[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Review on FoG Computing in 5G Wireless Technologies: Research Challenges, Issues and Solutions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Fog computing is the most powerful technique for real-time data gathering, processing, decision-making, storage, and operation. Fog computing architecture is referred to the distributed architecture over the geographical area. It allows the users to communicate flexibly and efficiently and provides a storage service for managing the data. The review’s primary objective is to deliver a systematic review of the research on fog computing in 5G wireless technologies. It gives a novel paradigm to overcome the challenges faced by Cloud computing. Cloud-to-end-device distance creates latency in content delivery applications. Fog enables resources and applications outside of the Cloud, with edge networks, and closer to its end devices. Different computing paradigms are already exists from Cloud to edge which forms a unique ecosystem with different architecture, storage, and processing. Developing fog computing applications and implementing fog services like resource management, security, latency, energy usage, and traffic modelling have become more popular in recent years. This article presents the systematic literature review on Fog computing in 5G wireless technology. It critically analyses the various requirements of 5G technologies. We also review the various similar and different characteristics of the Cloud, Fog, and Edge computing. Also, the research challenges faced by Fog computing with 5G technology is analysed and the suitable solutions are presented for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Goudos, S. K., Dallas, P. I., Chatziefthymiou, S., et al. (2017). A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wireless Personal Communications, 97, 1645–1675. https://doi.org/10.1007/s11277-017-4647-8

    Article  Google Scholar 

  2. Sathya, V., Kala, S. M., & Naidu, K. (2022). Heterogenous networks: From small cells to 5G NR-U. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-10070-z

    Article  Google Scholar 

  3. Shin, H., Jung, J., & Koo, Y. (2020). Forecasting the video data traffic of 5G services in south korea. Technological Forecasting and Social Change, 153, 119948.

    Article  Google Scholar 

  4. Taleb, T., Ksentini, A., & Jantti, R. (2016). “Anything as a service” for 5G mobile systems. IEEE Network, 30(6), 84–91.

    Article  Google Scholar 

  5. Ahmad, S., & Afzal, M. M. (2020). Deployment of fog and edge computing in IoT for cyber-physical infrastructures in the 5G era. In Sustainable communication networks and application: ICSCN 2019 (pp. 351–359). Springer International Publishing.

  6. Prakasam, P., Sayeed, M. S., & Ajayan, J. (2021). Guest editorials: P2P computing for 5G, beyond 5G (B5G) networks and internet-of-everything (IoE). Peer-to-Peer Networking and Applications, 14, 240–242.

    Article  Google Scholar 

  7. Ghafouri, R., Movaghar, A., & Mohsenzadeh, M. (2019). A budget constrained scheduling algorithm for executing workflow application in infrastructure as a service clouds. Peer-to-Peer Networking and Applications, 12(1), 241–268.

    Article  Google Scholar 

  8. George, A. S., & Sagayarajan, S. (2023). Securing cloud application infrastructure: Understanding the penetration testing challenges of IaaS, PaaS, and SaaS environments. Partners Universal International Research Journal, 2(1), 24–34.

    Google Scholar 

  9. Albuquerque Jr, L. F., Ferraz, F. S., Oliveira, R. F., & Galdino, S. M. (2017). Function-as-a-service x platform-as-a-service: Towards a comparative study on FaaS and PaaS. In ICSEA 2017 (pp. 206–212).

  10. AlQahtani, S. A. (2023). An evaluation of e-Health service performance through the integration of 5G IoT, fog, and cloud Computing. Sensors, 23(11), 5006.

    Article  MathSciNet  Google Scholar 

  11. Sengupta, A., Tandon, R., & Simeone, O. (2016). Pipelined fronthaul-edge content delivery in fog radio access networks. In 2016 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). IEEE.

  12. Cao, B., Sun, Z., Zhang, J., & Gu, Y. (2021). Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE transactions on intelligent transportation systems, 22(6), 3832–3840.

