[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Survey on Ultra-Dense Networks (UDNs) and Applied Stochastic Geometry

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Due to rapid growth of demanding data rate, many emerged technologies has been developed for wireless communication. Consequently, the perspective of network design has been shifted to new scale, wherein massive number of machines and people can be handled. Ultra-dense networks (UDNs) represents the bottleneck of 5G system capacity. In this paper, we investigate design criteria of UDNs and discuss the relative technologies which are regarded as the main axes of the current research. Also, coverage performance analysis of dense network is introduced based on stochastic geometry, besides the available software packages of 5G networks. Finally, we introduce the most relevant novel trends and open issues for future research directions in this track. Hence, this survey represents complete paradigm for going through UDNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. RRH performs the task of RF end such as power amplification, ADC, and DAC etc.

  2. UL channel estimates would provide the status of DL channel.

  3. In traditional multi-user hybrid beamforming or beamspace MIMO systems, the maximum allowed number of user equals the number of RF chains deployed at BS [49,50,51]

  4. User-centric concept aims for improving user experience regardless location, mobility conditions via re-centering future services around the user. This can be accomplished by extending network infrastructure to improve content caching, connectivity, and functionality.

  5. Each BS cluster allocates power for selfishly maximizing its own EE [33, Eq.18].

  6. Macro BS has 46 dBm, Pico has 33 dBm, and Femto has 20 dBm.

  7. wired backhaul may be non-ideal with moderate latency and lower capacity.

  8. Network slicing is virtual process which allows multi logical networks to operate along with the physical network. This enables multiplexing different users over a single shared physical resources.

  9. Cryptography based techniques exploit channel randomness as one of simple physical layer security.

  10. Hint: the graph in Fig. 4 is scaled precisely in standard US units.

  11. Given function \(f:X\rightarrow Y\) the set X is the domain (like function argument) of f and Y is the co-domain of f.

  12. H represents channel between typical user and serving BS while \(G_i\) denotes the channel between typical user and \(i{\rm{th}}\) interfere.

  13. using moment generation of exponential random variable x with parameter \(\lambda =1\) is straightforward derivation \({{{\mathbb {E}}}_{x}}\left[ {{e}^{-ax}} \right] =\frac{1}{1+a}.\)

  14. Association probability only requires PDF of \(R_i\) without regarding \(S=i\) since \(a_i\) evaluates probability that typical user is connected or not, i.e. connectivity is still under investigation and may not be achieved.

  15. The probability that at least one of the events \(\left\{ A,B,C\right\}\) occurs is equivalent to \({\mathbb {P}}\left[ A\cup B\cup C \right] ={\mathbb {P}}\left[ A \right] +{\mathbb {P}}\left[ B \right] +{\mathbb {P}}\left[ C \right] -{\mathbb {P}}\left[ A\cap B \right] -{\mathbb {P}}\left[ B\cap C \right] -{\mathbb {P}}\left[ A\cap C \right] +{\mathbb {P}}\left[ A\cap B\cap C \right]\), where the event intersections are reduced to zeros if they are independent. In case of HCN is \(\left\{ {SINR\left( {{{\mathbf {Y}}}_{i}} \right) >{{\tau }_{i}}}\right\} \forall 1\le i \le k\).

  16. if X is discrete random variable, then \({\mathbb {E}}\left[ {{\mathbb {1}}_{X\ge a}} \right] =0.{\mathbb {P}}\left[ X<a \right] +1.{\mathbb {P}}\left[ X\ge a \right] ={\mathbb {P}}\left[ X\ge a \right]\); see Fig. 9.

  17. Recall: standard Campbell’s theorem \({\mathbb {E}}\left[ F \right] ={\mathbb {E}}\left[ \sum \limits _{{{\mathbf {X}}_{i}}\in {\varPhi }}{f({{\mathbf {X}}_{i}})} \right] =\lambda \int \limits _{{{{\mathbb {R}}}^{d}}}{f(X)dX}\).

  18. the moment generation function of for Rayleigh distribute random variable x is \(M(t)={\mathbb {E}}\left[ {{e}^{tx}} \right] =\frac{1}{1-\theta t}\). Where x refers to H and scaling paramter \(\theta =1\) denotes distribution spreading while t is equivalent to \(s{{p}_{j}}{{\left\| {{\mathbf {Y}}_{j}} \right\| }^{-\alpha }}\).

  19. PGFL converts the expectation of product into integral formula which is hopefully evaluated to closed expression.

References

  1. Hwang, I., Song, B., & Soliman, S. S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.

    Article  Google Scholar 

  2. Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., et al. (2014). Network densification: The dominant theme for wireless evolution into 5g. IEEE Communications Magazine, 52(2), 82–89.

