Activity of Ailanthus altissima (Mill.) Swingle Extract as a Potential Bioherbicide for Sustainable Weed Management in Horticulture
<p>Phytotoxic effects of <span class="html-italic">Ailanthus altissima</span> leaf extracts at 50 (light green bars) and 200 (dark green bars) mg L<sup>−1</sup> Ail equivalent on the reduction in the index of biomass (–IBi%) of <span class="html-italic">Lepidium sativum</span>, <span class="html-italic">Raphanus sativus</span>, <span class="html-italic">Digitaria sanguinalis</span>, <span class="html-italic">Portulaca oleracea</span>, <span class="html-italic">Veronica persica</span>, <span class="html-italic">Stellaria media</span>, <span class="html-italic">Matricaria chamomilla</span>, <span class="html-italic">Centaurea cyanus</span>, and <span class="html-italic">Achillea millefolium</span> seeds, cultivated under greenhouse conditions. Pairwise comparisons were done using a Student’s <span class="html-italic">t</span>-test (<span class="html-italic">p</span> < 0.05; ns = not significant). The black line at 0% indicates the IBi% of the control plants.</p> "> Figure 2
<p>Phytotoxic effects of <span class="html-italic">Ailanthus altissima</span> extracts from the leaf (green bars), samara (orange bars), rachis (brown bars), and secondary root (yellow bars) at 25 mg L<sup>−1</sup> Ail, as well as of ailanthone pure ([<a href="#B12-agronomy-10-00965" class="html-bibr">12</a>] black bars) at 25 mg L<sup>−1</sup>, on the index of germination (IGe%) of <span class="html-italic">Raphanus sativus</span> (<b>A</b>) and <span class="html-italic">Lepidium sativum</span> (<b>B</b>) after 3, 9, and 18 DAT under the growth chamber conditions. Mean values showing the same letter are not statistically different at <span class="html-italic">p</span> ≤ 0.05, according to the Tukey post-hoc test (ns = not significant). Black line at 100% indicates the IGe% of the control plants.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction and Ailanthone Quantification
2.2.1. Extraction
2.2.2. Quantification
2.3. Growth Chamber Assay
2.4. Greenhouse Assay
2.5. Nursery Assays
2.6. Data Analysis
3. Results
3.1. Extraction and Ailanthone Quantification
3.2. Herbicidal Activity of A. altissima Extracts in the Growth Chamber
3.3. Effects of Leaf Extract Under Greenhouse Condition
3.4. Effect of the Leaf Extract on Weeds, Salvia officinalis, Salvia rosmarinus, and Dianthus caryophyllus under Pot Cultivation in the Nursery
3.4.1. Experiment 1
3.4.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scavo, A.; Restuccia, A.; Mauromicale, G. Allelopathy: Principles and basic aspects for agroecosystem control. Sustain. Agric. Rev. 2018, 28, 47–101. [Google Scholar]
- Puig, C.G.; Reigosa, M.J.; Valentão, P.; Andrade, P.B.; Pedrol, N. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE 2018, 13, e0192872. [Google Scholar]
- Cai, X.; Gu, M. Bioherbicides in organic horticulture. Horticulture 2016, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Bachheti, A.; Sharma, A.; Bachheti, R.K.; Husen, A.; Pandey, D.P. Plant allelochemicals and their various applications. In Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 441–465. ISBN 978-3-319-96397-6. [Google Scholar]