    Article  Google Scholar 

  13. Labiod, Y., Amara Korba, A., & Ghoualmi, N. (2022). Fog computing-based intrusion detection architecture to protect IoT networks. Wireless Personal Communications, 125, 231–259. https://doi.org/10.1007/s11277-022-09548-7

    Article  Google Scholar 

  14. Stojmenovic, I., Wen, S., Huang, X., & Luan, H. (2016). An overview of fog computing and its security issues. Concurrency and Computation: Practice and Experience, 28(10), 2991–3005.

    Article  Google Scholar 

  15. Xu, T., Wang, N., Pang, Q., & Zhao, X. (2024). Security and privacy of 6G wireless communication using fog computing and multi-access edge computing. Scalable Computing: Practice and Experience, 25(2), 770–781.

    Google Scholar 

  16. Hayajneh, T., Griggs, K., Imran, M., & Mohd, B. J. (2019). Secure and efficient data delivery for fog-assisted wireless body area networks. Peer-to-Peer Networking and Applications, 12(5), 1289–1307.

    Article  Google Scholar 

  17. Gupta, H., Chakraborty, S., Ghosh, S. K., & Buyya, R. (2017). Fog computing in 5G networks: An application perspective. In Cloud and fog computing in 5G mobile networks: Emerging advances and applications; IET book: Wales (pp. 23–56).

  18. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., & Fettweis, G. (2016). 5G-enabled tactile internet. IEEE Journal on Selected Areas in Communications, 34(3), 460–473.

    Article  Google Scholar 

  19. Ranjan, H., Dwivedi, A. K., & Prakasam, P. (2022). An optimized architecture and algorithm for resource allocation in D2D aided fog computing. Peer-to-Peer Networking and Applications., 15, 1294–1310.

    Article  Google Scholar 

  20. Farooqi, A. M., Alam, M. A., Hassan, S. I., & Idrees, S. M. (2022). A fog computing model for VANET to reduce latency and delay using 5G network in smart city transportation. Applied Sciences, 12(4), 2083.

    Article  Google Scholar 

  21. Zhang, N., Yang, P., Ren, J., Chen, D., Yu, L., & Shen, X. (2018). Synergy of big data and 5G wireless networks: Opportunities, approaches, and challenges. IEEE Wireless Communications, 25(1), 12–18.

    Article  Google Scholar 

  22. Pries, R., Morper, H. J., Galambosi, N., & Jarschel, M. (2016, September). Network as a service-a demo on 5G network slicing. In 2016 28th International Teletraffic Congress (ITC 28) (Vol. 1, pp. 209–211). IEEE.

  23. Tayyaba, S. K., & Shah, M. A. (2019). Resource allocation in SDN based 5G cellular networks. Peer-to-Peer Networking and Applications, 12(2), 514–538.

    Article  Google Scholar 

  24. Jijo, B. T., Zeebaree, S. R., Zebari, R. R., Sadeeq, M. A., Sallow, A. B., Mohsin, S., & Ageed, Z. S. (2021). A comprehensive survey of 5G mm-wave technology design challenges. Asian Journal of Research in Computer Science, 8(1), 1–20.

    Article  Google Scholar 

  25. Kizilirmak, R. C., & Bizaki, H. K. (2016). Non-orthogonal multiple access (NOMA) for 5G networks. Towards 5G wireless networks-a physical layer perspective (Vol. 83, pp. 83–98). InTech.

    Google Scholar 

  26. Salem, A. A., El-Rabaie, S., & Shokair, M. (2021). Survey on Ultra-Dense Networks (UDNs) and applied stochastic geometry. Wireless Personal Communications, 119, 2345–2404. https://doi.org/10.1007/s11277-021-08334-1

    Article  Google Scholar 

  27. Karagiannis, V., Frangoudis, P. A., Dustdar, S., & Schulte, S. (2021). Context-aware routing in fog computing systems. IEEE Transactions on Cloud Computing, 11(1), 532–549.

    Article  Google Scholar 

  28. Pallavi, K. N., & Ravi Kumar, V. (2021). Authentication-based access control and data exchanging mechanism of IoT devices in fog computing environment. Wireless Personal Communications, 116, 3039–3060. https://doi.org/10.1007/s11277-020-07834-w

    Article  Google Scholar 

  29. Qamar, F., Siddiqui, M. U. A., Hindia, M. N., Hassan, R., & Nguyen, Q. N. (2020). Issues, challenges, and research trends in spectrum management: A comprehensive overview and new vision for designing 6G networks. Electronics, 9(9), 1416.