    Article  Google Scholar 

  3. Luo, F.-L., & Zhang, C. (2016). Signal processing for 5G: Algorithms and implementations. New Jersy: John Wiley and Sons.

    Book  Google Scholar 

  4. López-Pérez, D., Ding, M., Claussen, H., & Jafari, A. H. (2015). Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys and Tutorials, 17(4), 2078–2101.

    Article  Google Scholar 

  5. Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K.-K., Schober, R., & Hanzo, L. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys and Tutorials, 18(2), 1018–1044.

    Article  Google Scholar 

  6. Akoum, S., & Acharya, J. (2014). Full-dimensional mimo for future cellular networks. In 2014 IEEE Radio and Wireless Symposium (RWS), pp. 1–3. IEEE.

  7. Ding, M., López-Pérez, D., Mao, G., Wang, P., & Lin, Z. (2015). Will the area spectral efficiency monotonically grow as small cells go dense?. In 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE.

  8. Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  9. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  10. Li, C., Zhang, J., Haenggi, M., & Letaief, K. B. (2015). User-centric intercell interference nulling for downlink small cell networks. IEEE Transactions on Communications, 63(4), 1419–1431.

    Article  Google Scholar 

  11. Polignano, M., Mogensen, P., Fotiadis, P., Chavarria, L., Viering, I., & Zanier, P. (2014). The inter-cell interference dilemma in dense outdoor small cell deployment. In: 2014 IEEE 79th vehicular technology conference (VTC Spring), pp. 1–5. IEEE.

  12. Soret, B., Pedersen, K. I., Jørgensen, N. T. K., & Fernández-López, V. (2015). Interference coordination for dense wireless networks. IEEE Communications Magazine, 53(1), 102–109.

    Article  Google Scholar 

  13. Wang, X., Visotsky, E., Ghosh, A. (2015). Dynamic cell muting for ultra dense indoor small cell deployment scenario. In 2015 IEEE International Conference on Communication Workshop (ICCW) (pp. 148–153). IEEE.

  14. Heath, R., Peters, S., Wang, Y., & Zhang, J. (2013). A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Communications Magazine, 51(4), 161–167.

    Article  Google Scholar 

  15. Haenggi, M. (2012). Stochastic geometry for wireless networks. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  16. Leyton-Brown, K., & Shoham, Y. (2008). Essentials of game theory: A concise multidisciplinary introduction. Synthesis lectures on artificial intelligence and machine learning, 2(1), 1–88.

    Article  MATH  Google Scholar 

  17. Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.

    Article  Google Scholar 

  18. Zhang, L., Yang, H.-C., & Hasna, M. O. (2014). Generalized area spectral efficiency: An effective performance metric for green wireless communications. IEEE Transactions on Communications, 62(2), 747–757.

    Article  Google Scholar 

  19. Chen, Z., Qiu, L., & Liang, X. (2016). Area spectral efficiency analysis and energy consumption minimization in multiantenna poisson distributed networks. IEEE Transactions on Wireless Communications, 15(7), 4862–4874.

    Google Scholar 

  20. Gupta, A. K., Zhang, X., & Andrews, J. G. (2015). SINR and throughput scaling in ultradense urban cellular networks. IEEE Wireless Communications Letters, 4(6), 605–608.

    Article  Google Scholar 

  21. Björnson, E., Sanguinetti, L., & Kountouris, M. (2016). Deploying dense networks for maximal energy efficiency: Small cells meet massive MIMO. IEEE Journal on Selected Areas in Communications, 34(4), 832–847.

    Article  Google Scholar 

  22. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., & Zhang, J. C. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  23. Akkarajitsakul, K., Hossain, E., Niyato, D., & Kim, D. I. (2011). Game theoretic approaches for multiple access in wireless networks: A survey. IEEE Communications Surveys and Tutorials, 13(3), 372–395.

    Article  Google Scholar 

  24. MacKenzie, A. B., & DaSilva, L. A. (2006). Game theory for wireless engineers. Synthesis Lectures on Communications, 1(1), 1–86.

    Article  Google Scholar 

  25. Saad, W., Han, Z., Debbah, M., Hjørungnes, A., & Basar, T. (2009). Coalitional game theory for communication networks: A tutorial, arXiv preprint arXiv:0905.4057.

  26. Samarakoon, S., Bennis, M., Saad, W., Debbah, M., & Latva-Aho, M. (2016). Ultra dense small cell networks: Turning density into energy efficiency. IEEE Journal on Selected Areas in Communications, 34(5), 1267–1280.

