Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data
<p>Meschera National Park in Vladimir Province, Russia. (<b>a</b>) Location of Meschera National Park shown in red; and (<b>b</b>) 1: mire complexes and 2: test sites (eight peatland complexes) in the National Park.</p> "> Figure 2
<p>Spectral radiance bands for identifying land cover classes.</p> "> Figure 3
<p>Classes of training data areas in two-dimensional space of spectral radiance values for various combinations of data bands: (<b>a</b>) RED-NIR for Landsat-7; (<b>b</b>) NIR-SWIR 2 for Landsat-7; (<b>c</b>) SWIR 2-SWIR 3 for Landsat-7; (<b>d</b>) RED-NIR for Spot-5; (<b>e</b>) NIR-SWIR 2 for Spot-5; (<b>f</b>) RED-NIR for Spot-6.</p> "> Figure 4
<p>Minimum distance classification examples of different satellite images for a peat extraction site in the Orlovskoe peatland complex: (<b>a</b>) Landsat-7; (<b>b</b>) Spot-5; (<b>c</b>) Spot-6 (supervised classification); and (<b>d</b>) Spot-6 (unsupervised classification).</p> "> Figure 5
<p>Landsat-7 ETM+ classification examples using different methods for a peat extraction site in the Orlovskoe peatland complex: (<b>a</b>) Erdas Imagine (EI) Minimum Distance; (<b>b</b>) ScanEx Image Processor (SIP) Object–oriented; (<b>c</b>) SIP Neural networks; and (<b>d</b>) SIP Trees.</p> "> Figure 6
<p>Classification examples of satellite images for the peat extraction site in the Orlovskoe peatland complex: (<b>a</b>) EI Minimum Distance Sentinel-2; (<b>b</b>) EI Minimum Distance Landsat-8; (<b>c</b>) SIP Object–oriented Sentinel-2; (<b>d</b>) SIP Object–oriented Landsat-8.</p> "> Figure A1
<p>Test site with class 1 vegetation cover: bare peat.</p> "> Figure A2
<p>Test site with class 2 vegetation cover: willow herb, small reed, and small birch communities.</p> "> Figure A3
<p>Test site with class 3 vegetation cover: communities with pine.</p> "> Figure A4
<p>Test site with class 4: communities dominated by willow and birch.</p> "> Figure A5
<p>Test site with class 5: hydrophilic communities with cattail and reed.</p> "> Figure A6
<p>Test site with class 6: water.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Source Data
2.3. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
References
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands—Background and Principles Including a Framework for Decision–Making; International Mire Conservation Group: Greifswald, Germany, 2002; International Peat Society: Jyvaskyla, Finland, 2002; 303p. [Google Scholar]
- Parish, F.; Sirin, A.; Charman, D.; Joosten, H.; Minayeva, T.; Silvius, M.; Stringer, L. (Eds.) Assessment on Peatlands, Biodiversity and Climate Change; Main Report; Global Environment Centre, Kuala Lumpur and Wetlands International: Wageningen, The Netherlands, 2008; 179p. [Google Scholar]
- Joosten, H.; IMCG Global Peatland Database. Technical Report. International Mire Conservation Group. 2004. Available online: http://www.imcg.net/pages/publications/imcg-materials.php (accessed on 2 June 2018).
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Strack, M. (Ed.) Peatlands and Climate Change; International Peat Society, Saarijärven Offset Oy: Saarijärvi, Finland, 2008; 223p. [Google Scholar]
- Yu, Z.C. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; IPCC: Geneva, Switzerland, 2014.