    Article  Google Scholar 

  30. Krawiec, P., Sosnowski, M., Batalla, J. M., Mavromoustakis, C. X., Mastorakis, G., & Pallis, E. (2017). Survey on technologies for enabling real-time communication in the web of things. Beyond the Internet of Things (pp. 323–339). Cham: Springer.

    Chapter  Google Scholar 

  31. Quy, V. K., Hau, N. V., Anh, D. V., & Ngoc, L. A. (2022). Smart healthcare IoT applications based on fog computing: Architecture, applications and challenges. Complex & Intelligent Systems, 8(5), 3805–3815.

    Article  Google Scholar 

  32. Yongsiriwit, K., Sellami, M., & Gaaloul, W. (2016). A semantic framework supporting cloud resource descriptions interoperability. In 2016 IEEE 9th international conference on cloud computing (CLOUD) (pp. 585–592). IEEE.

  33. Almusaylim, A., & Z., Jhanjhi, N. (2020). Comprehensive review: Privacy protection of user in location-aware services of mobile cloud computing. Wireless Personal Communications, 111, 541–564. https://doi.org/10.1007/s11277-019-06872-3

    Article  Google Scholar 

  34. Machen, A., Wang, S., Leung, K. K., Ko, B. J., & Salonidis, T. (2017). Live service migration in mobile edge clouds. IEEE Wireless Communications, 25(1), 140–147.

    Article  Google Scholar 

  35. Farhat, S., Samhat, A. E., Lahoud, S., et al. (2017). Radio Access Network Sharing in 5G: Strategies and Benefits. Wireless Personal Communications, 96, 2715–2740. https://doi.org/10.1007/s11277-017-4321-1

    Article  Google Scholar 

  36. Carvalho, G. H., Woungang, I., Anpalagan, A., Jaseemuddin, M., & Hossain, E. (2017). Intercloud and HetNet for mobile cloud computing in 5G systems: Design issues, challenges, and optimization. IEEE Network, 31(3), 80–89.

    Article  Google Scholar 

  37. Saadeh, M., Sleit, A., Sabri, K. E., & Almobaideen, W. (2018). Hierarchical architecture and protocol for mobile object authentication in the context of IoT smart cities. Journal of Network and Computer Applications, 121, 1–19.

    Article  Google Scholar 

  38. Kim, W. S. (2021). Progressive traffic-oriented resource management for reducing network congestion in edge computing. Entropy, 23(5), 532.

    Article  MathSciNet  Google Scholar 

  39. Popovski, P., Trillingsgaard, K. F., Simeone, O., & Durisi, G. (2018). 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view. IEEE Access, 6, 55765–55779.

    Article  Google Scholar 

  40. Monteiro, A., Dubey, H., Mahler, L., Yang, Q., & Mankodiya, K. (2016, May). Fit: A fog computing device for speech tele-treatments. In 2016 IEEE international conference on smart computing (SMARTCOMP) (pp. 1–3). IEEE.

  41. Bennis, M., Debbah, M., & Poor, H. V. (2018). Ultrareliable and low-latency wireless communication: Tail, risk, and scale. Proceedings of the IEEE, 106(10), 1834–1853.

    Article  Google Scholar 

  42. Bi, Q., Liang, W., & Dai, M. (2023). P-RAN, a fog computing platform for 5G and 6G services. IEEE Communications Magazine., 61(12), 78–84.

    Article  Google Scholar 

  43. Cheng, S. F., Wang, L. C., Hwang, C. H., Chen, J. Y., & Cheng, L. Y. (2020). On-device cognitive spectrum allocation for coexisting URLLC and eMBB users in 5G systems. IEEE Transactions on Cognitive Communications and Networking, 7(1), 171–183.

    Article  Google Scholar 

  44. Zhang, Z., Liu, F., & Zeng, Z. (2017, October). The cell zooming algorithm for energy efficiency optimization in heterogeneous cellular network. In 2017 9th International conference on wireless communications and signal processing (WCSP) (pp. 1–5). IEEE.