    Article  Google Scholar 

  27. Samarakoon, S., Bennis, M., Saad, W., Debbah, M., & Latva-Aho, M. (2015). Energy-efficient resource management in ultra dense small cell networks: A mean-field approach. In 2015 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.

  28. ElSawy, H., Hossain, E., & Haenggi, M. (2013). Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey. IEEE Communications Surveys and Tutorials, 15(3), 996–1019.

    Article  Google Scholar 

  29. Waqas, A., Melati, D., Manfredi, P., & Melloni, A. (2018). Stochastic process design kits for photonic circuits based on polynomial chaos augmented macro-modelling. Optics express, 26(5), 5894–5907.

    Article  Google Scholar 

  30. Waqas, A., Melati, D., Chowdhry, B. S., & Melloni, A. (2019). Efficient variability analysis of photonic circuits by stochastic parametric building blocks. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1–8.

    Article  Google Scholar 

  31. Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its applications. New Jersy: John Wiley and Sons.

    Book  MATH  Google Scholar 

  32. Kamel, M., Hamouda, W., & Youssef, A. (2016). Ultra-dense networks: A survey. IEEE Communications Surveys and Tutorials, 18(4), 2522–2545.

    Article  Google Scholar 

  33. Liang, L., Wang, W., Jia, Y., & Fu, S. (2016). A cluster-based energy-efficient resource management scheme for ultra-dense networks. IEEE Access, 4, 6823–6832.

    Article  Google Scholar 

  34. Kreutz, D., Ramos, F., Verissimo, P., Rothenberg, C.E., Azodolmolky, S., & Uhlig, S. (2014). Software-defined networking: A comprehensive survey, arXiv preprint arXiv:1406.0440.

  35. Ali-Ahmad, H., Cicconetti, C., de la Oliva, A., Dräxler, M., Gupta, R., Mancuso, V., et al. (2013). CROWD: an SDN approach for densenets.

  36. Borges, V. C., Cardoso, K. V., Cerqueira, E., Nogueira, M., & Santos, A. (2015). Aspirations, challenges, and open issues for software-based 5G networks in extremely dense and heterogeneous scenarios. EURASIP Journal on Wireless Communications and Networking, 2015(1), 164.

    Article  Google Scholar 

  37. Wu, J., Zhang, Z., Hong, Y., & Wen, Y. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29(1), 35–41.

    Article  Google Scholar 

  38. Liu, C., Sundaresan, K., Jiang, M., Rangarajan, S., & Chang, G.-K. (2013). The case for re-configurable backhaul in cloud-RAN based small cell networks. In 2013 Proceedings IEEE INFOCOM (pp. 1124–1132). IEEE.

  39. Akdeniz, M.R., Liu, Y., Rangan, S., & Erkip, E. (2013). Millimeter wave picocellular system evaluation for urban deployments. In 2013 IEEE Globecom Workshops (GC Wkshps) (pp. 105–110). IEEE.

  40. Bai, T., & Heath, R. W. (2014). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114.

    Article  Google Scholar 

  41. Li, Y.-N.R., Xiao, H., Li, J., & Wu, H. (2014). Wireless backhaul of dense small cell networks with high dimension MIMO. In 2014 IEEE Globecom Workshops (GC Wkshps) (pp. 1254–1259). IEEE.

  42. Panzner, B., Zirwas, W., Dierks, S., Lauridsen, M., Mogensen, P., Pajukoski, K., & Miao, D. (2014). Deployment and implementation strategies for massive MIMO in 5G. In 2014 IEEE Globecom Workshops (GC Wkshps) (pp. 346–351). IEEE.

  43. Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.

    Article  Google Scholar 

  44. Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.

    Article  Google Scholar 

  45. Osseiran, A., Monserrat, J., Marsch, P., Dohler, M., & Nakamura, T. (2016). 5G Mobile and Wireless Communications Technology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  46. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343.

    Google Scholar 

  47. Almasi, M.A., & Mehrpouyan, H. (2019). Non-orthogonal multiple access based on hybrid beamforming for mmwave systems. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (pp. 1–7). IEEE.

  48. Wang, B., Dai, L., Wang, Z., Ge, N., & Zhou, S. (2017). Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE Journal on Selected Areas in Communications, 35(10), 2370–2382.

    Article  Google Scholar 

  49. Alkhateeb, A., Leus, G., & Heath, R. W. (2015). Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications, 14(11), 6481–6494.

    Article  Google Scholar 

  50. Brady, J., Behdad, N., & Sayeed, A. M. (2013). Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements. IEEE Transactions on Antennas and Propagation, 61(7), 3814–3827.

