[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Heterogenous Networks: From Small Cells to 5G NR-U

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the exponential increase in mobile users, mobile data demand has grown tremendously. To meet these demands, cellular operators are constantly innovating to enhance the capacity of cellular systems. Consequently, operators have been reusing the licensed spectrum “spatially,” by deploying 4G/Long-term Evolution (LTE) small cells (e.g., Femto Cells) in the past. However, despite the use of small cells, the licensed spectrum will be unable to meet the consistently rising data traffic because of data-intensive applications such as augmented reality/virtual reality (AR/VR) and on-the-go high-definition video streaming. Applications such as AR/VR and online gaming not only place extreme data demands on the network but are also latency-critical. To meet the QoS guarantees, cellular operators have begun leveraging the unlicensed spectrum by coexisting with Wi-Fi in the 5 GHz band. The standardizing body Third Generation Partnership Project, has prescribed cellular standards for fair unlicensed coexistence with Wi-Fi, namely LTE Licensed Assisted Access (LAA), New Radio in unlicensed (NR-U), and NR in Millimeter. The rapid roll-out of LAA deployments in developed nations like the USA offers an opportunity to study and analyze the performance of unlicensed coexistence networks through real-world ground truth. Thus, this paper presents a high-level overview of past, present, and future of research in small cell and unlicensed coexistence communication technologies. It outlines the vision for future research work in the recently allocated unlicensed spectrum: The 6 GHz band, where the latest Wi-Fi standard, IEEE 802.11ax, will coexist with the latest cellular technology, 5G New Radio in unlicensed. At the end, we present a comparison of the performance between standards ranging from LTE to NR-U based on realistic assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sathya, V. (2016). On Improving Data Rates of Users in LTE HetNet. In PhD thesis, IIT Hyderabad.

  2. Kumar, Y., Sathya, V., & Ramanath, S. (2019). Enhancing spectral utilization by maximizing the reuse in lte network. arXiv preprint arXiv:1907.05201.

  3. Alkhansa, R., Artail, H., & Gutierrez-Estevez, D. M. (2014). Lte-wifi carrier aggregation for future 5g systems: A feasibility study and research challenges. Procedia Computer Science, 34, 133–140.

    Article  Google Scholar 

  4. Sathya, V., Mehrnoush, M., Ghosh, M., & Roy, S. (2019). Auto-correlation based sensing of multiple wi-fi bsss for lte-u csat. In 2019 IEEE 90th vehicular technology conference (VTC2019-Fall) (pp. 1–7) IEEE.

  5. Adam Dziedzic, M. G., Sathya, Vanlin, & Krshnan, S. (2019). Detection of multiple wi-fi bsss for lte-u csat using machine learning approach.

  6. Sathya, V., Dziedzic, A., Ghosh, M., & Krishnan, S. (2020). Machine learning based detection of multiple wi-fi bsss for lte-u csat. In 2020 international conference on computing, networking and communications (ICNC) (pp. 596–601) IEEE.

  7. Garg, G., Reddy, V., Sathya, V., Bheemarjuna, R. T. (2019). An sla-aware network function selection algorithm for sfcs. In 2019 IEEE 2nd 5G world forum (5GWF) (pp. 524–527) IEEE.

  8. Kala, S. M., Sathya, V., Magdam, S. S., & Tamma, B. R. (2019). Odin: Enhancing resilience of disaster networks through regression inspired optimized routing.. Telecommunications Systems.

  9. Sathya, V., Mehrnoush, M., Ghosh, M., & Roy, S. (2020). Wi-fi/lte-u coexistence: Real-time issues and solutions. IEEE Access, 8, 9221–9234.

    Article  Google Scholar 

  10. Sathya, V., Ramamourthy, A., Tahalani, M., Tamma, B. R. (2015). On femto placement and decoupled access for downlink and uplink in enterprise environments. EAI Endorsed Transactions on Ubiquitous Environments (Future Internet).