- Wilson, D.; Blain, D.; Couwenberg, J.; Evans, C.D.; Murdiyarso, D.; Page, S.E.; Renou–Wilson, F.; Rieley, J.O.; Sirin, A.; Strack, M.; et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 2016, 17, 1–28. [Google Scholar] [CrossRef]
- Granath, G.; Moore, P.A.; Lukenbach, M.C.; Waddington, J.M. Mitigating wildfire carbon loss in managed Northern peatlands through restoration. Sci. Rep. 2016, 6, 28498–28507. [Google Scholar] [CrossRef] [PubMed]
- Minayeva, T.Y.; Sirin, A.A. Peatland Biodiversity and Climate Change. Biol. Bull. Rev. 2012, 2, 164–175. [Google Scholar] [CrossRef]
- Minayeva, T.; Bragg, O.; Sirin, A. Peatland biodiversity and its restoration. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Cambridge University Press: Cambridge, UK, 2016; pp. 47–65. [Google Scholar]
- Minayeva, T.Y.; Bragg, O.M.; Sirin, A.A. Towards ecosystem–based restoration of peatland biodiversity. Mires Peat 2017, 19, 1–36. [Google Scholar] [CrossRef]
- Joosten, H. The Global Peatland CO2 Picture: Peatland Status and Drainage Related Emissions in All Countries of the World; Wetlands International: Wageningen, The Netherlands, 2010; p. 36. Available online: https://www.wetlands.org/publications/the-global-peatland-CO2-picture/ (accessed on 2 June 2018).
- Vompersky, S.E.; Ivanov, A.I.; Tsyganova, O.P.; Valyaeva, N.A.; Dubinin, A.I.; Glukhov, A.I.; Markelova, L.G. Bog Organic Soils and Bogs of Russia and Carbon Pool of Their Peats. Eur. Soil Sci. 1996, 28, 91–105. [Google Scholar]
- Vompersky, S.E.; Sirin, A.A.; Tsyganova, O.P.; Valyaeva, N.A.; Maikov, D.A. Peatlands and Paludified Lands of Russia: Attempt of Analyses of Spatial Distribution and Diversity. Izvesfiya Ross. Akad. Nauk Ser. Geogr. 2005, 5, 21–33. (In Russian) [Google Scholar]
- Vompersky, S.E.; Sirin, A.A.; Salnikov, A.A.; Tsyganova, O.P.; Valyaeva, N.A. Estimation of Forest Cover Extent over Peatland and Paludified Shallow Peatlands in Russia. Contemp. Probl. Ecol. 2011, 4, 734–741. [Google Scholar] [CrossRef]
- Sirin, A.A.; Minaeva, T.J. (Eds.) Peatlands of Russia: Towards Analysis of Sectorial Information; GEOS Public: Moscow, Russia, 2001; p. 205. (In Russian) [Google Scholar]
- Tanneberger, F.; Tegetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Mariné, A.M.; Jenderedjian, K.; Steiner, G.M.; Essl, F.; Etzold, J.; et al. The peatland map of Europe. Mires Peat 2017, 19, 1–17. [Google Scholar] [CrossRef]
- Sirin, A.; Minayeva, T.; Yurkovskaya, T.; Kuznetsov, O.; Smagin, V.; Fedotov, Y.U.; Russian Federation (European Part). Mires and Peatlands of Europe: Status, Distribution and Conservation; Joosten, H., Tanneberger, F., Moen, A., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2017; pp. 589–616.