  45. Qamar, F., Hindia, M. H. D., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems, 71(4), 627–643.

    Article  Google Scholar 

  46. Guizani, Z., & Hamdi, N. (2017). CRAN, H-CRAN, and F-RAN for 5G systems: Key capabilities and recent advances. International Journal of Network Management, 27(5), e1973.

    Article  Google Scholar 

  47. Qamar, F., Abbas, T., Hindia, M. N., Dimyati, K. B., Noordin, K. A. B., & Ahmed, I. (2017, November). Characterization of MIMO propagation channel at 15 GHz for the 5G spectrum. In 2017 IEEE 13th Malaysia international conference on communications (MICC) (pp. 265–270). IEEE.

  48. Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75.

    Article  Google Scholar 

  49. Priya, T. S., Manish, K., & Prakasam, P. (2021). Hybrid beamforming for massive MIMO using rectangular antenna array model in 5G wireless networks. Wireless Personal Communications., 120, 2061–2083.

    Article  Google Scholar 

  50. Hong, W., Jiang, Z. H., Yu, C., Hou, D., Wang, H., Guo, C., & Zhou, J. Y. (2021). The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE Journal of Microwaves, 1(1), 101–122.

    Article  Google Scholar 

  51. Singh, S. P., Nayyar, A., Kumar, R., & Sharma, A. (2019). Fog computing: From architecture to edge computing and big data processing. The Journal of Supercomputing, 75, 2070–2105.

    Article  Google Scholar 

  52. Karim, B. A., & Ali, H. K. (2023). A novel beamforming technique using mmWave antenna arrays for 5G wireless communication networks. Digital Signal Processing, 134, 103917.

    Article  Google Scholar 

  53. Mehmood, Y., Haider, N., Imran, M., Timm-Giel, A., & Guizani, M. (2017). M2M communications in 5G: State-of-the-art architecture, recent advances, and research challenges. IEEE Communications Magazine, 55(9), 194–201.

    Article  Google Scholar 

  54. Mohammed, B. A., Al-Shareeda, M. A., Al-Mekhlafi, Z. G., Alshudukhi, J. S., & Aldhlan, K. A. (2024). HAFC: Handover authentication scheme based on fog computing for 5G-assisted vehicular blockchain networks. IEEE Access., 12, 6251–6261.

    Article  Google Scholar 

  55. Gaur, G., Velmurugan, T., Prakasam, P., et al. (2021). Application specific thresholding scheme for handover reduction in 5G ultra dense networks. Telecommunication Systems., 76, 97–113.

    Article  Google Scholar 

  56. Asaad, S., Rabiei, A. M., & Müller, R. R. (2018). Massive MIMO with antenna selection: Fundamental limits and applications. IEEE Transactions on Wireless Communications, 17(12), 8502–8516.

    Article  Google Scholar 

  57. Songhorabadi, M., Rahimi, M., MoghadamFarid, A., & Kashani, M. H. (2023). Fog computing approaches in IoT-enabled smart cities. Journal of Network and Computer Applications, 211, 103557.

    Article  Google Scholar 

  58. Zhang, X., & Wang, J. (2019). Heterogeneous statistical QoS provisioning over cognitive-radio based 5G mobile wireless networks. Handbook of cognitive radio (pp. 707–748). Singapore: Springer.

    Chapter  Google Scholar 

  59. Chen, Y., Wang, Y., & Gong, D. (2019). Fog computing support scheme based on fusion of location service and privacy preservation for QoS enhancement. Peer-to-Peer Networking and Applications, 12(6), 1480–1488.

    Article  Google Scholar 

  60. Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., De Turck, F., & Boutaba, R. (2015). Network function virtualization: State-of-the-art and research challenges. IEEE Communications surveys & tutorials, 18(1), 236–262.

    Article  Google Scholar 

  61. Sreekanth, G. R., Ahmed, S. A. N., Sarac, M., Strumberger, I., Bacanin, N., & Zivkovic, M. (2022). Mobile fog computing by using SDN/NFV on 5G edge nodes. Computer Systems Science and Engineering, 41(2), 751–765.