  11. Sofia, J., Dharshini, Priya, & Subramanyam, M. (2020). Emperor penguin optimized user association scheme for mmwave wireless communication. Wireless Personal Communications, 113(2), 1097–1113.

    Article  Google Scholar 

  12. Harounabadi, M., Mitschele-Thiel, A., & Akkasi, A. (2018). Lte-d2d for connected cars: A survey on radio resource management schemes. Iran Journal of Computer Science, 1(3), 187–197.

    Article  Google Scholar 

  13. Biswash, S. K., Sarkar, M., & Sharma, D. K. (2018). Artificial immune system (ais)-based location management scheme in mobile cellular networks. Iran Journal of Computer Science, 1(4), 227–236.

    Article  Google Scholar 

  14. Ramamurthy, A., Sathya, V., Ghosh, S., Franklin, A., Tamma B. R. (2016). On improving capacity of full-duplex small cells with d2d. arXiv preprint arXiv:1606.07198.

  15. Kumar, S. Y., Sathya, V., Ramanath, S. (2017). Enhancing spectral efficiency in lte-d2d networks. In 2017 9th international conference on communication systems and networks (COMSNETS) (pp. 401–402) IEEE.

  16. Akilesh, B., Sathya, V., Ramamurthy, A., & Tamma, B. R. (2016). A novel scheduling algorithm to maximize the d2d spatial reuse in lte networks. In 2016 IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6) IEEE.

  17. Ramamurthy, A., Sathya, V., Ghosh, S., Franklin, A., & Tamma, B. R. (2019). Dynamic power control and scheduling in full duplex cellular network with d2d. Wireless Personal Communications, 104(2), 695–726.

    Article  Google Scholar 

  18. Kala, S. M., Sathya, V., & Tamma, B. R. (2018). Exploring the relationship between socio-inspired calm and network capacity through regression analysis. In 2018 international conference on advances in computing, communications and informatics (ICACCI) (pp. 2369–2374) IEEE.

  19. Kala, S. M., Sathya, V., Magdum, S. S., Buyakar, T. V. K., Lokhandwala, H., & Tamma, B. R. (2019). Designing infrastructure-less disaster networks by leveraging the alljoyn framework. In Proceedings of the 20th international conference on distributed computing and networking (pp. 417–420).

  20. Abdulkarem, A. B., Audah, L., Abdulkareem, A. B., & Abdulkareem, M. B. (2022). A comprehensive study of handover mechanism with minimal resources in 5g cellular networks: Architecture and challenges. Journal of Ambient Intelligence and Humanized Computing 1–9.

  21. Dang, H.-P., Le, C.-B., Do, D.-T., Le, S.-P., Nguyen, H.-N., & Voznak, M. (2020). Power beacon-based wireless power transfer in miso/siso: An application in device-to-device networks. Wireless Personal Communications, 110(1), 381–402.

    Article  Google Scholar 

  22. Agiwal, M., Kwon, H., Park, S., & Jin, H. (2021). A survey on 4g–5g dual connectivity: Road to 5g implementation. IEEE Access, 9, 16193–16210.

    Article  Google Scholar 

  23. Polese, M., Giordani, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Improved handover through dual connectivity in 5g mmwave mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 2069–2084.

    Article  Google Scholar 

  24. Chen, C., Ratasuk, R., & Ghosh, A. (2015). Downlink performance analysis of LTE and WiFi coexistence in unlicensed bands with a simple listen-before-talk scheme. In Proceedings of vehicular technology conference (VTC) spring (pp. 1–5) IEEE.

  25. Baswade, A. M., Atif, T. A., Tamma, B. R., & Franklin, A. A. (2018). On the impact of duty cycled LTE-U on Wi-Fi users: An experimental study. In Proceedings of international conference on communication systems and networks (pp. 196–219) Springer.

  26. Gao, Y., Chu, X., & Zhang, J. (2016). Performance analysis of laa and wifi coexistence in unlicensed spectrum based on Markov chain. In Proceedings of global communications conference (GLOBECOM) (pp. 1–6) IEEE.