- Minayeva, T.; Sirin, A.; Bragg, O.A. (Eds.) Quick Scan of Peatlands in Central and Eastern Europe; Wetlands International: Wageningen, The Netherlands, 2009; p. 132. [Google Scholar]
- Minayeva, T.; Sirin, A. The Peat Fires—The causes and the prevention ways. Sci. Ind. Russ. 2002, 9, 3–8. (In Russian) [Google Scholar]
- Sirin, A.; Minayeva, T.; Vozbrannaya, A.; Bartalev, S. How to avoid peat fires? Sci. Russ. 2011, 2, 13–21. [Google Scholar]
- Minayeva, T.; Sirin, A.; Stracher, G.B. The Peat Fires of Russia. In Coal and Peat Fires: A Global Perspective. V.2: Photographs and Multimedia Tours; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 375–394. [Google Scholar]
- Safronov, A.; Fokeeva, E.; Rakitin, V.; Grechko, E.; Shumsky, R. Severe Wildfires Near Moscow, Russia in 2010: Modeling of Carbon Monoxide Pollution and Comparisons with Observations. Remote Sens. 2015, 7, 395–429. [Google Scholar] [CrossRef]
- Sirin, A.; Maslov, A.; Medvedeva, M.; Vozbrannaya, A.; Valyaeva, N.; Tsyganova, O.; Glukhova, T.; Makarov, D. Multispectral Remote Sensing Data as a Tool for Assessing the Need and the Effectiveness for Peatland Restoration. In Proceedings of the 9th European Conference on Ecological Restoration, Oulu, Finland, 3–8 August 2014; Tolvanen, A., Hekkala, A.M., Eds.; Finnish Forest Research Institute: Oulu, Finland, 2014; p. 133. [Google Scholar]
- Dronova, I. Object–Based Image Analysis in Wetland Research: A Review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A Collection of SAR Methodologies for Monitoring Wetlands. Remote Sens. 2015, 7, 7615–7645. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Liquan, Z. Identification of the spectral characteristics of submerged plant Vallisneria spiralis. Acta Ecol. Sin. 2006, 26, 1005–1011. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O. Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry. ISPRS J. Photogramm. Remote Sens. 2009, 64, 612–620. [Google Scholar] [CrossRef]
- Crichton, K.A.; Anderson, K.; Bennie, J.J.; Milton, E.J. Characterizing peatland carbon balance estimates using freely available Landsat ETM plus data. Ecohydrology 2015, 8, 493–503. [Google Scholar] [CrossRef]
- Knox, S.H.; Dronova, I.; Sturtevant, C.; Patricia, Y.; Oikawa, P.Y.; Matthes, J.H.; Verfaillie, J.; Baldocchia, D. Using digital camera and Landsat imagery with eddy covariance data to model gross primary production in restored wetlands. Agric. For. Meteorol. 2017, 237, 233–245. [Google Scholar] [CrossRef]
- Yanovskiy, A.A. Remote Assessment of the Spectral Reflectance of a Surface of the Drained Peat Soils of Polesye on the Basis of Satellite Images of Medium Spatial Resolution. Issled. Zemli Kosmosa 2017, 5, 35–48. (In Russian) [Google Scholar] [CrossRef]
- Medvedeva, M.A.; Vozbrannaya, A.E.; Bartalev, S.A.; Sirin, A.A. Multispectral remote sensing for assessing changes on abandoned peat extraction lands. Issled. Zemli Kosmosa 2011, 5, 80–88. (In Russian) [Google Scholar]
- Antipin, V.K.; Boytchuk, M.A.; Grabovik, S.I. Vegetation cover of natural and utilized peat bogs of the National Park “Meschera”, Vladimir Region. In Proceedings of the International Scientific Conference on Anthropogenic Transformation of Boreal Ecosystems of Europe: Ecological, Resource and Economic Aspects, Petrozavodsk, Russia, 23–25 November 2004; pp. 166–169. (In Russian). [Google Scholar]
- Antipin, V.K.; Boychuk, M.A.; Grabovik, S.I.; Stoykina, N.V. Modern structure and restoration of mire biota of National Park “Meschera”, Vladimir Oblast. Tver State Technical University. Trudy Instorfa Sci. J. 2013, 8, 11–17. (In Russian) [Google Scholar]
- Vozbrannaya, A.E.; Antipin, V.K.; Sirin, A.A. Monitoring of Vegetation Cover and Ecological Conditions of Disturbed Peatlands of State National Park “Meschara” in Vladimir Region. In Proceedings of the International Scientific Conference on Vegetation Monitoring and Assessment, Minsk, Belarus, 22–26 September 2008; pp. 244–246. (In Russian). [Google Scholar]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. Mathematical Contributions to the Theory of Evolution. XIII. On the Theory of Contingency and Its Relation to Association and Normal Correlation; Drapers’ Company Research Memoirs Biometric Series; Drapers’ Company: London, UK, 1904; pp. 1–35. [Google Scholar]
- Scan Ex. Remote Sensing Data Processing Program Scan Ex Image Processor v.4.2. Remote Sensing Data Thematic Interpretation Module Thematic Pro, In User’s Guide 2014. Available online: http://new.scanex.ru/upload/iblock/7b7/7b760146c691873ff8580321cc1c5420.pdf (accessed on 18 May 2018).