- Rice, E.L. Allelopathy; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Bertin, C.; Paul, R.N.; Duke, S.O.; Weston, L.A. Laboratory assessment of the allelopathic effects of fine leaf fescues. J. Chem. Ecol. 2003, 29, 1919–1937. [Google Scholar] [CrossRef]
- Scognamiglio, M.; Esposito, A.; D’Abrosca, B.; Pacifico, S.; Fiumano, V.; Tsafantakis, N.; Monaco, P.; Fiorentino, A. Isolation, distribution and allelopathic effect of caffeic acid derivatives from Bellis perennis L. Biochem. Syst. Ecol. 2012, 43, 108–113. [Google Scholar] [CrossRef]
- Cheng, F.; Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef]
- Putnam, A.R.; Duke, W.B. Allelopathy in agroecosystems. Ann. Rev. Phytopathol. 1978, 16, 431–451. [Google Scholar] [CrossRef]
- Dayan, F.E.; Owens, D.K.; Duke, S.O. Rationale for a natural products approach to herbicide discovery. Pest Manag. Sci. 2012, 68, 519–528. [Google Scholar] [CrossRef]
- Anese, S.; Grisi, P.U.; de Jatobá, L.J.; de Pereira, V.C.; Gualtieri, S.C.J. (Phytotoxic activity of differents plant parts of Drimys brasiliensis miers on germination and seedling development. Biosci. J. 2015, 31, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Demasi, S.; Caser, M.; Vanara, F.; Fogliatto, S.; Vidotto, F.; Negre, M.; Trotta, F.; Scariot, V. Ailanthone from Ailanthus altissima (Mill.) Swingle as potential natural herbicide. Sci. Hortic. 2019, 257, 108702. [Google Scholar] [CrossRef]
- Mendes, I.D.S.; Rezende, M.O.O. Assessment of the allelopathic effect of leaf and seed extracts of Canavalia ensiformis as postemergent bioherbicides: A green alternative for sustainable agriculture. J. Environ. Sci. Health Part B 2014, 49, 374–380. [Google Scholar] [CrossRef]
- Ahn, J.K.; Chung, I.M. Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. Agric. J. 2000, 92, 1162–1167. [Google Scholar] [CrossRef]
- Nieves, J.A.; Acevedo, L.J.; Valencia-Islas, N.A.; Rojas, J.L.; Dávila, R. Fitotoxicidad de extractos metanólicos de los líquenes Everniastrum sorocheilum, Usnea roccellinay and Cladonia confusa. Glalia 2011, 4, 96. [Google Scholar]
- Lee, C.W.; Kim, D.; Lee, H. The riparian vegetation disturbed by two invasive alien plants, Sicyos angulatus and Paspalum distichum var. indutum in South Korea. Ecol. Resil. Infrastr. 2015, 2, 255–263. [Google Scholar]
- Heisey, R.M. Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am. J. Bot. 1996, 83, 192–200. [Google Scholar] [CrossRef]
- Zhao, C.C.; Shao, J.H.S.; Li, X.; Xu, J.; Zhang, P. Antimicrobial constituents from fruits of Ailanthus altissima Swingle. Arch. Pharm. Res. 2005, 28, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Fang, C.; Yang, G.; Xie, Y.; Nong, X.; Zhu, J.; Wang, S.; Peng, X.; Yan, Q. Acaricidal properties of an Ailanthus altissima bark extract against Psoroptes cuniculi and Sarcoptes scabiei var. cuniculi in vitro. Exp. Appl. Acarol. 2014, 62, 225–232. [Google Scholar] [CrossRef]
- Popa, C.V.; Lungu, L.; Cristache, L.F.; Ciuculescu, C.; Danet, A.F.; Farcasanu, I.C. Heat shock, visible light or high calcium augment the cytotoxic effects of Ailanthus altissima (Swingle) leaf extracts against Saccharomyces cerevisiae cells. Nat. Prod. Res. 2015, 29, 1744–1747. [Google Scholar] [CrossRef]