    Article  Google Scholar 

  51. Gao, X., Dai, L., Chen, Z., Wang, Z., & Zhang, Z. (2016). Near-optimal beam selection for beamspace mmwave massive MIMO systems. IEEE Communications Letters, 20(5), 1054–1057.

    Article  Google Scholar 

  52. Qin, Z., Yue, X., Liu, Y., Ding, Z., & Nallanathan, A. (2018). User association and resource allocation in unified NOMA enabled heterogeneous ultra dense networks. IEEE Communications Magazine, 56(6), 86–92.

    Article  Google Scholar 

  53. Liu, Y., Li, X., Yu, F. R., Ji, H., Zhang, H., & Leung, V. C. (2017). Grouping and cooperating among access points in user-centric ultra-dense networks with non-orthogonal multiple access. IEEE Journal on Selected Areas in Communications, 35(10), 2295–2311.

    Article  Google Scholar 

  54. Xiang, L., & Chen, H. (2017). Energy-efficient and fair power allocation approach for NOMA in ultra-dense heterogeneous networks. In 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC) (pp. 89–94). IEEE.

  55. Romanous, B., Bitar, N., Imran, A., & Refai, H. (2015). Network densification: Challenges and opportunities in enabling 5G. In 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD) (pp. 129–134). IEEE.

  56. Alkurd, R., Shubair, R.M., & Abualhaol, I. (2014). Survey on device-to-device communications: Challenges and design issues. In 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) (pp. 361–364). IEEE.

  57. Laya, A., Wang, K., Widaa, A. A., Alonso-Zarate, J., Markendahl, J., & Alonso, L. (2014). Device-to-device communications and small cells: enabling spectrum reuse for dense networks. IEEE Wireless Communications, 21(4), 98–105.

    Article  Google Scholar 

  58. Ni, W., & Collings, I. B. (2013). A new adaptive small-cell architecture. IEEE Journal on Selected Areas in Communications, 31(5), 829–839.

    Article  Google Scholar 

  59. Mobility, I. F. (2012). Seamless wireless local area network (WLAN) offload. Standard 3GPP TS, 23.

  60. Bastug, E., Bennis, M., & Debbah, M. (2014). Living on the edge: The role of proactive caching in 5G wireless networks. IEEE Communications Magazine, 52(8), 82–89.

    Article  Google Scholar 

  61. Maddah-Ali, M. A., & Niesen, U. (2014). Fundamental limits of caching. IEEE Transactions on Information Theory, 60(5), 2856–2867.

    Article  MathSciNet  MATH  Google Scholar 

  62. Sengupta, A., Tandon, R., & Clancy, T. C. (2014). Fundamental limits of caching with secure delivery. IEEE Transactions on Information Forensics and Security, 10(2), 355–370.

    Article  Google Scholar 

  63. Semiari, O., Saad, W., Valentin, S., Bennis, M., & Poor, H. V. (2015). Context-aware small cell networks: How social metrics improve wireless resource allocation. IEEE Transactions on Wireless Communications, 14(11), 5927–5940.

    Article  Google Scholar 

  64. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  65. Tyagi, R.R., Lee, K.-D., Aurzada, F., Kim, S., & Reisslein, M. (2012). Efficient delivery of frequent small data for u-healthcare applications over LTE-advanced networks. In Proceedings of the 2nd ACM international workshop on Pervasive Wireless Healthcare (pp. 27–32). ACM.

  66. Keertikumar, M., Shubham, M., & Banakar, R. (2015). Evolution of IoT in smart vehicles: An overview. In 2015 International Conference on Green Computing and Internet of Things (ICGCIoT) (pp. 804–809). IEEE.

  67. Khan, R., Khan, S.U., Zaheer, R., & Khan, S. (2012). Future internet: the internet of things architecture, possible applications and key challenges. In 2012 10th international conference on frontiers of information technology (pp. 257–260). IEEE.

  68. Mehta, R., Sahni, J., & Khanna, K. (2018). Internet of things: Vision, applications and challenges. Procedia computer science, 132, 1263–1269.

    Article  Google Scholar 

  69. Bande, M., El Gamal, A., & Veeravalli, V. V. (2019). Degrees of freedom in wireless interference networks with cooperative transmission and backhaul load constraints. IEEE Transactions on Information Theory.

  70. Kamel, M.I., & Elsayed, K.M. (2012). Performance evaluation of a coordinated time-domain eICIC framework based on ABSF in heterogeneous LTE-advanced networks. In 2012 IEEE Global Communications Conference (GLOBECOM) (pp. 5326–5331). IEEE.