  27. Baswade, A. M., Beltramelli, L., Antony, F. A., Gidlund, M., Tamma, B. R., & Guntupalli, L. (2018). Modelling and analysis of wi-fi and laa coexistence with priority classes. In Proceedings of international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 1–8) IEEE.

  28. Qualcomm. (June 2014). LTE in unlicensed spectrum: Harmonious coexistence with Wi-Fi. In Qualcomm white paper.

  29. 3GPP. (2010). 3GPP-TSG-RAN-WG1; Evolved universal terrestrial radio access (E-UTRA). Technical Report TR 36.814 V9.0.0.

  30. Baswade, A. M., Sathya, V., & Tamma, B. R., et al. (2016). Unlicensed carrier selection and user offloading in dense lte-u networks. In 2016 IEEE Globecom workshops (GC Wkshps) (pp. 1–6) IEEE.

  31. Iqbal, M., Rochman, C., Sathya, V., Ghosh M. (2017). Impact of changing energy detection thresholds on fair coexistence of wi-fi and lte in the unlicensed spectrum. In 2017 wireless telecommunications symposium (WTS) (pp. 1–9) IEEE.

  32. Mehrnoush, M., Sathya, V., Roy, S., & Ghosh, M. (2018). Analytical modeling of wi-fi and lte-laa coexistence: Throughput and impact of energy detection threshold. IEEE/ACM Transactions on Networking, 26(4), 1990–2003.

    Article  Google Scholar 

  33. Sathya, V., Mehrnoush, M., Ghosh, M., & Roy, S. (2018). Association fairness in wi-fi and lte-u coexistence. In 2018 IEEE wireless communications and networking conference (WCNC) (pp. 1–6) IEEE.

  34. Sathya, V., Mehrnoush, M., Ghosh, M., & Roy, S. (2018). Analysis of csat performance in wi-fi and lte-u coexistence. In 2018 IEEE international conference on communications workshops (ICC Workshops) (pp. 1–6) IEEE.

  35. Sathya, V., Merhnoush, M., Ghosh, M., & Roy, S. (2018). Energy detection based sensing of multiple wi-fi bsss for lte-u csat. In 2018 IEEE global communications conference (GLOBECOM) (pp. 1–7) IEEE.

  36. Kala, S. M., Sathya, V., Seah, W. K., Yamaguchi, H., & Higashino, T. (2021). Evaluation of theoretical interference estimation metrics for dense wi-fi networks. In 2021 international conference on communication systems & NETworkS (COMSNETS) (pp. 351–359) IEEE.

  37. Giluka, M. K., Rajoria, N., Kulkarni, A. C., Sathya, V., & Tamma, B. R. (2014). Class based dynamic priority scheduling for uplink to support m2m communications in lte. In 2014 IEEE World forum on internet of things (WF-IoT) (pp. 313–317), IEEE.

  38. Abdelfattah, A., & Malouch, N. (2017). Modeling and performance analysis of Wi-Fi networks coexisting with LTE-U. In Proceedings of conference on computer communications (INFOCOM) (pp. 1–9) IEEE.

  39. Ng, P. C., & Liew, S. C. (2007). Throughput analysis of IEEE802.11 multi-hop Adhoc networks. IEEE/ACM Transactions on Networking, 15(2), 309–322.

    Article  Google Scholar 

  40. Gao, Y., Chiu, D.-M., & Lui, J. (2006). Determining the end-to-end throughput capacity in multi-hop networks: Methodology and applications. ACM SIGMETRICS Performance Evaluation Review, 34, 39–50.

    Article  Google Scholar 

  41. Cavalcante, A. M., Almeida, E., Vieira, R. D., Choudhury, S., Tuomaala, E., Doppler, K., Chaves, F., Paiva, R. C., & Abinader, F. (2013). Performance evaluation of LTE and Wi-Fi coexistence in unlicensed bands. In Proceedings of vehicular technology conference (VTC Spring) (pp. 1–6) IEEE.

