[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

SLA-WS: SLA-based workload scheduling technique in multi-cloud platform

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Real-time workload execution resource provisioning with SLA prerequisite in multi-cloud platform is considered to a difficult job. Data intensive workload is composed direct acyclic graph (DAG); thus, there exist high dependency among different subtask with varying quality of service (QoS) prerequisite. The existing workload scheduling is designed using multi-objective parameter such as minimizing time and cost; however, reducing delay and energy overhead is not considered. This paper presents Service level agreement-based workload scheduling (SLA-WS) technique for execution of real-time workload on multi-cloud platform. The SLA-WS emphasizes multi-objective parameter such as processing efficiency with energy optimization and task offloading benefits using soft-computing based dragonfly algorithm (DA). The SLA-WS model reduces processing time and energy consumption for execution of different workload in comparison with existing WS-framework leveraging multi-cloud platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahmad RW, Gani A, Ab Hamid SH, Shiraz M, Yousafzai A, Xia F (2015) Survey on virtual machine migration and server consolidation frameworks for cloud data centers. J Netw Comput Appl 52:1125

    Article  Google Scholar 

  • Barika M, Garg S, Chan A, Calheiros R (2019) Scheduling algorithms for efficient execution of stream workflow applications in multicloud environments. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2019.2963382

    Article  Google Scholar 

  • Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efcient management of data centers for cloud computing. Future Gener Comput Syst 28(5):755768

    Article  Google Scholar 

  • Bharathi S, Chervenak A, Deelman E, Mehta G, Su M, Vahi K (2008) Characterization of scientific workflows. In: Third Workshop on Workflows in Support of Large-Scale Science. Austin, pp 1–10

  • Caixia Y, Xiaojun C, Minnan L, Qinghua Z, Xiaoqin Z, Zhihui L, Feiping L (2020) Self-weighted robust LDA for multiclass classification with edge classes. ACM Trans Intell Syst Technol 12:1–19. https://doi.org/10.1145/3418284

    Article  Google Scholar 

  • Chunlin L, Jianhang T, Youlong L (2019) Hybrid cloud adaptive scheduling strategy for heterogeneous workload. J Grid Comput 17:419. https://doi.org/10.1007/s10723-019-09481-3

    Article  Google Scholar 

  • Doppa JR, Kim RG, Isakov M, Kinsy MA, Kwon H, Krishna T (2017) Adaptive manycore architectures for big data computing. In: IEEE/ACM International Symposium on Networks-on-Chip (NOCS) Seoul, pp 1–8

  • Esfandiarpoor S, Pahlavan A, Goudarzi M (2015) Structure-aware online virtual machine consolidation for datacenter energy improvement in cloud computing. Comput Elect Eng 42:7489

    Article  Google Scholar 

  • Faragardi HR, Sedghpour MR, Fazliahmadi S, Fahringer RN (2020) GRP-HEFT: a budget-constrained resource provisioning scheme for workflow scheduling in IaaS clouds. IEEE Trans Parallel Distrib Syst 31(6):1239–1254. https://doi.org/10.1109/TPDS.2019.2961098

    Article  Google Scholar 

  • Farahnakian F, Pahikkala T, Liljeberg P, Plosila J, Hieu NT, Tenhunen H (2019) Energy-aware VM consolidation in cloud data centers using utilization prediction model. IEEE Trans Cloud Comput 7(2):524536. https://doi.org/10.1109/TCC.2016.2617374

    Article  Google Scholar 

  • Gul B et al (2020) CPU and RAM energy-based SLA-aware workload consolidation techniques for clouds. IEEE Access 8:62990–63003. https://doi.org/10.1109/ACCESS.2020.2985234

    Article  Google Scholar 

  • Hameed A, Khoshkbarforoushha A, Ranjan R, Jayaraman PP, Kolodziej J, Balaji P, Zeadally S, Malluhi QM, Tziritas N, Vishnu A, Khan SU, Zomaya A (2016) A survey and taxonomy on energy efcient resource allocation techniques for cloud computing systems. Computing 98(7):751774. https://doi.org/10.1007/s00607-014-0407-8

    Article  Google Scholar 

  • Khorramnejad K, Ferdouse L, Guan L et al (2018) Performance of integrated workload scheduling and pre-fetching in multimedia mobile cloud computing. J Cloud Comp 7:13. https://doi.org/10.1186/s13677-018-0115-6

    Article  Google Scholar 

  • Konjaang JK, Xu L (2021) Multi-objective workflow optimization strategy (MOWOS) for cloud computing. J Cloud Comp 10:11. https://doi.org/10.1186/s13677-020-00219-1

    Article  Google Scholar 

  • Li Z, Ge J, Hu H, Song W, Hu H, Luo B (2018a) Cost and energy aware scheduling algorithm for scientific workflows with deadline constraint in clouds. IEEE Trans Serv Comput 11(4):713–726

    Article  Google Scholar 

  • Li Z, Nie F, Chang X, Nie L, Zhang H, Yang Y (2018b) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Netw Learn Syst 29(12):6073–6082. https://doi.org/10.1109/TNNLS.2018.2817538

    Article  MathSciNet  Google Scholar 

  • Li Z, Nie F, Chang X, Nie L, Yang Y, Zhang C, Sebe N (2018c) Dynamic affinity graph construction for spectral clustering using multiple features. IEEE Trans Neural Netw Learn Syst 29(12):6323–6332. https://doi.org/10.1109/TNNLS.2018.2829867