- Bagheri, F.; Cici, S.Z.H. Study on inhibitory effects of Ailanthus altissima on the growth of weeds and agricultural plants. Biol. Forum 2015, 7, 506–511. [Google Scholar]
- Khan, S.; Hussain, A.; Mehmood, A.; Mehmood, R.; Perveen, S.; Imran, M. Ailanthus altissima (Miller) Swingle fruit-new acyl β-sitosteryl glucoside and in vitro pharmacological evaluation. Nat. Prod. Res. 2016, 30, 2629–2636. [Google Scholar] [CrossRef]
- Ni, J.C.; Shi, J.T.; Tan, Q.W.; Chen, Q.J. Phenylpropionamides, piperidine, and phenolic derivatives from the fruit of Ailanthus altissima. Molecules 2017, 22, 2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daga, M.; Pizzimenti, S.; Dianzani, C.; Cucci, M.A.; Cavalli, R.; Grattarola, M.; Ferrara, B.; Scariot, V.; Trotta, F.; Barrera, G. Ailanthone inhibits cell growth and migration of cisplatin resistant bladder cancer cells through down-regulation of Nrf2, YAP, and c-Myc expression. Phytomedicine 2019, 56, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Heisey, R.M.; Heisey, T.K. Herbicidal effects under field conditions of Ailanthus altissima bark extract, which contains ailanthone. Plant Soil 2003, 256, 85–99. [Google Scholar] [CrossRef]
- Pedersini, C.; Bergamin, M.; Aroulmoji, V.; Baldini, S.; Picchio, R.; Pesce, P.G.; Ballarin, L.; Murano, E. Herbicide Activity of Extracts from Ailanthus altissima (Simaroubaceae). Nat. Prod. Commun. 2011, 6, 593–596. [Google Scholar] [CrossRef] [Green Version]
- Demasi, S.; Caser, M.; Fogliatto, S.; Vidotto, F.; Trotta, F.; Scariot, V. Ailanthone inhibition data on seed germination and seedling growth of Lepidium sativum L. and Raphanus sativus L. Data Brief 2019, 26, 104550. [Google Scholar] [CrossRef]
- Bhowmik, P.C. Inderjit Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot. 2003, 22, 661–671. [Google Scholar] [CrossRef]
- Duke, S.O.; Dayan, F.E.; Romagni, J.G.; Rimando, A.M. Natural products as sources of herbicides: Current status and future trends. Weed Res. 2000, 40, 99–111. [Google Scholar] [CrossRef]
- Heisey, R.M. Development of an Allelopathic Compound from Tree-of-Heaven (Ailanthus altissima) as a Natural Product Herbicide; Biologically Active Natural Products: Agrochemicals; Cutler, J.S., Cutler, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 57–68. [Google Scholar]
- Kowarik, I.; Säumel, I. Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect. Plant Ecol. Evol. Syst. 2007, 8, 207–237. [Google Scholar] [CrossRef]
- Sladonja, B.; Sušek, M.; Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: Assessment of its ecosystem services and potential biological threat. Environ. Manag. 2015, 56, 1009–1034. [Google Scholar] [CrossRef]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Gniazdowska, A. Allelochemicals as bioherbicides—Present and perspectives. In Herbicides-Current Research and Case Studies in Use; InTech: London, UK, 2013; pp. 517–542. [Google Scholar] [CrossRef] [Green Version]
- Heisey, R.M. Alleopathic and herbicidal effects of extracts from tree of heaven (Ailanthus altissima). Am. J. Bot. 1990, 77, 662–670. [Google Scholar] [CrossRef]
- De Feo, V.; De Martino, L.; Quaranta, E.; Pizza, C. Isolation of phytotoxic compounds from Tree-of-heaven (Ailanthus altissima Swingle). J. Agric. Food Chem. 2003, 51, 1170–1180. [Google Scholar] [CrossRef]