  42. Nihtilä, T., Tykhomyrov, V., Alanen, O., Uusitalo, M. A., Sorri, A., Moisio, M., Iraji, S., Ratasuk, R., & Mangalvedhe, N. (2013). System performance of lte and IEEE 802.11 coexisting on a shared frequency band. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 1038–1043) IEEE.

  43. Dama, S., Valerrian, T., Sathya, V., & Kuchi K. (2016). A novel rach mechanism for dense cellular-iot deployments. In Wireless communications and networking conference (WCNC), IEEE.

  44. Taher, M. A., Radhi, H. S., & Jameil, A. K. (2021). Enhanced f-ofdm candidate for 5g applications. Journal of Ambient Intelligence and Humanized Computing, 12(1), 635–652.

    Article  Google Scholar 

  45. Ghosh, S., & De, D. (2020). Weighted majority cooperative game based dynamic small cell clustering and resource allocation for 5g green mobile network. Wireless Personal Communications, 111(3), 1391–1411.

    Article  Google Scholar 

  46. Agbinya, J. I., & Nguyen, H. (2019). Principles and applications of frequency splitting in inductive communications and wireless power transfer systems. Wireless Personal Communications, 107(2), 987–1017.

    Article  Google Scholar 

  47. Senapati, R. (2021). Lte-advanced cell capacity estimation model and algorithm for voice service. Journal of Ambient Intelligence and Humanized Computing 1–14.

  48. Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5g wireless systems. IEEE Wireless Communications, 21(6), 136–143.

    Article  Google Scholar 

  49. Dhurgadevi, M., & Meenakshi Devi, P. (2018). An analysis of energy efficiency improvement through wireless energy transfer in wireless sensor network. Wireless Personal Communications, 98(4), 3377–3391.

    Article  Google Scholar 

  50. Liu, Z., Wu, J., Yuan, Y., & Guan, X. (2021). Robust power control for 5g small cell networks with sleep strategy. Wireless Personal Communications, 116(3), 2205–2222.

    Article  Google Scholar 

  51. Yang, D. (2015). Wireless information and power transfer: Optimal power control in one-way and two-way relay system. Wireless Personal Communications, 84(1), 1–14.

    Article  Google Scholar 

  52. Dama, S., Sathya, V., Kuchi, K., & Pasca, T. V. (2016). A feasible cellular internet of things: Enabling edge computing and the IoT in dense futuristic cellular networks. IEEE Consumer Electronics Magazine, 6(1), 66–72.

    Article  Google Scholar 

  53. Sagari, S., Seskar, I., & Raychaudhuri, D. (2015). Modeling the coexistence of lte and wifi heterogeneous networks in dense deployment scenarios. In Proceedings of international conference on communication workshop (ICCW) (pp. 2301–2306) IEEE.

  54. Ratasuk, R., Uusitalo, M. A., Mangalvedhe, N., Sorri, A., Iraji, S., Wijting, C., Ghosh, A. (2012). License-exempt lte deployment in heterogeneous network. In Proceedings of international symposium on wireless communication systems (ISWCS) (pp. 246–250) IEEE.

  55. Cisco. (2019). Cisco visual networking index: Global mobile data traffic forecast update, 2017–2022. In Cisco white paper.

  56. Lokhandwala, H., Sathya, V., Tamma, B. R. Eai endorsed transactionspreprint research article/editorial.

  57. Bouras, C., Kollia, A., & Papazois, A. (2017). Dense deployments and das in 5g: A techno-economic comparison. Wireless Personal Communications, 94(3), 1777–1797.

    Article  Google Scholar 

  58. Kala, S. M., Sathya, V., Reddy, M. P. K., Lala, B., & Tamma, B. R. (2019). A socio-inspired calm approach to channel assignment performance prediction and wmn capacity estimation. Journal of Network and Computer Applications, 125, 42–66.