  71. Yilmaz, O.N.C., Lunden, J.P., & Li, Z. (2019). Methods and apparatus for interference management and resource sharing, Apr. 9 2019. US Patent App. 10/257,713.

  72. Randrianantenaina, I., Kaneko, M., Dahrouj, H., ElSawy, H., & Alouini, M.-S. (2019). Interference management in NOMA-based fog-radio access networks via joint scheduling and power adaptation, arXiv preprint arXiv:1902.10388.

  73. Ohwatari, Y., Miki, N., Asai, T., Abe, T., & Taoka, H. (2011). Performance of advanced receiver employing interference rejection combining to suppress inter-cell interference in LTE-advanced downlink. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–7). IEEE.

  74. Patel, P., & Holtzman, J. (1994). Performance comparison of a DS/CDMA system using a successive interference cancellation (IC) scheme and a parallel IC scheme under fading. In Proceedings of ICC/SUPERCOMM’94-1994 International Conference on Communications (pp. 510–514). IEEE.

  75. Ashraf, I., Boccardi, F., & Ho, L. (2011). Sleep mode techniques for small cell deployments. IEEE Communications Magazine, 49(8), 72–79.

    Article  Google Scholar 

  76. Li, C., Zhang, J., & Letaief, K.B. (2014). User-centric intercell interference coordination in small cell networks. In 2014 IEEE International Conference on Communications (ICC) (pp. 5747–5752). IEEE.

  77. Al-Zahrani, A. Y., Yu, F. R., & Huang, M. (2015). A joint cross-layer and colayer interference management scheme in hyperdense heterogeneous networks using mean-field game theory. IEEE Transactions on Vehicular Technology, 65(3), 1522–1535.

    Article  Google Scholar 

  78. Liu, L., Garcia, V., Tian, L., Pan, Z., & Shi, J. (2015). Joint clustering and inter-cell resource allocation for CoMP in ultra dense cellular networks. In 2015 IEEE International Conference on Communications (ICC) (pp. 2560–2564). IEEE.

  79. Sun, Y., Chang, Y., Hu, M., & Wang, B. (2015). A cluster-based hybrid access strategy using non-cooperative game theory for ultra-dense HetNet. In 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems (pp. 14–19). IEEE.

  80. Gao, Y., Cheng, L., Zhang, X., Zhu, Y., & Zhang, Y. (2016). Enhanced power allocation scheme in ultra-dense small cell network. China Communications, 13(2), 21–29.

    Google Scholar 

  81. Yang, C., Li, J., & Guizani, M. (2016). Cooperation for spectral and energy efficiency in ultra-dense small cell networks. IEEE Wireless Communications, 23(1), 64–71.

    Article  Google Scholar 

  82. Lopez-Perez, D., Chu, X., & Guvenc, İ. (2012). On the expanded region of picocells in heterogeneous networks. IEEE Journal of Selected Topics in Signal Processing, 6(3), 281–294.

    Article  Google Scholar 

  83. Singh, S., Dhillon, H. S., & Andrews, J. G. (2013). Offloading in heterogeneous networks: Modeling, analysis, and design insights. IEEE Transactions on Wireless Communications, 12(5), 2484–2497.

    Article  Google Scholar 

  84. Kamel, M.I., Hamouda, W., & Youssef, A.M. (2016). Multiple association in ultra-dense networks. In 2016 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE.

  85. Liu, C.-H., & Wang, L.-C. (2015). Random cell association and void probability in poisson-distributed cellular networks. In 2015 IEEE International Conference on Communications (ICC) (pp. 2816–2821). IEEE.

  86. Liu, C.-H., & Wang, L.-C. (2016). Optimal cell load and throughput in green small cell networks with generalized cell association. IEEE Journal on Selected Areas in Communications, 34(5), 1058–1072.

    Article  Google Scholar 

  87. Sun, C., Li, L., Jiang, F., & Yuan, Y. (2017). Virtual cell association and multi cell scheduling in ultra-dense networks. In 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) (pp. 1–6). IEEE.

  88. Li, Z., Zhu, K., Wang, R., & Xu, Y. (2018). Context-aware decoupled multiple association in ultra-dense networks. In 2018 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.

  89. Melati, D., Waqas, A., Mushtaq, Z., & Melloni, A. (2017). Wideband integrated optical delay line based on a continuously tunable mach-zehnder interferometer. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1–8.

    Article  Google Scholar 

  90. Waqas, A., Melati, D., & Melloni, A. (2018). Cascaded mach-zehnder architectures for photonic integrated delay lines. IEEE Photonics Technology Letters, 30(21), 1830–1833.

