Comparison of Satellite and Drone-Based Images at Two Spatial Scales to Evaluate Vegetation Regeneration after Post-Fire Treatments in a Mediterranean Forest
<p>Location (<b>a</b>) and aerial map (<b>b</b>) of the study area, catchment area (<b>c</b>) and hillslope area (<b>d</b>) in Sierra de los Donceles forest (Castilla La Mancha, Spain).</p> "> Figure 2
<p>Plot location and distribution of soil conditions in the catchment (<b>a</b>,<b>b</b>) and hillslope (<b>c</b>,<b>d</b>) areas in Sierra de los Donceles forest (Castilla La Mancha, Spain). Log erosion barriers (“LEB”), contour-felled log debris (“CFD”), burned and no action (“BNA”), unburned (“UB”).</p> "> Figure 3
<p>Photos of the construction of contour-felled log debris (<b>a</b>) and log erosion barriers (<b>b</b>) in Sierra de los Donceles forest (Castilla La Mancha, Spain).</p> "> Figure 4
<p>Examples of satellite (<b>a</b>) and drone (<b>b</b>) images caught in Serra de Los Donceles forest (Castilla-La Mancha, Spain).</p> "> Figure 5
<p>Vegetation cover (mean ± standard deviation of 62 plots) in plots under four land conditions (UB = unburned; BNA = burned and no action; CFD = contour-felled log debris; LEB = log erosion barriers) after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha, Spain). Mean values that do not share a lower case letter (top of graph) are significantly different from each other (HSD, <span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Spatial distribution of VARI surveyed by satellite (<b>a</b>) and UAV (<b>b</b>) images of 2016 among four land conditions after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha, Spain). Legend: Fajinas = log erosion barriers; cordones = contour-felled log debris; sin tratamiento = burned and no Action; sin fuego = unburned.</p> "> Figure 7
<p>Correlations between VARI and vegetation cover at catchment (<b>a</b>), and hillslope (<b>b</b>) scales surveyed by LANDSAT8 and UAV images (2016) in Sierra de Los Donceles forest (Castilla-La Mancha, Spain).</p> "> Figure 8
<p>Mean values of VARI surveyed by LANDSAT8 (<b>a</b>) and UAV (<b>b</b>) images (2016) among four land conditions after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha, Spain).</p> "> Figure 9
<p>Spatial distribution of land slope (<b>a</b>) and terrain roughness (<b>b</b>) surveyed by UAV images of 2016 among four land conditions after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha, Spain). Legend: Fajinas = log erosion barriers; cordones = contour-felled log debris; sin tratamiento = burned and no action; sin fuego = unburned.</p> "> Figure 9 Cont.
<p>Spatial distribution of land slope (<b>a</b>) and terrain roughness (<b>b</b>) surveyed by UAV images of 2016 among four land conditions after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha, Spain). Legend: Fajinas = log erosion barriers; cordones = contour-felled log debris; sin tratamiento = burned and no action; sin fuego = unburned.</p> "> Figure 10
<p>Scatterplots of vegetation regeneration (measured by VARI by UAV images of 2016) versus land slope (<b>a</b>) and terrain roughness (<b>b</b>) among four land conditions after the wildfire of 2012 in Sierra de Los Donceles forest (Castilla-La Mancha, Spain).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Data Collection and Processing
2.3.1. Field Survey of Vegetation Cover
2.3.2. Remote Sensing Surveys of Vegetation Cover
2.4. Spatial Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Field Measurements of Vegetation Cover in Different Land Conditions
3.2. Correlations of VARI with Vegetation Cover Using Remote Sensing Techniques
3.3. Evaluation of the Vegetation Regeneration in Fire-Affected and Treated Areas Using VARI
3.4. Spatial Distribution of Land Slope and Roughness, and Correlations with VARI
4. Conclusions
- -
- Post-fire treatments improve the vegetation regeneration compared to the burned and not treated areas (by about 20% for CFDs and 30% for LEBs); in this sense, the post-fire treatment using LEBs appears to be more promising compared to the CFD technique;
- -
- Surveys by UAV are useful to detect the variability of vegetation cover among burned and unburned areas through VARI, but may be unrealistic when the effectiveness of a post-fire treatment must be evaluated;
- -
- LANDSAT8 images are less reliable to evaluate the land cover post-fire treatments, due to the lack of correlation between VARI and vegetation cover, and may be because of the resolution that is not suitable for small plants.