    Article  Google Scholar 

  59. Kala, S. M., Sathya, V., Reddy, M. P. K., & Tamma, B. R. (2018). icalm: A topology agnostic socio-inspired channel assignment performance prediction metric for mesh networks. In Proceedings of the 24th annual international conference on mobile computing and networking (pp. 702–704).

  60. Association, I. S., et al. (2012). 802.11-2012-IEEE standard part 11: Wireless LAN MAC and PHY specifications. Retrived from http://standards.ieee.org/about/get/802/802.11.html.

  61. Liew, S. C., Kai, C., Leung, H. C., & Wong, P. (2010). Back-of-the-envelope computation of throughput distributions in CSMA wireless networks. IEEE Transactions on Mobile Computing, 9(9), 1319–1331.

    Article  Google Scholar 

  62. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  63. Jiang, Z., & Mao, S. (2017). Harmonious coexistence and efficient spectrum sharing for LTE-U and Wi-Fi. In Proceedings of international conference on mobile Ad Hoc and sensor systems (MASS) (pp. 275–283) IEEE.

  64. Forum, L.-U. (2015). LTE-U SDL coexistence specifications. LTE-U Forum, http://www.lteuforum.org/documents.html.

  65. Martolia, D., Sathya, V., Rangisetti, A. K., Tamma, B. R., & Franklin, A. A. (2017). Enhancing performance of victim macro users via joint absf and dynamic power control in lte hetnets. In 2017 twenty-third national conference on communications (NCC) (pp. 1–6) IEEE.

  66. Shrivastava, P. S., Malviya, U. K., Meshram, M., & Dewangan, U. S. (2022). Efficiency of ultra-dense multi-tier future cellular networks for 5g: A survey. Wireless Personal Communications, 122(4), 3269–3291.

    Article  Google Scholar 

  67. Chochliouros, I. P., Spiliopoulou, A. S., Lazaridis, P. I., Zaharis, Z. D., Spada, M.-R., Pérez-Romero, J., et al. (2021). 5g for the support of public safety services. Wireless Personal Communications, 120(3), 2321–2348.

    Article  Google Scholar 

  68. Sathya, R. V., & Tamma, B. R. (2013). Dynamic spectrum allocation in femto based lte network. In 2013 fifth international conference on communication systems and networks (COMSNETS) (pp. 1–2) IEEE.

  69. Sawahashi, M., Kishiyama, Y., Morimoto, A., Nishikawa, D., & Tanno, M. (2010). Coordinated multipoint transmission/reception techniques for lte-advanced. IEEE Wireless Communications, 17(3), 26.

    Article  Google Scholar 

  70. Brueck, S., Zhao, L., Giese, J., & Amin, M. A. (2010). Centralized scheduling for joint transmission coordinated multi-point in lte-advanced. In 2010 international ITG workshop on smart antennas (WSA) (pp. 177–184) IEEE.

  71. Bladsjö, D., Hogan, M., & Ruffini, S. (2013). Synchronization aspects in lte small cells. IEEE Communications Magazine, 51(9), 70–77.

    Article  Google Scholar 

  72. Mendrzik, R., Castillo, R. A. J., Bauch, G., & Seidel, E. (2016). Interference coordination-based downlink scheduling for heterogeneous lte-a networks. In 2016 IEEE wireless communications and networking conference (pp. 1–6) IEEE.

  73. Zhang, M.-Y., Li, Y., Zhou, T., Yang, Y., Hu, H., & Wang, H. (2019). Coordination method between access points using unlicensed frequency band. US Patent 10,264,603.

  74. Vanlin Sathya, R., & Tamma, B. R. (2013). Dynamic spectrum allocation in femto based lte network.

  75. Ghosh, S., Sathya, V., Ramamurthy, A., Akilesh, B., & Tamma, B. R. (2017). A novel resource allocation and power control mechanism for hybrid access femtocells. Computer Communications, 109, 53–75.