    Article  Google Scholar 

  91. Pei, L., Huilin, J., Zhiwen, P., & Xiaohu, Y. (2017). Energy-delay tradeoff in ultra-dense networks considering bs sleeping and cell association. IEEE Transactions on Vehicular Technology, 67(1), 734–751.

    Article  Google Scholar 

  92. Kamel, M., Hamouda, W., & Youssef, A. (2017). Performance analysis of multiple association in ultra-dense networks. IEEE Transactions on Communications, 65(9), 3818–3831.

    Article  Google Scholar 

  93. T. 36.932, “Scenarios and requirements for small cell enhancements for e-utra and e-utran,” Oct. 2014.

  94. Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49.

    Article  Google Scholar 

  95. Ge, X., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless backhaul networks: challenges and research advance, arXiv preprint arXiv:1412.7232.

  96. Amin, P., Kibret, N.S., Mutafungwa, E., Haile, B.B., Hämäläinen, J., & Nurminen, J.K. (2014). Performance study for off-grid self-backhauled small cells in dense informal settlements. In 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (pp. 1652–1657). IEEE.

  97. Chen, D. C., Quek, T. Q., & Kountouris, M. (2015). Backhauling in heterogeneous cellular networks: Modeling and tradeoffs. IEEE Transactions on Wireless Communications, 14(6), 3194–3206.

    Article  Google Scholar 

  98. Li, P., Shen, Y., Sahito, F., Pan, Z., & You, X. (2019). BS sleeping strategy for energy-delay tradeoff in wireless-backhauling UDN. Science China Information Sciences, 62(4), 42303.

    Article  Google Scholar 

  99. Marabissi, D., Fantacci, R., & Simoncini, L. (2019). SDN-based routing for backhauling in ultra-dense networks. Journal of Sensor and Actuator Networks, 8(2), 23.

    Article  Google Scholar 

  100. Huang, P.-H., & Psounis, K. (2019). Optimal backhauling for dense small-cell deployments using mmwave links. Computer. (Communications).

  101. Shuai, P., En, T., Huilin, J., Zhiwen, P., Nan, L., & Xiaohu, Y. (2015). An improved graph coloring based small cell discovery scheme in LTE hyper-dense networks. In 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 17–22). IEEE.

  102. Prasad, A., Tirkkonen, O., Lundén, P., Yilmaz, O. N., Dalsgaard, L., & Wijting, C. (2013). Energy-efficient inter-frequency small cell discovery techniques for LTE-advanced heterogeneous network deployments. IEEE Communications Magazine, 51(5), 72–81.

    Article  Google Scholar 

  103. Wu, H., Tian, H., Huang, Z., & Nie, G. (2018). User location prediction based cell discovery scheme for user-centric ultra-dense networks. In 2018 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1–6). IEEE.

  104. Yu, Y., Cai, Z., & Bontu, C.S. (2016). Method and system for small cell discovery in heterogeneous cellular networks, Feb. 2 2016. US Patent 9,253,713.

  105. Filippini, I., Sciancalepore, V., Devoti, F., & Capone, A. (2017). Fast cell discovery in mm-wave 5G networks with context information. IEEE Transactions on Mobile Computing, 17(7), 1538–1552.

    Article  Google Scholar 

  106. Obregon, E., Sung, K.W., & Zander, J. (2014). On the sharing opportunities for ultra-dense networks in the radar bands. In 2014 IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN) (pp. 215–223). IEEE.

  107. Teng, Y., Wang, Y., & Horneman, K. (2014). Co-primary spectrum sharing for denser networks in local area. In 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM) (pp. 120–124). IEEE.

  108. Fan, C., Li, B., Zhao, C., Guo, W., & Liang, Y.-C. (2017). Learning-based spectrum sharing and spatial reuse in mm-wave ultradense networks. IEEE Transactions on Vehicular Technology, 67(6), 4954–4968.

    Article  Google Scholar 

  109. Shokri-Ghadikolaei, H., Boccardi, F., Fischione, C., Fodor, G., & Zorzi, M. (2016). Spectrum sharing in mmwave cellular networks via cell association, coordination, and beamforming. IEEE Journal on Selected Areas in Communications, 34(11), 2902–2917.

    Article  Google Scholar 

  110. Kibria, M. G., Villardi, G. P., Nguyen, K., Ishizu, K., & Kojima, F. (2016). Heterogeneous networks in shared spectrum access communications. IEEE Journal on Selected Areas in Communications, 35(1), 145–158.

