[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3202185.3202731acmconferencesArticle/Chapter ViewAbstractPublication PagesidcConference Proceedingsconference-collections
research-article

"Teegi's so cute!": assessing the pedagogical potential of an interactive tangible interface for schoolchildren

Published: 19 June 2018 Publication History

Abstract

Cerebral activity is an intangible physiological process that is difficult to apprehend, especially for children. To overcome this difficulty, Teegi was designed as a new type of educational support. This tangible interface enables children to discover the relationship between brain activity and the functions of the human body. We developed a multimethods research approach to estimate the pedagogical potential of Teegi used in a real-life educational context. Using this interdisciplinary methodology, we conducted a user study (N=29) that highlighted the strengths of this interface, both in terms of its usability and its impact on learning. Moreover, results revealed possible improvements to further increase pedagogical effectiveness. This type of interface, as well as the evaluation method that we propose, contribute to extending our knowledge concerning the pedagogical use of new interactive tools at school.

References

[1]
J. P. Astolfi, B. Peterfalvi, and A. Vérin, 1998. Comment les enfants apprennent les Sciences. Pédagogie, RETZ, Paris
[2]
M. Astrid, N. C. Krämer, J. Gratch, and S.-H. Kang, 2010. "It doesn't matter what you are!" Explaining social effects of agents and avatars. Computers in Human Behavior 26, 6, 1641--1650.
[3]
K. Attrassi and M. Haimed, 2015. Utilisation des représentations initiales pour améliorer l'apprentissage des élèves de seconde en SVT. European Scientific Journal, ESJ 11, 7.
[4]
O. Ben-Zvi-Assarf and N. Orion, 2005. A study of junior high students' perceptions of the water cycle. Journal of Geoscience Education 53, 4, 366--373.
[5]
T. N. Beran, A. Ramirez-Serrano, R. Kuzyk, M. Fior, and S. Nugent, 2011. Understanding how children understand robots: Perceived animism in child-robot interaction. International Journal of Human-Computer Studies 69, 7, 539--550.
[6]
T. Bryce and E. Blown, 2016. Manipulating Models and Grasping the Ideas They Represent. Science & Education 25, 1--2, 47--93.
[7]
O. M. O. E.-. Ca, 2007. The Ontario Curriculum Grades 1--8: Science and Technology, 2007, 167
[8]
P. Carré, 2005. L'apprenance. Dunod, Paris
[9]
T. Cochrane, H. Pan, and E. Hui, 2015. Three Little Pigs in a Sandwich: Towards Characteristics of a Sandwiched Storytelling based Tangible System for Chinese Primary School English. In Proceedings of the 15th New Zealand Conference on Human-Computer Interaction, 5--8
[10]
M. Cosco, 2016. Comment rendre autonomes des élèves de cycle 2 dans leur gestion du travail? Master MEEF - Premier degré. ESPE de Lorraine.
[11]
S. Cuendet, J. Dehler-Zufferey, G. Ortoleva, and P. Dillenbourg, 2015. An integrated way of using a tangible user interface in a classroom. International Journal of Computer-Supported Collaborative Learning 10, 2, 183--208.
[12]
P. Dillenbourg, M. J. Baker, A. Blaye, and C. O'malley, 1995. The evolution of research on collaborative learning. In Learning in Humans and Machine: Towards an interdisciplinary learning science., E. Spada and P. Reiman Eds. Oxford: Elsevier, 189--211.
[13]
S. Do-Lenh, P. Jermann, S. Cuendet, G. Zufferey, and P. Dillenbourg, 2010. Task Performance vs. Learning Outcomes: A Study of a Tangible User Interface in the Classroom. In Sustaining TEL: From Innovation to Learning and Practice, Martin Wolpers, Paul Kirschner, Maren Scheffel, Stefanie Lindstaedt and Vania Dimitrova Eds. Springer Berlin Heidelberg, 78--92.
[14]