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166–193. [Google Scholar] [CrossRef]
- Medvedeva, M.A.; Vozbrannaya, A.E.; Sirin, A.A.; Maslov, A.A. Capabilities of Multispectral Remote–Sensing Data in an Assessment of the Status of Abandoned Fire Hazardous and Rewetting Peat Extraction Lands. Izvestiya Atmos. Ocean. Phys. 2017, 53, 1070–1078. [Google Scholar] [CrossRef]
- Berberoglu, S.; Akin, A. Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 46–53. [Google Scholar] [CrossRef]
- McGovern, E.A.; Holden, N.M.; Ward, S.M.; Collins, J.F. Remotely sensed satellite imagery as an information source for industrial peatlands management. Resour. Conserv. Recycl. 2000, 28, 67–83. [Google Scholar] [CrossRef]
- Achard, F.; Grassi, G.; Herold, M.; Teobaldelli, M.; Mollicone, D. (Eds.) Use of satellite remote sensing in LULUCF sector. GOFLCD. In IPCC Guidance on Estimating Emissions and Removals of Greenhouse Gases from Land Uses Such as Agriculture and Forestry; Land Cover Project Office: Jena, Germany, 2008; pp. 1–25. [Google Scholar]
- Sirin, A.A.; Maslov, A.A.; Valyaeva, T.A.; Tsyganova, O.P.; Glukhova, T.V. Mapping of Peatlands in the Moscow Oblast Based on High Resolution Remote Sensing Data. Contemp. Probl. Ecol. 2014, 7, 809–815. [Google Scholar] [CrossRef]
- O’Connell, J.; Connolly, J.; Holden, N.M. A monitoring protocol for vegetation change on Irish peatland and heath. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 130–142. [Google Scholar] [CrossRef]
Data Set Name | Landsat-7 | Spot-5 | Spot-6 | Landsat-8 | Sentinel-2 | |
---|---|---|---|---|---|---|
Resolution (m) | 30 | 10 | 6 | 30 | 10–20 | |
Image date | 11August 2013 * | 13 September 2013 | 13 September 2013 | 9 August 2016 | 7 August 2016 | |
Spectral Band | Wavelength (µm) | Central wavelength (µm) | Band width (µm) | |||
Blue | ETM+1 0.45–0.52 | 0.45–0.52 | OLI2 0.45–0.52 | MSI2 0.490 (10 m) | 0.065 | |
Green | ETM+2 0.53–0.61 | 0.50–0.59 | 0.53–0.59 | OLI3 0.53–0.60 | MSI3 0.560 (10 m) | 0.035 |
Red | ETM+3 0.63–0.69 | 0.61–0.68 | 0.63–0.70 | OLI4 0.63–0.68 | MSI4 0.665 (10 m) | 0.030 |
Vegetation Red Edge | MSI5 0.705 (20 m) MSI6 0.740 (20 m) | 0.015 | ||||