    Google Scholar 

  111. Gupta, A. K., Andrews, J. G., & Heath, R. W. (2016). On the feasibility of sharing spectrum licenses in mmwave cellular systems. IEEE Transactions on Communications, 64(9), 3981–3995.

    Article  Google Scholar 

  112. Jafari, A.H., López-Pérez, D., Ding, M., & Zhang, J. (2015). Study on scheduling techniques for ultra dense small cell networks. In 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (pp. 1–6). IEEE.

  113. Chen, J., Gao, Z., & Zhao, Q. (2015). Load-aware dynamic spectrum access in ultra-dense small cell networks. In 2015 International Conference on Wireless Communications & Signal Processing (WCSP) (pp. 1–5). IEEE.

  114. Calabuig, D., Barmpounakis, S., Gimenez, S., Kousaridas, A., Lakshmana, T. R., Lorca, J., et al. (2017). Resource and mobility management in the network layer of 5G cellular ultra-dense networks. IEEE Communications Magazine, 55(6), 162–169.

    Article  Google Scholar 

  115. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.-H., & Leung, V. C. (2017). Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.

    Article  Google Scholar 

  116. Liu, L., Zhou, Y., Garcia, V., Tian, L., & Shi, J. (2017). Load aware joint CoMP clustering and inter-cell resource scheduling in heterogeneous ultra dense cellular networks. IEEE Transactions on Vehicular Technology, 67(3), 2741–2755.

    Article  Google Scholar 

  117. Xu, L., Mao, Y., Leng, S., Qiao, G., & Zhao, Q. (2017). Energy-efficient resource allocation strategy in ultra dense small-cell networks: A stackelberg game approach. In 2017 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE.

  118. Atzeni, I., Kountouris, M., & Alexandropoulos, G.C. (2016). Performance evaluation of user scheduling for full-duplex small cells in ultra-dense networks. In European Wireless 2016; 22th European Wireless Conference (pp. 1–6). VDE.

  119. Hua, C., Luo, Y., & Liu, H. (2016). Wireless backhaul resource allocation and user-centric clustering in ultra-dense wireless networks. IET Communications, 10(15), 1858–1864.

    Article  Google Scholar 

  120. Medbo, J., Kyosti, P., Kusume, K., Raschkowski, L., Haneda, K., Jamsa, T., et al. (2016). Radio propagation modeling for 5G mobile and wireless communications. IEEE Communications Magazine, 54(6), 144–151.

    Article  Google Scholar 

  121. Galiotto, C., Pratas, N. K., Doyle, L., & Marchetti, N. (2017). Effect of LOS/NLOS propagation on 5G ultra-dense networks. Computer Networks, 120, 126–140.

    Article  Google Scholar 

  122. Galiotto, C., Pratas, N.K., Marchetti, N., & Doyle, L. (2015). A stochastic geometry framework for LOS/NLOS propagation in dense small cell networks. In 2015 IEEE International Conference on Communications (ICC) (pp. 2851–2856). IEEE.

  123. Chergui, H., Benjillali, M., & Alouini, M.-S. (2018). Rician K-factor-based analysis of XLOS service probability in 5G outdoor ultra-dense networks. IEEE Wireless Communications Letters.

  124. Busari, S.A., Huq, K.M.S., Mumtaz, S., & Rodriguez, J. (2018). Impact of 3D channel modeling for ultra-high speed beyond-5G networks. In 2018 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). IEEE.

  125. Zhang, Z., & Hu, R. Q. (2018). Dense cellular network analysis with LoS/NLoS propagation and bounded path loss model. IEEE Communications Letters, 22(11), 2386–2389.

    Article  Google Scholar 

  126. Chopra, G., Jha, R. K., & Jain, S. (2017). A survey on ultra-dense network and emerging technologies: Security challenges and possible solutions. Journal of Network and Computer Applications, 95, 54–78.

    Article  Google Scholar 

  127. Petit, J., Schaub, F., Feiri, M., & Kargl, F. (2014). Pseudonym schemes in vehicular networks: A survey. IEEE Communications Surveys & Tutorials, 17(1), 228–255.

    Article  Google Scholar 

  128. Cheikh, S.B., Esemann, T., & Hellbrück, H. (2011). Safh-smooth adaptive frequency hopping. In 2011 Third International Workshop on Cross Layer Design (pp. 1–5). IEEE.

  129. Wang, L., Wong, K.-K., Jin, S., Zheng, G., & Heath, R. W. (2018). A new look at physical layer security, caching, and wireless energy harvesting for heterogeneous ultra-dense networks. IEEE Communications Magazine, 56(6), 49–55.