    Article  Google Scholar 

  62. Akgül, Ö. U., Mao, W., Cho, B., & Xiao, Y. (2023). VFogSim: A data-driven platform for simulating vehicular fog computing environment. IEEE Systems Journal., 17(3), 5002–5013.

    Article  Google Scholar 

  63. Alfarraj, O. (2021). A machine learning-assisted data aggregation and offloading system for cloud–IoT communication. Peer-to-Peer Networking and Applications, 14(4), 2554–2564.

    Article  Google Scholar 

  64. Peng, X., Ota, K., & Dong, M. (2020). A broad learning-driven network traffic analysis system based on fog computing paradigm. China Communications, 17(2), 1–13.

    Article  Google Scholar 

  65. Lin, J. C. (2018). Synchronization requirements for 5G: An overview of standards and specifications for cellular networks. IEEE Vehicular Technology Magazine, 13(3), 91–99.

    Article  Google Scholar 

  66. Yannuzzi, M., van Lingen, F., Jain, A., Parellada, O. L., Flores, M. M., Carrera, D., & Olive, A. (2017). A new era for cities with fog computing. IEEE Internet Computing, 21(2), 54–67.

    Article  Google Scholar 

  67. Ren, Z., Lu, T., Wang, X., Guo, W., Liu, G., & Chang, S. (2020). Resource scheduling for delay-sensitive application in three-layer fog-to-cloud architecture. Peer-to-Peer Networking and Applications, 13(5), 1474–1485.

    Article  Google Scholar 

  68. Pan, C., Elkashlan, M., Wang, J., Yuan, J., & Hanzo, L. (2018). User-centric C-RAN architecture for ultra-dense 5G networks: Challenges and methodologies. IEEE Communications Magazine, 56(6), 14–20.

    Article  Google Scholar 

  69. Shu, Y., & Zhu, F. (2019). Green communication mobile convergence mechanism for computing self-offloading in 5G networks. Peer-to-Peer Networking and Applications, 12(6), 1511–1518.

    Article  Google Scholar 

  70. Park, S. H., Simeone, O., & Shitz, S. S. (2016). Joint optimization of cloud and edge processing for fog radio access networks. IEEE Transactions on Wireless Communications, 15(11), 7621–7632.

    Article  Google Scholar 

  71. Premalatha, B., & Prakasam, P. (2024). Optimal energy-efficient resource allocation and fault tolerance scheme for task offloading in IoT-FoG computing networks. Computer Networks, 238, 110080.

    Article  Google Scholar 

  72. Hindia, M. N., Qamar, F., Abd Rahman, T., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks, 74, 34–46.

    Article  Google Scholar 

  73. Intharawijitr, K., Iida, K., & Koga, H. (2016). Analysis of fog model considering computing and communication latency in 5G cellular networks. In 2016 IEEE International conference on pervasive computing and communication workshops (PerCom workshops) (pp. 1–4). IEEE.

  74. Zeng, Y., Al-Quzweeni, A., El-Gorashi, T. E., & Elmirghani, J. M. (2019, July). Energy efficient virtualization framework for 5G F-RAN. In 2019 21st International conference on transparent optical networks (ICTON) (pp. 1–4). IEEE.

  75. Li, S., Maddah-Ali, M. A., Yu, Q., & Avestimehr, A. S. (2017). A fundamental tradeoff between computation and communication in distributed computing. IEEE Transactions on Information Theory, 64(1), 109–128.

    Article  MathSciNet  Google Scholar 

  76. Dinh, T. Q., Tang, J., La, Q. D., & Quek, T. Q. (2017). Offloading in mobile edge computing: Task allocation and computational frequency scaling. IEEE Transactions on Communications, 65(8), 3571–3584.

    Google Scholar 

  77. Ning, H., Fu, Y., Hu, S., & Liu, H. (2015). Tree-Code modeling and addressing for non-ID physical objects in the Internet of Things. Telecommunication Systems, 58(3), 195–204.

    Article  Google Scholar 

  78. Chen, W., Zhang, B., Yang, X., Fang, W., Zhang, W., & Jiang, X. (2022). C-EEUC: A cluster routing protocol for coal mine wireless sensor network based on fog computing and 5G. Mobile Networks and Applications, 27, 1–14.