    Article  MathSciNet  Google Scholar 

  • Li Z, Yao L, Chang X, Zhan K, Sun J, Zhang H (2019) Zero-shot event detection via event-adaptive concept relevance mining. Pattern Recogn 88:595–603. https://doi.org/10.1016/j.patcog.2018.12.010 (ISSN 0031-3203)

    Article  Google Scholar 

  • Madni SHH, Latiff MSA, Coulibaly Y, Abdulhamid SM (2016) Resource scheduling for infrastructure as a service (IaaS) in cloud computing: challenges and opportunities. J Netw Comput Appl 68:173–200

    Article  Google Scholar 

  • Madni SHH, Latiff MSA, Coulibaly Y, Abdulhamid SM (2017) Recent advancements in resource allocation techniques for cloud computing environment: a systematic review. Clust Comput 20:2489–2533

    Article  Google Scholar 

  • Masdari M, Khoshnevis A (2020) A survey and classification of the workload forecasting methods in cloud computing. Cluster Comput 23:2399–2424. https://doi.org/10.1007/s10586-019-03010-3

    Article  Google Scholar 

  • Mustafa S, Bilal K, Malik SUR, Madani SA (2018) SLA-aware energy efcient resource management for cloud environments. IEEE Access 6:15004–15020

    Article  Google Scholar 

  • Mustafa S et al (2019) SLA-aware best fit decreasing techniques for workload consolidation in clouds. IEEE Access 7:135256–135267. https://doi.org/10.1109/ACCESS.2019.2941145

    Article  Google Scholar 

  • Neelima P, Reddy ARM (2020) An efficient load balancing system using adaptive dragonfly algorithm in cloud computing. Cluster Comput 23:2891–2899

    Article  Google Scholar 

  • Pengzhen R, Yun X, Xiaojun C, Po-Yao H, Zhihui L, Xiaojiang C, Xin W (2020) A comprehensive survey of neural architecture search: challenges and solutions. ACM Comput Surv 37(4):111

    Google Scholar 

  • Shuja J, Bilal K, Madani SA, Othman M, Ranjan R, Balaji P, Khan SU (2016) Survey of techniques and architectures for designing energy efficient data centers. IEEE Syst J 10(2):507–519

    Article  Google Scholar 

  • Singh S, Chana I (2015a) QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput Surveys 48(3):1–46

    Article  Google Scholar 

  • Singh S, Chana I (2015b) QRSF: QoS-aware resource scheduling framework in cloud computing. J Supercomput 71(1):241–292

    Article  Google Scholar 

  • Singh S, Chana I (2015c) Q-aware: quality of service based cloud resource provisioning. Comput Electr Eng 47:138–160

    Article  Google Scholar 

  • Singh S, Chana I, Singh M, Buyya R (2016) SOCCER: self-optimization of energy-efficient cloud resources. Clust Comput 19:1787–1800. https://doi.org/10.1007/s10586-016-0623-4

    Article  Google Scholar 

  • Singh S, Chana I, Buyya R (2020) STAR: SLA-aware autonomic management of cloud resources. IEEE Trans Cloud Comput 8(4):1040–1053. https://doi.org/10.1109/TCC.2017.2648788

    Article  Google Scholar 

  • Tang Z, Qi L, Cheng Z, Li K, Khan SU, Li K (2016) An energy efficient task scheduling algorithm in DVFS-enabled cloud environment. J Grid Comput 14(1):55–74

    Article  Google Scholar 

  • Tziritas N, Mustafa S, Koziri M, Loukopoulos T, Khan SU, Xu CZ, Zomaya AY (2018) Server consolidation in cloud computing. In: IEEE 24th International Conference on Parallel and Distributed Systems, pp 194–203

  • Ullman JD (1975) NP-complete scheduling problems. J Comput Syst Sci 10(3):384–393

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Tao X, Zhao F et al (2020) SLA-aware resource scheduling algorithm for cloud storage. J Wirel Commun Network. https://doi.org/10.1186/s13638-019-1604-0

    Article  Google Scholar 

  • Xie G, Liu L, Yang L, Li R (2017a) Scheduling trade-off of dynamic multiple parallel workflows on heterogeneous distributed computing systems. Concurrency Comput Parct Exp 29(8):1–18

    Google Scholar 

  • Xie G, Zeng G, Li R, Li K (2017b) Energy-aware processor merging algorithms for deadline constrained parallel applications in heterogeneous cloud computing. IEEE Trans Sustain Comput 2(2):62–75

    Article  Google Scholar 

  • Zhang C, Wang Y, Lv Y, Wu H, Guo H (2019) An energy and SLA-aware resource management strategy in cloud data centers. Sci Programm. https://doi.org/10.1155/2019/3204346

    Article  Google Scholar 

  • Zhou J et al (2019) Cost and Makespan-aware workflow scheduling in hybrid clouds. J Syst Archit. https://doi.org/10.1016/j.sysarc.2019.08.004

    Article  Google Scholar 

  • Zhu Z, Zhang G, Li M, Liu X (2016) Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans Parallel Distrib Syst 27(5):1344–1357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arundhati Nelli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelli, A., Jogdand, R. SLA-WS: SLA-based workload scheduling technique in multi-cloud platform. J Ambient Intell Human Comput 14, 10001–10012 (2023). https://doi.org/10.1007/s12652-021-03666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03666-z

Keywords

Navigation