C. Downey and S. W. Kamel, 2016. Storytime with Hue: An Innovative Approach to Storytelling Where Storytellers Control a Dynamic Lighting Environment. In Proceedings of the TEI '16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, 422--427
[15]
A. Druin, 2002. The role of children in the design of new technology. Behaviour & Information Technology 21, 1 (2002/01/01), 1--25.
[16]
S. Fleck and M. Hachet, 2016. Making tangible the intangible: Hybridization of the real and the virtual to enhance learning of abstract phenomena. Frontiers in ICT 3, 30.
[17]
S. Fleck and G. Simon, 2013. An Augmented Reality Environment for Astronomy Learning in Elementary Grades: An Exploratory Study. In Proceedings of the 25ème ACM conférence francophone sur l'Interaction Homme-Machine-IHM 2013, 14--22
[18]
France - Ministère De L'éducation Nationale De L'enseignement Supérieur Et De La Recherche, 19 novembre 2015. Bulletin officiel spécial n°10. Programmes d'enseignement du cycle des apprentissages fondamentaux (cycle 2), du cycle de consolidation (cycle 3) et du cycle des approfondissements (cycle 4), 391
[19]
France - Ministère De L'éducation Nationale De L'enseignement Supérieur Et De La Recherche, 23 avril 2015. Bulletin officiel n° 17. Socle commun de connaissances, de compétences et de culture
[20]
J. Frey, R. Gervais, S. Fleck, F. Lotte, and M. Hachet, 2014. Teegi: Tangible EEG Interface. In Proceedings of the 27th ACM User Interface Software and Technology Symposium, UIST 2014, 301--308
[21]
J. Frey, R. Gervais, T. Lainé, M. Duluc, H. Germain, S. Fleck, F. Lotte, and M. Hachet, 2017. Scientific Outreach with Teegi, a Tangible EEG Interface to Talk about Neurotechnologies. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 405--408
[22]
R. M. Gagné, W. W. Wager, K. C. Golas, J. M. Keller, and J. D. Russell, 2005. Principles of instructional design Wiley Online Library
[23]
R. Gervais, J. Frey, A. Gay, F. Lotte, and M. Hachet, 2016. Tobe: Tangible out-of-body experience. In Proceedings of the TEI'16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, 227--235
[24]
S. Gilutz, S. Calvert, K. Kremer, B. Chamberlin, and G. Gay, 2012. Tangible interfaces for children: cognitive, social, & physical benefits and challenges. In Proceedings of the CHI'12 Extended Abstracts on Human Factors in Computing Systems, 1123--1126
[25]
M. Hassenzahl, 2003. The Thing and I: Understanding the Relationship Between User and Product. In Funology: From Usability to Enjoyment, Mark A. Blythe, Kees Overbeeke, Andrew F. Monk and Peter C. Wright Eds. Springer Netherlands, Dordrecht, 31--42.
[26]
M. Hawley, 2010. Rapid Desirability Testing: A Case Study. Accessed online 15, 04, 2010.
[27]
M. S. Horn, R. J. Crouser, and M. U. Bers, 2012. Tangible interaction and learning: the case for a hybrid approach. Personal and Ubiquitous Computing 16, 4, 379--389.
[28]
K. Hornbæk, 2010. Dogmas in the assessment of usability evaluation methods. Behaviour & Information Technology 29, 1, 97--111.
[29]
J. P. Hourcade, 2015. Child-computer interaction. Self.
[30]
H. Kaufmann and D. Schmalstieg, 2003. Mathematics and geometry education with collaborative augmented reality. Computers & Graphics 27, 3, 339--345.
[31]
J. M. Keller, 1987. Development and use of the ARCS model of instructional design. Journal of instructional development 10, 3, 2--10.
[32]
J. E. Kemp, 1971. Instructional Design; A Plan for Unit and Course Development.
[33]
P. A. Kirschner, J. Sweller, and R. E. Clark, 2006. Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist 41, 2, 75--86.
[34]
S. Kubicki, D. Pasco, and I. Arnaud, 2014. Utilisation en classe d'un jeu sérieux sur table interactive avec objets tangibles pour favoriser l'activité des élèves : une évaluation comparative en cours préparatoire. (French). STICEF 21, 1.
[35]