    Article  Google Scholar 

  79. Hu, P., Ning, H., Qiu, T., Zhang, Y., & Luo, X. (2016). Fog computing based face identification and resolution scheme in internet of things. IEEE transactions on industrial informatics, 13(4), 1910–1920.

    Article  Google Scholar 

  80. Mao, W., Akgul, O. U., Cho, B., Xiao, Y., & Ylä-Jääski, A. (2023). On-demand vehicular fog computing for beyond 5G networks. IEEE Transactions on Vehicular Technology., 72(12), 15237–15253.

    Article  Google Scholar 

  81. Zhang, H., Zhang, Y., Gu, Y., Niyato, D., & Han, Z. (2017). A hierarchical game framework for resource management in fog computing. IEEE Communications Magazine, 55(8), 52–57.

    Article  Google Scholar 

  82. El Soussi, M., Zand, P., Pasveer, F., & Dolmans, G. (2018, May). Evaluating the performance of eMTC and NB-IoT for smart city applications. In 2018 IEEE international conference on communications (ICC) (pp. 1–7). IEEE.

  83. Sodhro, A. H., Pirbhulal, S., Sangaiah, A. K., Lohano, S., Sodhro, G. H., & Luo, Z. (2018). 5G-based transmission power control mechanism in fog computing for Internet of Things devices. Sustainability, 10(4), 1258.

    Article  Google Scholar 

  84. Meng, Y., Naeem, M. A., Almagrabi, A. O., Ali, R., & Kim, H. S. (2020). Advancing the state of the fog computing to enable 5G network technologies. Sensors, 20(6), 1754.

    Article  Google Scholar 

  85. Mohammed, B. A., Al-Shareeda, M. A., Manickam, S., Al-Mekhlafi, Z. G., Alreshidi, A., Alazmi, M., & Alsaffar, M. (2023). FC-PA: Fog computing-based pseudonym authentication scheme in 5G-enabled vehicular networks. IEEE Access, 11, 18571–18581.

    Article  Google Scholar 

  86. Almazroi, A. A., Aldhahri, E. A., Al-Shareeda, M. A., & Manickam, S. (2023). ECA-VFog: An efficient certificateless authentication scheme for 5G-assisted vehicular fog computing. PLoS ONE, 18(6), e0287291.

    Article  Google Scholar 

  87. Puthal, D., Mohanty, S. P., Bhavake, S. A., Morgan, G., & Ranjan, R. (2019). Fog computing security challenges and future directions [energy and security]. IEEE Consumer Electronics Magazine, 8(3), 92–96.

    Article  Google Scholar 

  88. Khumalo, N. N., Oyerinde, O. O., & Mfupe, L. (2021). Reinforcement learning-based resource management model for fog radio access network architectures in 5G. IEEE Access, 9, 12706–12716.

    Article  Google Scholar 

  89. Nguyen, T. H., Truong, T. P., Tran, A. T., Dao, N. N., Park, L., & Cho, S. (2024). Intelligent heterogeneous aerial edge computing for advanced 5G access. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2024.3371434

    Article  Google Scholar 

  90. Jiang, L., Chang, X., Mišić, J., Mišić, V. B., & Yang, R. (2021). Performance analysis of heterogeneous cloud-edge services: A modeling approach. Peer-to-Peer Networking and Applications, 14(1), 151–163.

    Article  Google Scholar 

  91. Nelli, A., & Jogdand, R. (2023). SLA-WS: SLA-based workload scheduling technique in multi-cloud platform. Journal of Ambient Intelligence and Humanized Computing, 14(8), 10001–10012.

    Article  Google Scholar 

  92. Ksentini, A., Jebalia, M., & Tabbane, S. (2021). IoT/cloud-enabled smart services: A review on QoS requirements in fog environment and a proposed approach based on priority classification technique. International Journal of Communication Systems, 34(2), e4269.

    Article  Google Scholar 

  93. Barik, R., Dubey, H., Sasane, S., Misra, C., Constant, N., & Mankodiya, K. (2017). Fog2fog: augmenting scalability in fog computing for health GIS systems. In 2017 IEEE/ACM international conference on connected health: applications, systems and engineering technologies (CHASE) (pp. 241–242). IEEE.