- Caser, M.; Lovisolo, C.; Scariot, V. The influence of water stress on growth, ecophysiology and ornamental quality of potted Primula vulgaris ‘Heidy’plants. New insights to increase water use efficiency in plant production. Plant Growth Regul. 2017, 83, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Caser, M.; D’Angiolillo, F.; Chitarra, W.; Lovisolo, C.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Scariot, V. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. to drought stress. Plant Growth Regul. 2018, 84, 383–394. [Google Scholar] [CrossRef]
- Macias, F.A.; Chinchilla, N.; Arrojo, E.; Molinillo, J.M.G.; Marin, D.; Varela, R.M. Combined strategy for phytotoxicity enhancement of benzoxazinones. J. Agric. Food Chem. 2010, 58, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Aragão, F.B.; Queiroz, V.T.; Ferreira, A.; Costa, A.V.; Pinheiro, P.F.; Carrijo, T.T.; Andrade-Vieira, L.F. Phytotoxicity and cytotoxicity of Lepidaploa rufogrisea (Asteraceae) extracts in the plant model Lactuca sativa (Asteraceae). Rev. Biol. Trop. 2017, 65, 435–443. [Google Scholar]
- Sousa Carvalho, M.S.; Andrade-Vieira, L.F.; dos Santos, F.E.; Correa, F.F.; das Cardoso, M.G.; Vilela, L.R. Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Sci. Hortic. 2019, 245, 90–98. [Google Scholar] [CrossRef]
- Tsao, R.; Romanchuk, F.E.; Peterson, C.J.; Coats, J.R. Plant growth regulatory effect and insecticidal activity of the extracts of the Tree of Heaven (Ailanthus altissima L.). BMC Ecol. 2002, 2, 1. [Google Scholar]
- El Ayeb-Zakhama, A.; Ben Salem, S.; Sakka-Rouis, L.; Flamini, G.; Ben Jannet, H.; Harzallah-Skhiri, F. Chemical composition and phytotoxic effects of essential oils obtained from Ailanthus altissima (Mill.) Swingle cultivated in Tunisia. Biochem. Biod. 2014, 11, 1216–1227. [Google Scholar]
- Tharayil, N.; Bhowmik, P.C.; Xing, B. Bioavailability of allelochemicals as affected by companion compounds in soil matrices. J. Agric. Food Chem. 2008, 56, 3706–3713. [Google Scholar] [CrossRef]
- Jabran, K.; Cheema, Z.A.; Farooq, M.; Hussain, M. Lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus). Int. J. Agric. Biol. 2010, 12, 335–340. [Google Scholar]
- Hanley, M.E.; Whiting, M.D. Insecticides and arable weeds: Effects on germination and seedling growth. Ecotoxicology 2005, 14, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Araniti, F.; Lupini, A.; Sorgonà, A.; Statti, G.A.; Abenavoli, M.R. Phytotoxic activity of foliar volatiles and essential oils of Calamintha nepeta (L.) Savi. Nat. Prod. Res. 2013, 27, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Dayan, F.E.; Duke, S.O. Clues in the search for new herbicides. In Allelopathy; Reigosa, M., Pedrol, N., González, L., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 63–83. [Google Scholar]
- Bessire, M.; Chassot, C.; Jacquat, A.C.; Humphry, M.; Borel, S.; Petétot, J.M.C.; Métrauz, J.P.; Nawrath, C. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J. 2007, 26, 2158–2168. [Google Scholar] [CrossRef]
- Dayan, F.E.; Watson, S.B.; Galindo, J.C.G.; Hernández, A.; Dou, J.; McChesney, J.D.; Duke, S.O. Phytotoxicity of quassinoids: Physiological responses and structural requirements. Pestic. Biochem. Physiol. 1999, 65, 15–24. [Google Scholar] [CrossRef]