- -
- The post-fire restoration strategy of landscape managers that have prioritized steeper slopes for treatments was successful;
- -
- Vegetation growth, at least in the experimental conditions, played a limited influence on soil surface conditions, since no significant increases in terrain roughness were detected in treated areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stephens, S.L.; Boerner, R.E.; Moghaddas, J.J.; Moghaddas, E.E.; Collins, B.M.; Dow, C.B.; Youngblood, A. Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona. Ecosphere 2012, 3, 1–17. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-fire soil management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Girardin, M.P.; Ali, A.A.; Carcaillet, C.; Gautgier, S.; Hély, C.; Le Goff, H.; Terrier, A.; Bergeron, Y. Fire in managed forest of eastern Canada: Risk and options. For. Ecol. Manag. 2013, 294, 238–249. [Google Scholar] [CrossRef]
- Versini, P.A.; Velasco, M.; Cabello, A.; Sempere-Torres, D. Hydrological impact of forest fires and climate change in Mediterranean basin. Nat. Hazards 2013, 66, 609–628. [Google Scholar] [CrossRef]
- MAPA. Spain Los Incendios Forestales en España. 1 Enero–31 Diciembre 2018; Avance Informativo Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España: Madrid, Spain, 2019.
- Lachowski, H.; Hardwick, P.; Griffith, R.; Parsons, A.; Warbington, R. Faster, better data for burned watersheds needing emergency rehab. J. For. 1997, 95, 4–8. [Google Scholar]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Zema, D.A.; Nunes, J.P.; Lucas-Borja, M.E. Improvement of seasonal runoff and soil loss predictions by the MMF (Morgan-Morgan-Finney) model after wildfire and soil treatment in Mediterranean forest ecosystems. Catena 2020, 188, 104415. [Google Scholar] [CrossRef]
- Ryu, S.R.; Choi, H.T.; Lim, J.H.; Lee, I.K.; Ahn, Y.S. Post-fire restoration plan for sustainable forest management in South Korea. Forests 2017, 8, 188. [Google Scholar] [CrossRef] [Green Version]
- Viana-Soto, A.; Aguado, I.; Martínez, S. Assessment of post-fire vegetation recovery using fire severity and geographical data in the mediterranean region (Spain). Environments 2017, 4, 90. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, P.R.; Wagenbrenner, J.W.; Brown, R.E.; Wohlgemuth, P.M.; Beyers, J.L. Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States. Int. J. Wildland Fire 2008, 17, 255–273. [Google Scholar] [CrossRef]
- Fernández, C.; Fontúrbel, T.; Vega, J.A. Effects of pre-fire site preparation and post-fire erosion barriers on soil erosion after a wildfire in NW Spain. Catena 2019, 172, 691–698. [Google Scholar] [CrossRef]
- Badía, D.; Sánchez, C.; Aznar, J.M.; Martí, C. Post-fire hillslope log debris dams for runoff and erosion mitigation in the semiarid Ebro Basin. Geoderma 2015, 237, 298–307. [Google Scholar] [CrossRef]
- Wittenberg, L.; van der Wal, H.; Keesstra, S.; Tessler, N. Post-fire management treatment effects on soil properties and burned area restoration in a wildland-urban interface, Haifa Fire case study. Sci. Total. Environ. 2020, 716, 135190. [Google Scholar] [CrossRef]