NIR | ETM+4 0.75–0.90 | 0.78–0.89 | 0.76–0.89 | OLI5 0.85–0.89 | MSI7 0.783 (20 m) MSI8 0.842 (10 m) MSI8a 0.865 (20 m) | 0.020 0.115 0.020 |
SWIR 2 | ETM+5 1.55–1.75 | 1.58–1.75 | OLI6 1.56–1.66 | MSI11 1.610 (20 m) | 0.090 | |
SWIR 3 | ETM+7 2.09–2.35 | OLI7 2.1–2.3 | MSI12 2.190 (20 m) | 0.180 |
Spot-5 | ||||||||
Classes | Actual | |||||||
Calculated | Bare Peat | Grass | Pine | Willow–Birch | Hydrophilic | Water | Σ | Us. Accuracy 1 (%) |
Bare peat | 108 | 1 | 0 | 0 | 0 | 0 | 109 | 99.1 |
Grass | 2 | 70 | 1 | 4 | 1 | 0 | 78 | 89.7 |
Pine | 0 | 0 | 33 | 0 | 1 | 0 | 34 | 97.1 |
Willow–Birch | 2 | 4 | 0 | 76 | 1 | 0 | 83 | 91.6 |
Hydrophilic | 2 | 0 | 1 | 0 | 87 | 3 | 93 | 93.5 |
Water | 0 | 0 | 0 | 0 | 1 | 82 | 83 | 98.8 |
Σ | 114 | 75 | 35 | 80 | 91 | 85 | 480 | |
Pr. Accuracy 2 (%) | 94.7 | 93.3 | 94.3 | 95.0 | 95.6 | 96.5 | 95.00 3 | |
Landsat-7 | ||||||||
Bare peat | 110 | 2 | 0 | 0 | 0 | 0 | 112 | 98.2 |
Grass | 3 | 72 | 0 | 4 | 1 | 0 | 80 | 90.0 |
Pine | 0 | 0 | 32 | 1 | 1 | 0 | 34 | 94.1 |
Willow–Birch | 1 | 1 | 2 | 75 | 0 | 0 | 79 | 94.9 |
Hydrophilic | 0 | 0 | 1 | 0 | 87 | 5 | 93 | 93.5 |
Water | 0 | 0 | 0 | 0 | 2 | 80 | 82 | 97.6 |
Σ | 114 | 75 | 35 | 80 | 91 | 85 | 480 | |
Pr. Accuracy 2 (%) | 96.5 | 96.0 | 91.4 | 93.8 | 95.6 | 94.1 | 95.00 3 | |
Spot-6 data (supervised classification) | ||||||||
Bare peat | 53 | 0 | 0 | 0 | 15 | 0 | 68 | 77.9 |
Grass | 0 | 51 | 5 | 2 | 1 | 0 | 59 | 86.4 |
Pine | 0 | 1 | 24 | 2 | 1 | 0 | 28 | 85.7 |
Willow–Birch | 10 | 21 | 6 | 74 | 6 | 0 | 117 | 63.2 |
Hydrophilic | 51 | 2 | 0 | 2 | 67 | 4 | 126 | 53.2 |
Water | 0 | 0 | 0 | 0 | 1 | 81 | 82 | 98.8 |
Σ | 114 | 75 | 35 | 80 | 91 | 85 | 480 | |
Pr. Accuracy 2 (%) | 46.5 | 68.0 | 68.6 | 92.5 | 73.6 | 95.3 | 72.92 3 | |
Spot-6 data (unsupervised classification) | ||||||||
Bare peat | 94 | 2 | 0 | 0 | 38 | 0 | 134 | 70.1 |
Grass | 1 | 61 | 3 | 2 | 2 | 0 | 69 | 88.4 |
Pine | 0 | 0 | 27 | 2 | 0 | 0 | 29 | 93.1 |
Willow–Birch | 2 | 9 | 5 | 75 | 1 | 0 | 92 | 81.5 |
Hydrophilic | 17 | 3 | 0 | 1 | 49 | 6 | 76 | 64.5 |
Water | 0 | 0 | 0 | 0 | 1 | 79 | 80 | 98.8 |
Σ | 114 | 75 | 35 | 80 | 91 | 85 | 480 | |
Pr. Accuracy 2 (%) | 82.5 | 81.3 | 77.1 | 93.8 | 53.8 | 92.9 | 80.21 3 |
Minimum Distance | ||||||||
Classes | Actual | |||||||