- Yang, Q.; Wan, F.; Guo, J.Y.; Liu, W.X. Cellular and ultrastructural changes in the seedling roots of upland rice (Oryza sativa) under the stress of two allelochemicals from Ageratina adenophora. Weed Biol. Manag. 2011, 11, 152–159. [Google Scholar] [CrossRef]
- Anese, S.; Grisi, P.U.; Cassia Pereira, V.; Gualtieri, S.C.J. Fitotoxicidade de extratos etanólicos de frutos e folhas de Banisteriopsis oxyclada (A. Juss.) B. Gates sobre o crescimento de plantas daninhas. Capa 2016, 29, 1. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.; Cioni, P.L.; Flamini, G.; Pardossi, A. Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Res. 2017, 57, 342–353. [Google Scholar] [CrossRef]
- Seiber, J.N.; Coats, J.; Duke, S.O.; Gross, A.D. Pest management with biopesticides. Front. Agric. Sci. Eng. 2018, 5, 205–230. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Durga Devi, D.; Shanker, A.K.; Sheeba, J.A.; Bangarusamy, U. Selenium–an antioxidative protectant in soybean during senescence. Plant Soil 2005, 272, 77–86. [Google Scholar] [CrossRef]
- Mastelic, J.; Jerkovic, I. Volatile constituents from the leaves of young and old Ailanthus altissima (Mili.) Swingle tree. Croat. Chem. Acta 2002, 75, 189–197. [Google Scholar]
- Vidotto, F.; Tesio, F.; Ferrero, A. Allelopathic effects of Ambrosia artemisiifolia L. in the invasive process. Crop Prot. 2013, 54, 161–167. [Google Scholar] [CrossRef]
- Abbas, T.; Nadeem, M.A.; Tanveer, A.; Chauhan, B.S. Can hormesis of plant-released phytotoxins be used to boost and sustain crop production? Crop Prot. 2017, 93, 69–76. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Blain, R. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: An overview. Toxic. Appl. Pharm. 2005, 202, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Farooq, M.; Basra, S.M.A.; Lee, D.J. Application of Moringa allelopathy in crop sciences. In Allelopathy; Cheema, Z., Farooq, M., Wahid, A., Eds.; Springer: Berlin, Heidelberg, 2013; pp. 469–483. [Google Scholar]
Assay | Extract Type | Dosage (mg L−1 Ailanthone) | Container | Substrate | Condition | Duration (DAT) | Evaluation |
---|---|---|---|---|---|---|---|
Growth chamber | L, S, R, SR | 1.8, 11.5, 25, 50 | PP | F | D | 3, 6, 9, 12, 15, 18 | IGe% |
Greenhouse | L | 50, 200 | SPT | CS | N | 30 | IBi% |
Nursery | L | 100, 200 | P | CS | N | 60 | WPP%, DW%, GI, LD |
Assay | Scientific Name | Common Name | Family | Type |
---|---|---|---|---|
Growth chamber | Lepidium sativum L. “Inglese” | Garden cress | Brassicaceae | Indicator |
Raphanus sativus L. “Tondo rosso” | Radish | Brassicaceae | Indicator | |
Greenhouse | Lepidium sativum L. “Inglese” | Garden cress | Brassicaceae | Indicator |
Raphanus sativus L. “Tondo rosso” | Radish | Brassicaceae | Indicator | |
Achillea millefolium L. | Yarrow | Asteraceae | Weed | |
Centaurea cyanus L. | Cornflower | Asteraceae | Weed | |
Digitaria sanguinalis (L.) Scop. | Crabgrass | Poaceae | Weed | |
Matricaria chamonilla L. | Chamomile | Asteraceae | Weed | |
Portulaca oleracea L. | Purslane | Portulacaceae | Weed | |
Stellaria media (L.) Vill. | Chickweed | Caryophyllaceae | Weed | |
Veronica persica Poir. | Persian speedwell | Scrophulariaceae | Weed | |
Nursery | Salvia officinalis L. | Common sage | Lamiaceae | Crop |