- Niemeyer, R.J.; Bladon, K.D.; Woodsmith, R.D. Long-term hydrologic recovery after wildfire and post-fire forest management in the interior Pacific Northwest. Hydrol. Process. 2020, 34, 1182–1197. [Google Scholar] [CrossRef]
- Keith, H.; Lindenmayer, D.; Mackey, B.; Blair, D.; Carter, L.; McBurney, L.; Konishi-Nagano, T. Managing temperate forests for carbon storage: Impacts of logging versus forest protection on carbon stocks. Ecosphere 2014, 5, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Raftoyannis, Y.; Spanos, I. Evaluation of log and branch barriers as post-fire rehabilitation treatments in a Mediterranean pine forest in Greece. Int. J. Wildland Fire 2005, 14, 183–188. [Google Scholar]
- Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. J. Hydrol. 2000, 231, 220–229. [Google Scholar] [CrossRef]
- Leverkus, A.B.; Rey Benayas, J.M.; Castro, J.; Boucher, D.; Brewer, S.; Collins, B.M.; Lee, E.-J. Salvage logging effects on regulating and supporting ecosystem services—A systematic map. Can. J. For. Res. 2018, 48, 983–1000. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Noss, R.F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 2006, 20, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.M.; Maselli, F.; Carrega, P. Using SPOT images and field sampling for mapping burn severity and vegetation factors affecting post fire erosion risk. Catena 2008, 75, 326–335. [Google Scholar] [CrossRef]
- Szpakowski, D.M.; Jensen, J.L. A review of the applications of remote sensing in fire ecology. Remote. Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Alfonso-Torreño, A.; Gómez-Gutiérrez, Á.; Schnabel, S.; Contador, J.F.L.; de Sanjosé Blasco, J.J.; Fernández, M.S. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci. Total. Environ. 2019, 678, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. Int. J. Remote. Sens. 2002, 23, 2537–2562. [Google Scholar] [CrossRef]
- Gitas, I.; Mitri, G.; Veraverbeke, S.; Polychronaki, A. Advances in remote sensing of post-fire vegetation recovery monitoring—A review. Remote Sens. Biomass Princ. Appl. 2012, 1, 334. [Google Scholar]
- Bhagat, V.S.; Kadam, A.; Kumar, S. Analysis of Remote Sensing based Vegetation Indices (VIs) for Unmanned Aerial System (UAS): A Review. Remote Sens. Land 2019, 3, 58–73. [Google Scholar] [CrossRef]
- Evangelides, C.; Nobajas, A. Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration. Remote Sens. Appl. Soc. Environ. 2020, 17, 100283. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Sirin, A.; Medvedeva, M.; Maslov, A.; Vozbrannaya, A. Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data. Land 2018, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Khalyani, A.H. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecol. 2019, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lentile, L.B.; Morgan, P.; Hudak, A.T.; Bobbitt, M.J.; Lewis, S.A.; Smith, A.M.; Robichaud, P.R. Post-fire burn severity and vegetation response following eight large wildfires across the western United States. Fire Ecol. 2007, 3, 91–108. [Google Scholar] [CrossRef]