    Article  Google Scholar 

  130. Kamel, M., Hamouda, W., & Youssef, A. (2017). Physical layer security in ultra-dense networks. IEEE Wireless Communications Letters, 6(5), 690–693.

    Article  Google Scholar 

  131. Chen, Z., Chen, S., Xu, H., & Hu, B. (2017). Security architecture and scheme of user-centric ultra-dense network (UUDN). Transactions on Emerging Telecommunications Technologies, 28(9), e3149.

    Article  Google Scholar 

  132. Wang, Y., Miao, Z., & Jiao, L. (2016). Safeguarding the ultra-dense networks with the aid of physical layer security: A review and a case study. IEEE Access, 4, 9082–9092.

    Article  Google Scholar 

  133. Chopra, G., Jain, S., & Jha, R. K. (2017). Possible security attack modeling in ultradense networks using high-speed handover management. IEEE Transactions on Vehicular Technology, 67(3), 2178–2192.

    Article  Google Scholar 

  134. Zhao, Y., Li, G., & Qu, W. (2017). A novel cluster-based ultra-dense network technique for 5G and its security issues. In 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech) (pp. 362–367). IEEE.

  135. Chen, Z., Chen, S., Xu, H., & Hu, B. (2018). A security authentication scheme of 5G ultra-dense network based on block chain. IEEE Access, 6, 55372–55379.

    Article  Google Scholar 

  136. “5G and MIMO simulation software.” [Accessed May. 12, 2019].

  137. “NetTest 5G network emulators.” [Accessed May. 12, 2019].

  138. “NS-3 tutorial.” [Accessed May. 25, 2019].

  139. “What is OMNeT++?.” [Accessed May. 25, 2019].

  140. “Vienna 5G simulators.” [Accessed Jun. 6, 2019].

  141. “5G wireless technology development: Why use MATLAB and simulink for 5G?.” [Accessed Jun. 6, 2019].

  142. “5G explained.” [Accessed Jun. 7, 2019].

  143. “OPNET network simulator.” [Accessed Jun. 3, 2019].

  144. “5G network simulator OPNET projects.” [Accessed Jun. 4, 2019].

  145. “Riverbed modeler.” [Accessed Jun. 4, 2019].

  146. Wyner, A. D. (1994). Shannon-theoretic approach to a gaussian cellular multiple-access channel. IEEE Transactions on Information Theory, 40(6), 1713–1727.

    Article  MATH  Google Scholar 

  147. Gilhousen, K. S., Jacobs, I. M., Padovani, R., Viterbi, A. J., Weaver, L. A., & Wheatley, C. E. (1991). On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology, 40(2), 303–312.

    Article  Google Scholar 

  148. Alouini, M.-S., & Goldsmith, A. J. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066.

    Article  Google Scholar 

  149. Linnartz, J.-P. (1992). Exact analysis of the outage probability in multiple-user mobile radio. IEEE Transactions on Communications, 40(1), 20–23.

    Article  Google Scholar 

  150. Baccelli, F., Błaszczyszyn, B., et al. (2010). Stochastic geometry and wireless networks: Volume ii applications. Foundations and Trends®. Networking, 4(1–2), 1–312.

  151. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134.

    Article  Google Scholar 

  152. Lowen, S. B., & Teich, M. C. (1990). Power-law shot noise. IEEE Transactions on Information Theory, 36(6), 1302–1318.

    Article  Google Scholar 

  153. Shnidman, D. A. (1989). The calculation of the probability of detection and the generalized marcum q-function. IEEE Transactions on Information Theory, 35(2), 389–400.

    Article  MATH  Google Scholar 

  154. Andrews, J.G., Gupta, A.K., & Dhillon, H.S. (2016). A primer on cellular network analysis using stochastic geometry, arXiv preprint arXiv:1604.03183.

  155. Dhillon, H. S., Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560.

    Article  Google Scholar 

  156. Jo, H.-S., Sang, Y. J., Xia, P., & Andrews, J. G. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11(10), 3484–3495.

    Article  Google Scholar 

  157. Vo, N.-S., & Duong, T. Q. (2019). Cooperative video streaming in ultra-dense networks with D2D caching. Ultra-Dense Networks for 5G and Beyond: Modelling, Analysis, and Applications, 267.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelaziz Salem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, A.A., El-Rabaie, S. & Shokair, M. Survey on Ultra-Dense Networks (UDNs) and Applied Stochastic Geometry. Wireless Pers Commun 119, 2345–2404 (2021). https://doi.org/10.1007/s11277-021-08334-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08334-1

Keywords

Navigation