Salvia rosmarinus (L.) Schleid. | Rosemary | Lamiaceae | Crop | |
Dianthus caryophyllus L. | Carnation | Caryophyllaceae | Crop |
Extract Type (A) | IGe% |
---|---|
Water | 100.0 a |
Leaf | 24.4 b |
Samara | 12.9 d |
Rachis | 15.5 c |
Secondary root | 2.9 e |
p | *** |
Dosage (B, mg L−1 Ail) | |
0 | 100.0 a |
1.8 | 48.3 b |
11.5 | 6.3 c |
25 | 0.8 d |
50 | 0.4 d |
p | *** |
DAT (C) | |
3 | 2.5 f |
6 | 5.7 e |
9 | 11.7 d |
12 | 15.2 c |
15 | 18.8 b |
18 | 29.8 a |
p | *** |
Species (D) | |
R. sativus | 17.5 |
L. sativum | 10.4 |
p | *** |
Interaction | p |
A × B | *** |
A × C | *** |
A × D | ** |
B × C | *** |
B × D | *** |
C × D | *** |
A × B × C | *** |
A × B × D | *** |
A × C × D | ns |
B × C × D | *** |
A × B × C × D | ** |
IGe% | |||||||
---|---|---|---|---|---|---|---|
DAT | |||||||
Extract Dosage (mg L−1Ail) | 3 | 6 | 9 | 12 | 15 | 18 | p |
Leaf | |||||||
1.8 | 15.94 aC | 37.91 aC | 33.36 aC | 107.52 aAB | 64.40 aAB | 112.55 aA | *** |
11.5 | 0.00 bB | 4.28 bB | 0.92 bB | 7.46 bB | 21.89 bB | 61.81 bA | ** |
25 | 0.00 b | 0.00 b | 2.01 b | 2.10 b | 1.68 c | 1.59 c | ns |
50 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 1.34 c | 0.00 c | ns |
p | *** | *** | ** | *** | ** | *** | |
Samara | |||||||
1.8 | 5.87 aB | 17.27 aB | 36.05 aB | 41.26 aAB | 30.19 aB | 73.47 aA | ** |
11.5 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 2.43 b | ns |
25 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | ns |
50 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | ns |
p | * | ** | ** | ** | ** | ** | |
Rachis | |||||||
1.8 | 4.11 aB | 16.94 B | 59.38 aAB | 51.83 aAB | 42.01 aAB | 88.40 aA | ** |
11.5 | 0.00 b | 0.00 | 0.00 b | 0.00 b | 1.43 b | 1.09 b | ns |
25 | 0.00 b | 0.00 | 0.00 b | 0.00 b | 0.00 b | 1.09 b | ns |
50 | 0.00 b | 0.00 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | ns |
p | *** | ns | *** | ** | *** | *** | |
Secondary root | |||||||
1.8 | 1.85 a | 2.77 | 7.30 | 14.84 a | 3.94 | 12.08 a | ns |
11.5 | 0.00 b | 0.00 | 0.00 | 0.00 b | 2.35 | 0.00 b | ns |
25 | 0.00 b | 0.00 | 0.00 | 0.00 b | 0.00 | 0.00 b | ns |
50 | 0.00 b | 0.00 | 0.00 | 0.00 b | 0.00 | 0.00 b | ns |
p | ** | ns | ns | ** | ns | * |
IGe% | |||||||
---|---|---|---|---|---|---|---|
DAT | |||||||
Extract Dosage (mg L−1Ail) | 3 | 6 | 9 | 12 | 15 | 18 | p |
Leaf | |||||||
1.8 | 31.78 aE | 35.51 aDE | 69.50 aCD | 135.55 aAB | 101.28 aBC | 165.99 aA | *** |
11.5 | 0.00 bB | 0.97 bB | 4.18 bB | 22.23 bB | 18.28 bB | 62.66 bA | *** |
25 | 0.00 bB | 1.05 bB | 1.13 bB | 2.98 cB | 3.14 cB | 20.37 cA | *** |
50 | 0.00 b | 0.56 b | 4.75 b | 0.00 c | 3.46 c | 9.91 c | ns |
p | *** | *** | *** | *** | *** | *** | |
Samara | |||||||
1.8 | 4.75 aD | 39.06 aC | 67.97 aABC | 73.36 aAB | 54.36 aBC | 99.06 aA | *** |
11.5 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 9.42 b | 10.71 b | ns |
25 | 0.00 b | 0.00 b | 0.00 b | 0.24 b | 0.32 b | 0.40 b | ns |
50 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | ns |
p | *** | *** | *** | *** | *** | *** | |
Rachis | |||||||
1.8 | 12.72 aD | 24.56 aCD | 72.32 aBC | 105.34 aAB | 104.62 aAB | 152.05 aA | *** |
11.5 | 0.00 bB | 0.00 bB | 1.05 bB | 0.00 bB | 1.05 bB | 5.07 bA | ** |
25 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.89 c | ns |
50 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 c | ns |