- Bastos, A.; Gouveia, C.; DaCamara, C.; Trigo, R. Landscape, fire distribution and vegetation recovery in Portugal: 2003 and 2005 fire seasons. In Advances in Remote Sensing and GIS Applications in Forest Fire Management: From Local to Global Assessments; EUR 24941 EN; Miguel-Ayanz, J., Camia, A., Gitas, I., Santos De Oliveira, S., Eds.; Publications Office of the European Union: Luxembourg, 2011; JRC66634. [Google Scholar]
- Lasaponara, R.; Montesano, T.; Desantis, F.; Lanorte, A. Evaluating post fire vegetation recovery using satellite MODIS data. In Advances in Remote Sensing and GIS Applications in Forest Fire Management: From Local to Global Assessments; EUR 24941 EN; Miguel-Ayanz, J., Camia, A., Gitas, I., Santos De Oliveira, S., Eds.; Publications Office of the European Union: Luxembourg, 2011; JRC66634. [Google Scholar]
- Polychronaki, A.I.; Gitas, I.Z.; Minchella, A. Monitoring post-fire vegetation recovery using optical and sar data. In Advances in Remote Sensing and GIS Applications in Forest Fire Management: From Local to Global Assessments; EUR 24941 EN; Miguel-Ayanz, J., Camia, A., Gitas, I., Santos De Oliveira, S., Eds.; Publications Office of the European Union: Luxembourg, 2011; JRC66634. [Google Scholar]
- San-Miguel-Ayanz, J.; Camia, A.; Gitas, I.; Santos De Oliveira, S. (Eds.) Advances in Remote Sensing and GIS Applications in Forest Fire Management: From Local to Global Assessments; EUR 24941 EN; Publications Office of the European Union: Luxembourg, 2011; JRC66634. [Google Scholar]
- Schneider, P.; Roberts, D.A.; Kyriakidis, P.C. A VARI-based relative greenness from MODIS data for computing the Fire Potential Index. Remote. Sens. Environ. 2008, 112, 1151–1167. [Google Scholar] [CrossRef]
- Stow, D.; Niphadkar, M.; Kaiser, J. MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int. J. Remote. Sens. 2005, 26, 3867–3873. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martínez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef]
- Larrinaga, A.R.; Brotons, L. Greenness indices from a low-cost UAV Imagery as tools for monitoring post-fire forest recovery. Drones 2019, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Christakopoulos, P.; Paronis, D.; Scarvelis, M.; Kalabokides, K.; Hatzopoulos, I. Comparative evaluation of restoration practices applied to mediterranean forest ecosystems using remote sensing and GIS: Natural regeneration versus reforestation. In Advances in Remote Sensing and GIS Applications in Forest Fire Management: From Local to Global Assessments; EUR 24941 EN; Miguel-Ayanz, J., Camia, A., Gitas, I., Santos De Oliveira, S., Eds.; Publications Office of the European Union: Luxembourg, 2011; JRC66634. [Google Scholar]
- Rivas-Martínez, S.; Rivas-Saenz, S.; Penas, A. Worldwide Bioclimatic Classification System; Backhuys Pub: Leiden, The Netherlands, 2002. [Google Scholar]
- State Meteorological Agency-AEMET-Spanish Government. Available online: http://www.aemet.es/es/portada (accessed on 12 January 2021).
- IGN. Mapa de Suelos de España; Instituto Geográfico Nacional: Madrid, Spain, 2006.
- Soil Survey Staff. Keys to Soil Taxonomy; Natural Resources Conservation Service—Department of Agriculture: Washington, DC, USA, 2014.
- Napper, C. Burned Area Emergency Response Treatments Catalog; National Technology & Development Program, Watershed, Soil Air Management 0625 1801-SDTDC; USDA Forest Service: San Dimas, CA, USA, 2006.