  94. Masip-Bruin, X., Marín-Tordera, E., Alonso, A., & Garcia, J. (2016). Fog-to-cloud Computing (F2C): The key technology enabler for dependable e-health services deployment. In 2016 Mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 1–5). IEEE.

  95. Hatzivasilis, G., Askoxylakis, I., Alexandris, G., Anicic, D., Bröring, A., Kulkarni, V., ... & Spanoudakis, G. (2018, September). The Interoperability of Things: Interoperable solutions as an enabler for IoT and Web 3.0. In 2018 IEEE 23rd international workshop on computer aided modeling and design of communication links and networks (CAMAD) (pp. 1–7). IEEE.

  96. Ramalingam, C., & Mohan, P. (2021). Addressing semantics standards for cloud portability and interoperability in multi cloud environment. Symmetry, 13(2), 317.

    Article  Google Scholar 

  97. Bhatnagar, R., Sinha, D., & Rawat, P. (2022, February). An intelligent fog node solution for application interoperability in 5G enabled fog-IoT paradigm. In 2022 IEEE Delhi section conference (DELCON) (pp. 1–5). IEEE.

  98. Biswash, S. K., & Jayakody, D. N. K. (2020). A fog computing-based device-driven mobility management scheme for 5G networks. Sensors, 20(21), 6017.

    Article  Google Scholar 

  99. Ali, Z. H., Badawy, M. M., & Ali, H. A. (2020). A novel geographically distributed architecture based on fog technology for improving vehicular Ad hoc network (VANET) performance. Peer-to-Peer Networking and Applications, 13(5), 1539–1566.

    Article  Google Scholar 

  100. Chen, L., Jiang, Z., Yang, D., & Wang, C. (2021). Fog radio access network optimization for 5G leveraging user mobility and traffic data. Journal of Network and Computer Applications, 191, 103083.

    Article  Google Scholar 

  101. Kosmopoulos, I., Skondras, E., Michalas, A., & Vergados, D. D. (2020, September). An efficient mobility management scheme for 5G network architectures. In 2020 5th South-East Europe design automation, computer engineering, computer networks and social media conference (SEEDA-CECNSM) (pp. 1–6). IEEE.

  102. Santos, J., Wauters, T., Volckaert, B., & De Turck, F. (2017). Fog computing: Enabling the management and orchestration of smart city applications in 5G networks. Entropy, 20(1), 4.

    Article  Google Scholar 

  103. Nazih, O., Benamar, N., Lamaazi, H., & Choaui, H. (2024). Towards secure and trustworthy vehicular fog computing: A survey. IEEE Access, 12, 35154–35171. https://doi.org/10.1109/ACCESS.2024.3371488

    Article  Google Scholar 

  104. Ali, A., Ahmed, M., Imran, M., & Khattak, H. A. (2020). Security and privacy issues in fog computing. In A. Zomaya, A. Abbas, & S. Khan (Eds.), Fog computing: Theory and practice (pp. 105–137). New Jersey: Wiley.

    Chapter  Google Scholar 

  105. Almazroi, A. A., Alqarni, M. A., Al-Shareeda, M. A., & Manickam, S. (2023). L-CPPA: Lattice-based conditional privacy-preserving authentication scheme for fog computing with 5G-enabled vehicular system. PLoS ONE, 18(10), e0292690.

    Article  Google Scholar 

Download references

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article—Prakasam P and Premalatha B, Literature search and data analysis—Premalatha B, Article drafting—Premalatha B, Critical revision—Prakasam P.

Corresponding author

Correspondence to P. Prakasam.

Ethics declarations

Conflict of interest

We hereby declared that there is no conflict of interest in this research work/paper.

Ethical Approval

I would like to declare that the review proposed was original that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Consent to Publication

Manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premalatha, B., Prakasam, P. A Review on FoG Computing in 5G Wireless Technologies: Research Challenges, Issues and Solutions. Wireless Pers Commun 134, 2455–2484 (2024). https://doi.org/10.1007/s11277-024-11061-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11061-y

Keywords

Navigation