C. Lallemand, V. Koenig, G. Gronier, and R. Martin, 2015. Création et validation d'une version française du questionnaire AttrakDiff pour l'évaluation de l'expérience utilisateur des systèmes interactifs. Revue Européenne de Psychologie Appliquée/European Review of Applied Psychology 65, 5, 239--252.
[36]
M. C. Linn and J. S. Hyde, 1989. Gender, Mathematics, and Science. Educational researcher 18, 8, 17--27.
[37]
P. Markopoulos, J. Read, J. Hoÿsniemi, and S. Macfarlane, 2008. Child computer interaction: advances in methodological research. Cognition, Technology & Work 10, 2, 79--81.
[38]
P. Markopoulos, J. C. Read, S. Macfarlane, and J. Hoysniemi, 2008. Evaluating children's interactive products: principles and practices for interaction designers. Morgan Kaufmann
[39]
P. Marshall, 2007. Do tangible interfaces enhance learning? In Proceedings of the TEI' 07 - 1st international conference on Tangible and embedded interaction, 163--170
[40]
P. Meirieu, 1989. Apprendre. . . oui, mais comment. ESF éditeur, Paris
[41]
J. Mercier-Ganady, F. Lotte, E. Loup-Escande, M. Marchal, and A. Lécuyer, 2014. The Mind-Mirror: See your brain in action in your head using EEG and augmented reality. In Proceedings of the 2014 IEEE Virtual Reality (VR), 33--38
[42]
D. D. Minner, A. J. Levy, and J. Century, 2010. Inquiry-based science instruction---what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching 47, 4, 474--496.
[43]
G. R. Morrison, S. M. Ross, J. E. Kemp, and H. Kalman, 2010. Designing effective instruction. John Wiley & Sons
[44]
L. Norooz, M. L. Mauriello, A. Jorgensen, B. Mcnally, and J. E. Froehlich, 2015. BodyVis: A New Approach to Body Learning Through Wearable Sensing and Visualization. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 1025--1034
[45]
B. Nye, S. Konstantopoulos, and L. V. Hedges, 2004. How large are teacher effects? Educational evaluation and policy analysis 26, 3, 237--257.
[46]
G. Óskarsdóttir, 2006. The development of children's ideas about the body: How these ideas change in a teaching environment. University of Iceland, Faculty of Social Sciences
[47]
B. Panchaphongsaphak, R. Burgkart, and R. Riener, 2007. Three-dimensional touch interface for medical education. IEEE transactions on information technology in biomedicine 11, 3, 251--263.
[48]
W. Penfield and E. Boldrey, 1937. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain: A journal of neurology.
[49]
P. Perrenoud, 2003. Qu'est-ce qu'apprendre? Enfances & Psy, 4, 9--17.
[50]
J. Piaget, 1964. Six études de psychologie. Denoël
[51]
J. Piaget and R. Garcia, 1971. Les explications causales: par Jean Piaget. Avec la collab. de R. Garcia. Presses universitaires de France
[52]
P. Ratinaud, 2009. IRaMuTeQ: Interface de R pour les Analyses Multidimensionnelles de Textes et de Questionnaires {programme informatique}. En ligne http://www.iramuteq.org.
[53]
J. C. Read and S. Macfarlane, 2006. Using the fun toolkit and other survey methods to gather opinions in child computer interaction. In Proceedings of the 2006 conference on Interaction Design and Children, 81--88
[54]
C. M. Reigeluth, 2013. Instructional-design theories and models: A new paradigm of instructional theory. Routledge, New York, NY
[55]
G. Revelle, O. Zuckerman, A. Druin, and M. Bolas, 2005. Tangible user interfaces for children. In Proceedings of the CHI '05 Extended Abstracts on Human Factors in Computing Systems, 2051--2052
[56]
T. Sapounidis, S. Demetriadis, and I. Stamelos, 2015. Evaluating children performance with graphical and tangible robot programming tools. Personal and Ubiquitous Computing 19, 1, 225--237.
[57]
B. Schneider, P. Jermann, G. Zufferey, and P. Dillenbourg, 2011. Benefits of a tangible interface for collaborative learning and interaction. Learning Technologies, IEEE Transactions on 4, 3, 222--232.
[58]
B. Schneider, J. Wallace, P. Blikstein, and R. Pea, 2013. Preparing for future learning with a tangible user interface: the case of neuroscience. IEEE Transactions on Learning Technologies 6, 2, 117--129.