Calculated | Bare Peat | Grass | Pine | Willow–Birch | Hydrophilic | Water | Σ | Us. Accuracy 1 (%) |
Bare peat | 110 | 2 | 0 | 0 | 0 | 0 | 112 | 98.2 |
Grass | 3 | 72 | 0 | 4 | 1 | 0 | 80 | 90.0 |
Pine | 0 | 0 | 32 | 1 | 1 | 0 | 34 | 94.1 |
Willow–Birch | 1 | 1 | 2 | 75 | 0 | 0 | 79 | 94.9 |
Hydrophilic | 0 | 0 | 1 | 0 | 87 | 5 | 93 | 93.5 |
Water | 0 | 0 | 0 | 0 | 2 | 80 | 82 | 97.6 |
Σ | 114 | 75 | 35 | 80 | 91 | 85 | 480 | |
Pr. Accuracy 2 (%) | 96.5 | 96.0 | 91.4 | 93.8 | 95.6 | 94.1 | 95.00 3 | |
Object–oriented | ||||||||
Bare peat | 110 | 1 | 0 | 0 | 0 | 0 | 111 | 99.1 |
Grass | 2 | 70 | 1 | 5 | 0 | 0 | 78 | 89.7 |
Pine | 0 | 0 | 30 | 0 | 3 | 0 | 33 | 90.9 |
Willow–Birch | 2 | 4 | 3 | 75 | 0 | 0 | 84 | 89.3 |
Hydrophilic | 0 | 0 | 1 | 0 | 88 | 4 | 93 | 94.6 |
Water | 0 | 0 | 0 | 0 | 0 | 81 | 81 | 100.0 |
Σ | 114 | 75 | 35 | 80 | 91 | 85 | 480 | |
Pr. Accuracy 2 (%) | 96.5 | 93.3 | 85.7 | 93.8 | 96.7 | 95.3 | 94.58 3 | |
Neural networks | ||||||||
Bare peat | 110 | 6 | 0 | 4 | 0 | 0 | 120 | 91.7 |
Grass | 3 | 61 | 0 | 3 | 0 | 0 | 67 | 91.0 |
Pine | 0 | 0 | 25 | 0 | 6 | 0 | 31 | 80.6 |
Willow–Birch | 1 | 8 | 9 | 73 | 5 | 0 | 96 | 76.0 |
Hydrophilic | 0 | 0 | 1 | 0 | 79 | 6 | 86 | 91.9 |
Water | 0 | 0 | 0 | 0 | 1 | 79 | 80 | 98.8 |
Σ | 114 | 75 | 35 | 80 | 91 | 85 | 480 | |
Pr. Accuracy 2 (%) | 96.5 | 81.3 | 71.4 | 91.3 | 86.8 | 92.9 | 88.96 3 | |
Trees | ||||||||
Bare peat | 105 | 13 | 0 | 15 | 0 | 0 | 133 | 78.9 |
Grass | 6 | 45 | 1 | 8 | 0 | 0 | 60 | 75.0 |
Pine | 0 | 0 | 22 | 0 | 5 | 0 | 27 | 81.5 |
Willow–Birch | 1 | 6 | 10 | 57 | 5 | 0 | 79 | 72.2 |
Hydrophilic | 2 | 11 | 2 | 0 | 79 | 5 | 99 | 79.8 |
Water | 0 | 0 | 0 | 0 | 2 | 80 | 82 | 97.6 |
Σ | 114 | 75 | 35 | 80 | 91 | 85 | 480 | |
Pr. Accuracy 2 (%) | 92.1 | 60.0 | 62.9 | 71.3 | 86.8 | 94.1 | 80.83 3 |
Sentinel-2 Minimum Distance | ||||||||
Classes | Actual | |||||||
Calculated | Bare Peat | Grass | Pine | Willow–Birch | Hydrophilic | Water | Σ | Us. Accuracy 1 (%) |
Bare peat | 93 | 1 | 0 | 0 | 3 | 0 | 97 | 95.9 |
Grass | 1 | 99 | 0 | 1 | 0 | 0 | 101 | 98.0 |
Pine | 0 | 0 | 18 | 0 | 0 | 0 | 18 | 100.0 |
Willow–Birch | 0 | 1 | 2 | 90 | 0 | 0 | 93 | 96.8 |
Hydrophilic | 0 | 0 | 0 | 0 | 59 | 1 | 60 | 98.3 |
Water | 0 | 0 | 0 | 0 | 2 | 48 | 50 | 96.0 |
