocyanins 50 μg/mL 5-FU 16 μM or 32 μM | Colorectal cancer | decreased the proliferation and migration of tumor cells | Decreased number of tumors decreased the proliferation | [287] |
Anthocyanins/Cisplatin | AIMs Anthocyanins 400 µg/mL Cisplatin 5 μg/mL | Breast cancer | advanced the sensitivity of cisplatin by inhibiting Akt and NF-κB activity | Non intersecting Anthocyanins isolated from Vitis coignetiae Pulliat (Meoru in Korea) (AIMs) Enhances Cisplatin Sensitivity in MCF-7 Human Breast Cancer Cells through Inhibition of Akt and NF-κB Activation | [289] | |
Anthocyanins/Doxorubicin | Anthocyanins 1–25 μg/mL Doxorubicin 5 μM | Breast cancer | decreased doxorubicin cardiac toxicity | Smoothies containing mixtures of Citrus sinensis and Vitis vinifera L. cv. Aglianico N, two typical fruits of the Mediterranean diet decreased doxorubicin cardiac toxicity | [291] | |
Anthocyanins/Trastuzumab | C3G 5 μg/mL Trastuzumab 5 μg/mL | Breast cancer | Improved trastuzumab apoptotic effect | Non intersecting Improved trastuzumab apoptotic effect | [294] | |
C3G (1 mg/mL) or P3G (1 mg/mL) | Breast cancer | Overcome trastuzumab-resistant cells due to the decrease in HER2, AKT and MAPK activities | Non intersecting Anthocyanin overcome trastuzumab-resistant cells due to the decrease in HER2, AKT and MAPK activities inhibits invasion and migration of trastuzumab-resistant human breast cancer cells | [295] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talib, W.H.; Awajan, D.; Hamed, R.A.; Azzam, A.O.; Mahmod, A.I.; AL-Yasari, I.H. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022, 27, 5452. https://doi.org/10.3390/molecules27175452
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules. 2022; 27(17):5452. https://doi.org/10.3390/molecules27175452
Chicago/Turabian StyleTalib, Wamidh H., Dima Awajan, Reem Ali Hamed, Aya O. Azzam, Asma Ismail Mahmod, and Intisar Hadi AL-Yasari. 2022. "Combination Anticancer Therapies Using Selected Phytochemicals" Molecules 27, no. 17: 5452. https://doi.org/10.3390/molecules27175452
APA StyleTalib, W. H., Awajan, D., Hamed, R. A., Azzam, A. O., Mahmod, A. I., & AL-Yasari, I. H. (2022). Combination Anticancer Therapies Using Selected Phytochemicals. Molecules, 27(17), 5452. https://doi.org/10.3390/molecules27175452