[59]
O. Shaer and E. Hornecker, 2010. Tangible user interfaces: past, present, and future directions. Foundations and Trends in Human-Computer Interaction 3, 1--2, 1--137.
[60]
A. Sonderegger and J. Sauer, 2010. The influence of design aesthetics in usability testing: Effects on user performance and perceived usability. Applied Ergonomics 41, 3 (5//), 403--410.
[61]
J. Sweller, 1999. Instructional Design in Technical Areas. Australian Education Review. ACER Press, Melbourne
[62]
N. Tractinsky, A. S. Katz, and D. Ikar, 2000. What is beautiful is usable. Interacting with computers 13, 2 (12//), 127--145.
[63]
T. S. Tullis and J. N. Stetson, 2004. A comparison of questionnaires for assessing website usability. In Proceedings of the Usability professional association conference, 1--12
[64]
S. Uğur, 2013. Wearing embodied emotions: A practice based design research on wearable technology. Springer Milan
[65]
J. Vessey, K. B. Braithwaite, and M. Wiedmann, 1990. Teaching children about their internal bodies. Pediatric nursing 16, 1, 29.
[66]
R. Viau, 1999. La motivation dans l'apprentissage du français. ERPI Montréal
[67]
R. Viau, 2009. La motivation en contexte scolaire. De boeck, Bruxelles
[68]
R. Viau and J. Bouchard, 2000. Validation d'un modèle de dynamique motivationnelle auprès d'élèves du secondaire. Canadian Journal of Education / Revue canadienne de l'Education 25, 1, 16--26.
[69]
S. Vosniadou, 1994. Capturing and modeling the process of conceptual change. Learning and Instruction 4, 1 (//), 45--69.
[70]
S. Vosniadou, 2017. Initial and scientific understandings and the problem of conceptual change. Converging Perspectives on Conceptual Change: Mapping an Emerging Paradigm in the Learning Sciences.
[71]
S. Vosniadou and W. F. Brewer, 1992. Mental models of the earth: A study of conceptual change in childhood. Cognitive psychology 24, 4, 535--585.
[72]
S. Vosniadou and W. F. Brewer, 1994. Mental Models of the Day/Night Cycle. Cognitive Science 18, 1, 123--183.
[73]
S. Vosniadou, C. Ioannides, A. Dimitrakopoulou, and E. Papademetriou, 2001. Designing learning environments to promote conceptual change in science. Learning and Instruction, 11, 381--419.
[74]
X. Wang and A. D. Cheok, 2011. ClayStation: a mixed reality gaming platform supporting playful learning for children. In Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology, 1--2
[75]
M. A. Williams, A. Roseway, C. O'dowd, M. Czerwinski, and M. R. Morris, 2015. Swarm: an actuated wearable for mediating affect. In Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, 293--300
[76]
J. Wolpaw and E. W. Wolpaw, 2012. Brain-computer interfaces: principles and practice. Oxford University Press USA
[77]
L. Xie, A. N. Antle, and N. Motamedi, 2008. Are tangibles more fun?: comparing children's enjoyment and engagement using physical, graphical and tangible user interfaces. In Proceedings of the 2nd international conference on Tangible and embedded interaction TEI' 08, 191--198
[78]
B. Zaman, V. V. Abeele, P. Markopoulos, and P. Marshall, 2012. Editorial: the evolving field of tangible interaction for children: the challenge of empirical validation. Personal Ubiquitous Comput. 16, 4, 367--378.
[79]
Y. Zhou, 2015. Tangible User Interfaces in Learning and Education. In International Encyclopedia of the Social & Behavioral Sciences, James D. Wright Ed. Elsevier, Oxford, 20--25.
[80]
V. Zogza and M. Ergazaki, 2013. Inquiry-Based Science Education: Theory and praxis. Review of Science, Mathematics and ICT Education 7, 2, 3--8.
[81]
O. Zuckerman and A. Gal-Oz, 2013. To TUI or not to TUI: Evaluating performance and preference in tangible vs. graphical user interfaces. International Journal of Human-Computer Studies 71, 7 (2013/07/01/), 803--820.