    Article  Google Scholar 

  76. Jeon, J., Niu, H., Li, Q. C., Papathanassiou, A., Wu, G. (2014). LTE in the unlicensed spectrum: Evaluating coexistence mechanisms. In Proceedings of Globecom workshops (GC Wkshps), 2014 (pp. 740–745) IEEE.

  77. Almeida, E., Cavalcante, A. M., Paiva, R. C., Chaves, F. S., Abinader, F. M., Vieira, R. D., Choudhury, S., Tuomaala, E., & Doppler, K. (2013). Enabling LTE/WiFi coexistence by LTE blank subframe allocation. In Proceedings of international conference on communications (ICC) (pp. 5083–5088) IEEE.

  78. Sagari, S., Baysting, S., Saha, D., Seskar, I., Trappe, W., & Raychaudhuri, D. (September 2015). Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks. In Proceedings of IEEE international symposium on dynamic spectrum access networks (DySPAN) (pp. 209–220) IEEE.

  79. Xu, D., Zhou, A., Zhang, X., Wang, G., Liu, X., An, C., Shi, Y., Liu, L., & Ma, H. (2020). Understanding operational 5g: A first measurement study on its coverage, performance and energy consumption. In Proceedings of the annual conference of the acm special interest group on data communication on the applications, technologies, architectures, and protocols for computer communication (pp. 479–494).

  80. Narayanan, A., Ramadan, E., Mehta, R., Hu, X., Liu, Q., Fezeu, R. A., Dayalan, U. K., Verma, S., Ji, P., Li, T., Qian, F. (2020). Lumos5g: Mapping and predicting commercial mmwave 5g throughput. In Proceedings of the ACM internet measurement conference (pp. 176–193).

  81. Mehrnoush, M., Roy, S., Sathya, V., & Ghosh, M. (2018). On the fairness of wi-fi and lte-laa coexistence. IEEE Transactions on Cognitive Communications and Networking, 4(4), 735–748.

    Article  Google Scholar 

  82. Wilhelmi, F., Barrachina-Muñoz, S., Bellalta, B., Cano, C., Jonsson, A., & Neu, G. (2019). Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in wlans. Journal of Network and Computer Applications, 127, 26–42.

    Article  Google Scholar 

  83. LTE-U Forum. (2015). LTE-U technical report. http://www.lteuforum.org/documents.html. (Online).

  84. Li, Y., Baccelli, F., Andrews, J. G., Novlan, T. D., & Zhang, J. C. (2016). Modeling and analyzing the coexistence of Wi-Fi and LTE in unlicensed spectrum. IEEE Transactions on Wireless Communications, 15(9), 6310–6326.

    Article  Google Scholar 

  85. Cano, C., & Leith, D. J. (2015). Coexistence of WiFi and LTE in unlicensed bands: A proportional fair allocation scheme. In Proceedings of international conference on communication workshop (ICCW) (pp. 2288–2293) IEEE.

  86. 3GPP. (2015). TSGRAN; Study on licensed-assisted access to unlicensed spectrum. Technical Report TR 36.889 V13.0.0.

  87. Dziedzic, A., Sathya, V., Rochman, M. I., Ghosh, M., & Krishnan, S. (2020). Machine learning enabled spectrum sharing in dense lte-u/wi-fi coexistence scenarios. IEEE Open Journal of Vehicular Technology, 1, 173–189.

    Article  Google Scholar 

  88. Sathya, V., Rochman, M. I., & Ghosh, M. (2020). Measurement-based coexistence studies of laa & wi-fi deployments in Chicago. IEEE Wireless Communication Magazine.

  89. Do, D.-T., & Van Nguyen, M.-S. (2021). New look on device to device noma systems: With and without wireless power transfer modes. Wireless Personal Communications, 116(3), 2485–2500.

    Article  MathSciNet  Google Scholar 

  90. Tahalani, M., Sathya, R. V., Suhas, U., Ramaraju, C., & Tamma, B. R. (2014). Optimal femto placement in enterprise femtocell networks.