- Canfield, R. Application of Line Interception Method in Sampling Range Vegetation. J. For. 1941, 39, 388–394. [Google Scholar]
- Zema, D.A.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment. Sci. Total. Environ. 2020, 753, 142006. [Google Scholar] [CrossRef]
- Zema, D.A.; Van Stan, J.T.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Effects of stand composition and soil properties on water repellency and hydraulic conductivity in Mediterranean forests. Ecohydrology 2021, 14, e2276. [Google Scholar] [CrossRef]
- Millar, R.B.; Anderson, M.J. Remedies for pseudoreplication. Fish. Res. 2004, 70, 397–407. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Q.; Li, Y. Partitioning of Terrain Features Based on Roughness. Remote Sens. 2018, 10, 1985. [Google Scholar] [CrossRef] [Green Version]
- Halthore, R.N.; Markham, B.L. Overview of atmospheric correction and radiometric calibration efforts during FIFE. J. Geophys. Res. Atmos. 1992, 97, 18731–18742. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G. Distinguishing disturbance from perturbations in fire-prone ecosystems. Int. J. Wildland Fire 2019, 28, 282–287. [Google Scholar] [CrossRef]
- Gómez-Sanchez, E.; Lucas-Borja, M.E.; Plaza-Alvarez, P.A.; González-Romero, J.; Sagra, J.; Moya, D.; De las Heras, J. Effects of postfire hillslope stabilisation techniques on chemical, physico-chemical and microbiological soil properties in Mediterranean forest ecosystems. J. Environ. Manag. 2019, 246, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Albert-Belda, E.; Bermejo-Fernández, A.; Cerdà, A.; Taguas, E.V. The use of Easy-Barriers to control soil and water losses in fire-affected land in Quesada, Andalusia, Spain. Sci. Total. Environ. 2019, 690, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Jourgholami, M.; Ahmadi, M.; Tavankar, F.; Picchio, R. Effectiveness of Three Post-Harvest Rehabilitation Treatments for Runoff and Sediment Reduction on Skid Trails in the Hyrcanian Forests. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2020, 41, 1–16. [Google Scholar] [CrossRef]
- Eng, L.S.; Ismai, R.; Hashim, W.; Mohamed, R.R.; Baharum, A. Vegetation monitoring using UAV: A preliminary Study. Int. J. Eng. Technol. 2018, 7, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Cermakova, I.; Komarkova, J.; Sedlak, P. Calculation of visible spectral indices from UAV-based data: Small water bodies monitoring. In Proceedings of the 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, 19–22 June 2019; pp. 1–5. [Google Scholar]
- Themistocleous, K. DEM Modeling using RGB-based vegetation indices from UAV images. Proc. SPIE 2019, 11174. [Google Scholar] [CrossRef]
- Fathipoor, H.; Arefi, H.; Shah-Hosseini, R.; Moghadam, H. Corn forage yield prediction using unmanned aerial vehicle images at mid-season growth stage. J. Appl. Remote Sens. 2019, 13, 034503. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.; Cen, H.; Zhu, J.; Yin, W.; Wu, W.; Zhu, H.; Sun, D.; Zhou, W.; He, Y. Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef] [Green Version]
- Mokarram, M.; Boloorani, A.D.; Hojati, M. Relationship between Land Cover and Vegetation Indices. Case Study: Eghlid Plain, Fars Province, Iran. Eur. J. Geogr. 2016, 7, 48–60. [Google Scholar]