Σ | 94 | 101 | 20 | 91 | 64 | 49 | 419 | |
Pr. Accuracy 2 (%) | 98.9 | 98.0 | 90.0 | 98.9 | 92.2 | 98.0 | 97.14 3 | |
Landsat-8 Minimum Distance | ||||||||
Bare peat | 93 | 2 | 0 | 0 | 0 | 0 | 95 | 97.9 |
Grass | 0 | 97 | 0 | 3 | 0 | 0 | 100 | 97.0 |
Pine | 0 | 0 | 17 | 1 | 4 | 0 | 22 | 77.3 |
Willow–Birch | 0 | 1 | 2 | 87 | 0 | 1 | 91 | 95.6 |
Hydrophilic | 1 | 0 | 1 | 0 | 57 | 1 | 60 | 95.0 |
Water | 0 | 0 | 0 | 0 | 3 | 48 | 51 | 94.1 |
Σ | 94 | 100 | 20 | 91 | 64 | 50 | 419 | |
Pr. Accuracy 2 (%) | 98.9 | 97.0 | 85.0 | 95.6 | 89.1 | 96.0 | 95.23 3 | |
Sentinel-2 Object–oriented | ||||||||
Bare peat | 92 | 4 | 0 | 0 | 2 | 0 | 98 | 93.9 |
Grass | 2 | 95 | 0 | 1 | 1 | 0 | 99 | 96.0 |
Pine | 0 | 0 | 16 | 0 | 0 | 0 | 16 | 100.0 |
Willow–Birch | 0 | 0 | 4 | 89 | 0 | 0 | 93 | 95.7 |
Hydrophilic | 0 | 1 | 0 | 1 | 59 | 1 | 62 | 95.2 |
Water | 0 | 0 | 0 | 0 | 2 | 49 | 51 | 96.1 |
Σ | 94 | 100 | 20 | 91 | 64 | 50 | 419 | |
Pr. Accuracy 2 (%) | 97.9 | 95.0 | 80.0 | 97.8 | 92.2 | 98.0 | 95.47 3 | |
Landsat-8 Object–oriented | ||||||||
Bare peat | 92 | 7 | 0 | 0 | 0 | 0 | 99 | 92.9 |
Grass | 2 | 92 | 0 | 2 | 1 | 1 | 98 | 93.9 |
Pine | 0 | 0 | 17 | 0 | 0 | 0 | 17 | 100.0 |
Willow–Birch | 0 | 0 | 3 | 88 | 2 | 0 | 93 | 94.6 |
Hydrophilic | 0 | 1 | 0 | 1 | 57 | 1 | 60 | 95.0 |
Water | 0 | 0 | 0 | 0 | 4 | 48 | 52 | 92.3 |
Σ | 94 | 100 | 20 | 91 | 64 | 50 | 419 | |
Pr. Accuracy 2 (%) | 97.9 | 92.0 | 85.0 | 96.7 | 89.1 | 96.0 | 94.03 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirin, A.; Medvedeva, M.; Maslov, A.; Vozbrannaya, A. Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data. Land 2018, 7, 71. https://doi.org/10.3390/land7020071
Sirin A, Medvedeva M, Maslov A, Vozbrannaya A. Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data. Land. 2018; 7(2):71. https://doi.org/10.3390/land7020071
Chicago/Turabian StyleSirin, Andrey, Maria Medvedeva, Alexander Maslov, and Anna Vozbrannaya. 2018. "Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data" Land 7, no. 2: 71. https://doi.org/10.3390/land7020071
APA StyleSirin, A., Medvedeva, M., Maslov, A., & Vozbrannaya, A. (2018). Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data. Land, 7(2), 71. https://doi.org/10.3390/land7020071