Cited By

View all
  • (2024)Exploring Computational Thinking Perspectives in Black Communities with Physiological Computing2024 Black Issues in Computing Education (BICE)10.1109/BICE60192.2024.00013(27-32)Online publication date: 1-Feb-2024
  • (2023)Nature and Natural Rhythm in the Digital World - What's in It for Child–Computer Interaction?: A narrative literature review and an initial design frameworkProceedings of the 26th International Academic Mindtrek Conference10.1145/3616961.3616989(119-132)Online publication date: 3-Oct-2023
  • (2022)”This book is magical!”: exploring emergent readers’ preferences and wishes for storytelling toolsNordic Human-Computer Interaction Conference10.1145/3546155.3547274(1-9)Online publication date: 8-Oct-2022
  • Show More Cited By
  1. "Teegi's so cute!": assessing the pedagogical potential of an interactive tangible interface for schoolchildren

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    IDC '18: Proceedings of the 17th ACM Conference on Interaction Design and Children
    June 2018
    789 pages
    ISBN:9781450351522
    DOI:10.1145/3202185
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 June 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. brain functions
    2. child-computer interaction
    3. collaboration
    4. education
    5. pedagogical potential assessment
    6. school context
    7. tangible user interface (TUI)
    8. usability testing

    Qualifiers

    • Research-article

    Funding Sources

    • Caisse des dépôt et consignation

    Conference

    IDC '18
    Sponsor:
    IDC '18: Interaction Design and Children
    June 19 - 22, 2018
    Trondheim, Norway

    Acceptance Rates

    IDC '18 Paper Acceptance Rate 28 of 96 submissions, 29%;
    Overall Acceptance Rate 172 of 578 submissions, 30%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)27
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Exploring Computational Thinking Perspectives in Black Communities with Physiological Computing2024 Black Issues in Computing Education (BICE)10.1109/BICE60192.2024.00013(27-32)Online publication date: 1-Feb-2024
    • (2023)Nature and Natural Rhythm in the Digital World - What's in It for Child–Computer Interaction?: A narrative literature review and an initial design frameworkProceedings of the 26th International Academic Mindtrek Conference10.1145/3616961.3616989(119-132)Online publication date: 3-Oct-2023
    • (2022)”This book is magical!”: exploring emergent readers’ preferences and wishes for storytelling toolsNordic Human-Computer Interaction Conference10.1145/3546155.3547274(1-9)Online publication date: 8-Oct-2022
    • (2022)Learning with Yourself: a Tangible Twin Robot System to Promote STEM Education2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS47612.2022.9981423(4981-4988)Online publication date: 23-Oct-2022
    • (2022)User Interface for Child-Robot Interaction in Education: Perspective and Challenges2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS)10.1109/ICE3IS56585.2022.10010156(360-364)Online publication date: 4-Nov-2022
    • (2022)Child–Computer InteractionInternational Journal of Child-Computer Interaction10.1016/j.ijcci.2021.10039832:COnline publication date: 1-Jun-2022
    • (2022)Using Digitally Enhanced Tangible Materials for Teaching Fractions: Results of a ProjectTechnology, Knowledge and Learning10.1007/s10758-022-09605-x28:4(1589-1613)Online publication date: 21-May-2022
    • (2022)Weaving Fire into FormundefinedOnline publication date: 20-Jul-2022
    • (2021)Un espace de conception pour explorer la continuité des affordances motivationnelles dans un contexte scolaire hybride.Adjunct Proceedings of the 32nd Conference on l'Interaction Homme-Machine10.1145/3451148.3458641(1-6)Online publication date: 13-Apr-2021
    • (2021)RFID-based tangible and touch tabletop for dual reality in crisis management contextJournal on Multimodal User Interfaces10.1007/s12193-021-00370-2Online publication date: 19-Mar-2021
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media