- Mokarram, M.; Hojjati, M.; Roshan, G.; Negahban, S. Modeling the Behavior of Vegetation Indices in the Salt Dome of Korsia in North-East of Darab, Fars, Iran. Modeling Earth Syst. Environ. 2015, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Corona, P.; Lamonaca, A.; Chirici, G. Remote sensing support for post fire forest management. Ifor. Biogeosci. For. 2008, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Guisuraga, J.M.; Sanz-Ablanedo, E.; Suárez-Seoane, S.; Calvo, L. Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: Opportunities and challenges. Sensors 2018, 18, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, T.; Filley, T.R.; Tong, Y.; Abban, B.; Singh, S.; Papanicolaou, A.T.; Wacha, K.M.; Wilson, C.G.; Chaubey, I. Tillage-induced surface soil roughness controls the chemistry and physics of eroded particles at early erosion stage. Soil Tillage Res. 2021, 207, 104807. [Google Scholar] [CrossRef]
- Römkens, M.J.; Helming, K.; Prasad, S.N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena 2002, 46, 103–123. [Google Scholar] [CrossRef]
- Govers, G.; Takken, I.; Helming, K. Soil roughness and overland flow. Agronomie 2000, 20, 131–146. [Google Scholar] [CrossRef]
- De Almeida, W.S.; Panachuki, E.; de Oliveira, P.T.S.; da Silva Menezes, R.; Sobrinho, T.A.; de Carvalho, D.F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil Tillage Res. 2018, 175, 130–138. [Google Scholar] [CrossRef]
- Nunes, J.P.; Bernard-Jannin, L.; Rodriguez Blanco, M.L.; Santos, J.M.; Coelho, C.D.O.A.; Keizer, J.J. Hydrological and erosion processes in terraced fields: Observations from a humid Mediterranean region in northern Portugal. Land Degrad. Dev. 2018, 29, 596–606. [Google Scholar] [CrossRef]
- Meena, R.S.; Lal, R.; Yadav, G.S. Long-term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in central Ohio, USA. Geoderma 2020, 363, 114164. [Google Scholar] [CrossRef]
- Zema, D.A. Post-fire management impacts on soil hydrology. Curr. Opin. Environ. Sci. Health 2021, 21, 100252. [Google Scholar] [CrossRef]
Plot Scale | Land Condition | Forest Cover (%) |
---|---|---|
Hillslope | LEB | 78–84 |
CFD | 77–81 | |
BNA | 69–75 | |
UB | 77–91 | |
Catchment | LEB | 73–84 |
CFD | 71–79 | |
BNA | 81–87 | |
UB | 78–83 |
VARI | LANDSAT8 | UAV |
---|---|---|
Minimum | −0.215 | −0.599 |
Maximum | 0.058 | 0.173 |
Range | 0.273 | 0.771 |
Class width (range/5) | 0.055 | 0.154 |
Treatment | Land Slope (%) | Terrain Roughness (μm) |
---|---|---|
LEB | 32.2 ± 5.26 a | 0.08 ± 0.03 a |
CFD | 36.2 ± 2.61 a | 0.09 ± 0.01 a |
BNA | 23.1 ± 6.22 b | 0.06 ± 0.03 a |
UB | 36.6 ± 3.71 a | 0.28 ± 0.21 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, J.L.; Lucas-Borja, M.E.; Plaza-Alvarez, P.A.; Denisi, P.; Moreno, M.A.; Hernández, D.; González-Romero, J.; Zema, D.A. Comparison of Satellite and Drone-Based Images at Two Spatial Scales to Evaluate Vegetation Regeneration after Post-Fire Treatments in a Mediterranean Forest. Appl. Sci. 2021, 11, 5423. https://doi.org/10.3390/app11125423
Martinez JL, Lucas-Borja ME, Plaza-Alvarez PA, Denisi P, Moreno MA, Hernández D, González-Romero J, Zema DA. Comparison of Satellite and Drone-Based Images at Two Spatial Scales to Evaluate Vegetation Regeneration after Post-Fire Treatments in a Mediterranean Forest. Applied Sciences. 2021; 11(12):5423. https://doi.org/10.3390/app11125423
Chicago/Turabian StyleMartinez, Jose Luis, Manuel Esteban Lucas-Borja, Pedro Antonio Plaza-Alvarez, Pietro Denisi, Miguel Angel Moreno, David Hernández, Javier González-Romero, and Demetrio Antonio Zema. 2021. "Comparison of Satellite and Drone-Based Images at Two Spatial Scales to Evaluate Vegetation Regeneration after Post-Fire Treatments in a Mediterranean Forest" Applied Sciences 11, no. 12: 5423. https://doi.org/10.3390/app11125423
APA StyleMartinez, J. L., Lucas-Borja, M. E., Plaza-Alvarez, P. A., Denisi, P., Moreno, M. A., Hernández, D., González-Romero, J., & Zema, D. A. (2021). Comparison of Satellite and Drone-Based Images at Two Spatial Scales to Evaluate Vegetation Regeneration after Post-Fire Treatments in a Mediterranean Forest. Applied Sciences, 11(12), 5423. https://doi.org/10.3390/app11125423