p | *** | *** | *** | *** | *** | *** | |
Secondary root | |||||||
1.8 | 2.66 aB | 2.58 aB | 5.56 aB | 18.85 aB | 10.71 aB | 44.70 aA | *** |
11.5 | 0.00 b | 0.00 b | 1.53 b | 3.46 b | 2.26 b | 4.11 b | ns |
25 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | ns |
50 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | ns |
p | *** | *** | ** | ** | ** | *** |
Weed Presence Per Pot | Weed Density | Leaf Damage | Growth Index | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dosage/DAT | 20 | 40 | 60 | 60 | 20 | 40 | 60 | 0 | 20 | 40 | 60 |
S. officinalis | |||||||||||
0 | 0.0 | 0.0 | 13.0 a | 1.7 a | 50.5 b | 46.3 b | 21.3 b | 246 | 286 a | 326 a | 1673 a |
100 | 0.0 | 0.0 | 0.0 b | 0.0 b | 97.7 a | 100 a | 93.7 a | 246 | 127 b | 0 b | 165 b |
200 | 0.0 | 0.0 | 0.0 b | 0.0 b | 97.2 a | 100 a | 100 a | 246 | 107 b | 0 b | 0 c |
p | ns | ns | *** | ** | *** | *** | *** | ns | ** | *** | *** |
S. rosmarinus | |||||||||||
0 | 0.0 | 0.0 | 20.8 a | 1.5 a | 4.6 c | 21.5 b | 4.1 c | 175 | 254 a | 255 a | 445 a |
100 | 0.0 | 0.0 | 0.0 b | 0.0 b | 69.3 b | 86.1 a | 50 b | 175 | 185 b | 38 b | 185 b |
200 | 0.0 | 0.0 | 0.0 b | 0.0 b | 96.1 a | 100 a | 100 a | 175 | 145 b | 0 b | 0 c |
p | ns | ns | *** | ** | *** | *** | *** | ns | ** | *** | *** |
D. caryophyllus | |||||||||||
0 | 0.0 | 43.3 a | 60.8 a | 3.1 a | 0 | 0 | 0 | 676 | 1116 | 1842 | 3144 |
100 | 0.0 | 10.3 b | 20.0 b | 1.8 b | 2.5 | 0 | 0 | 676 | 1074 | 1791 | 3499 |
200 | 0.0 | 21.4 ab | 28.6 b | 1.2 b | 6.6 | 0 | 0 | 676 | 1005 | 1590 | 3370 |
p | ns | * | ** | *** | ns | ns | ns | ns | ns | ns | ns |
Weed Presence Per Pot | Weed Density | Growth Index | ||||||
---|---|---|---|---|---|---|---|---|
Dosage/DAT | 20 | 40 | 60 | 60 | 0 | 20 | 40 | 60 |
S. officinalis | ||||||||
0 | 43.1 | 44.0 a | 88.9 a | 6.2 a | 2154 | 5845 | 17,401 | 17,601 b |
100 | 40.3 | 16.7 b | 76.4 a | 3.2 b | 2154 | 6245 | 17,794 | 17,854 b |
200 | 36.1 | 18.1 b | 48.6 b | 1.7 c | 2154 | 5948 | 19,961 | 31,239 a |
p | ns | * | *** | *** | ns | ns | ns | * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caser, M.; Demasi, S.; Caldera, F.; Dhakar, N.K.; Trotta, F.; Scariot, V. Activity of Ailanthus altissima (Mill.) Swingle Extract as a Potential Bioherbicide for Sustainable Weed Management in Horticulture. Agronomy 2020, 10, 965. https://doi.org/10.3390/agronomy10070965
Caser M, Demasi S, Caldera F, Dhakar NK, Trotta F, Scariot V. Activity of Ailanthus altissima (Mill.) Swingle Extract as a Potential Bioherbicide for Sustainable Weed Management in Horticulture. Agronomy. 2020; 10(7):965. https://doi.org/10.3390/agronomy10070965
Chicago/Turabian StyleCaser, Matteo, Sonia Demasi, Fabrizio Caldera, Nilesh Kumar Dhakar, Francesco Trotta, and Valentina Scariot. 2020. "Activity of Ailanthus altissima (Mill.) Swingle Extract as a Potential Bioherbicide for Sustainable Weed Management in Horticulture" Agronomy 10, no. 7: 965. https://doi.org/10.3390/agronomy10070965
APA StyleCaser, M., Demasi, S., Caldera, F., Dhakar, N. K., Trotta, F., & Scariot, V. (2020). Activity of Ailanthus altissima (Mill.) Swingle Extract as a Potential Bioherbicide for Sustainable Weed Management in Horticulture. Agronomy, 10(7), 965. https://doi.org/10.3390/agronomy10070965