  91. Sathya, V., Ramamurthy, A., & Tamma, B. R. (2015). Joint placement and power control of lte femto base stations in enterprise environments. In 2015 international conference on computing, networking and communications (ICNC) (pp. 1029–1033) IEEE.

  92. Tahalani, M., Sathya, V., Suhas, U., Chaganti, R., & Tamma, B. R. (2013). Optimal femto placement in enterprise building. In 2013 IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–3) IEEE.

  93. Lokhandwala, H., Sathya, V., & Tamma, B. R. (2014). Phantom cell realization in lte and its performance analysis. In 2014 IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6) IEEE.

  94. Optimal femto placement in enterprise building. In IEEE ANTS.

  95. Sathya, V., Ramamurthy, A., & Tamma, B. R. (2014). On placement and dynamic power control of femtocells in lte hetnets. In 2014 IEEE global communications conference (pp. 4394–4399) IEEE.

  96. Sathya, V., Ghosh, S., Ramamurthy, A., & Tamma, B. R. (2020). Small cell planning: Resource management and interference mitigation mechanisms in lte hetnets. Wireless Personal Communications, 115(1), 335–361.

    Article  Google Scholar 

  97. Lokhandwala, H., Sathya, V., & Tamma, B. R. (2015). Phantom cell architecture for lte and its application in vehicular IoT environments. EAI Endorsed Transactions on Ubiquitous Environments.

  98. Sathya, V., Bala Murali Krishna, K., & Tamma, B. R. (2013). Efficient interference management scheme for lte femtocell networks. ACM Mobihoc (Poster).

  99. Ramamurthy, A., Sathya, V., Venkatesh, V., Ramji, R., & Tamma, B. R. (2015). Energy-efficient femtocell placement in lte networks.

  100. Sathya, V., Venkatesh, V., Ramji, R., Ramamourthy, A., & Tamma, B. R. (2016). Handover and sinr optimized deployment of lte femto base stations in enterprise environments. Wireless Personal Communications (WPC), 1–25.

  101. Sathya, V., Kala, S. M., Bhupeshraj, S., & Tamma, B. R. (2020). Raptap: a socio-inspired approach to resource allocation and interference management in dense small cells. Wireless Networks (pp. 1–24).

  102. Sathya, V., Kumar, A., Ramamourthy, A., Kumar, S., & Tamma, B. R. (2016). Maximizing dual cell connectivity opportunities in lte small cells deployment. In National conference on communications (NCC), IEEE.

  103. Giluka, M. K., Khan, M. S. A., Krishna, G., Atif, T. A., Sathya, V., & Tamma, B. R. (2016). On handovers in uplink/downlink decoupled lte hetnets. In 2016 IEEE wireless communications and networking conference (pp. 1–6) IEEE.

  104. Giluka, M. K., Khan, M. S. A., Sathya, V., & Franklin, A. A. (2016). Leveraging decoupling in enabling energy aware d2d communications. In 2016 IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6) IEEE.

  105. Sathya, V., Ramamurthy, A., Rochman, M. I., & Ghosh, M. (2020). Qos guaranteed radio resource scheduling in stand-alone unlicensed multefire. In IEEE 5G world forum.

  106. Liu, R., Chen, Q., Yu, G., Li, G. Y., & Ding, Z. (2019). Resource management in LTE-U systems: Past, present, and future. IEEE Open Journal of Vehicular Technology, 1, 1–17.

    Article  Google Scholar 

  107. Charalampou, P., Giannoulakis, I., Kafetzakis, E., & Sykas, E. D. (2019). Experimenting on LTE-U and WiFi coexistence. In 2019 4th south-east europe design automation, computer engineering, computer networks and social media conference (SEEDA-CECNSM) (pp. 1–6) IEEE.

  108. Biswas, R., & Wu, J. (2019). Co-existence of LTE-U and Wi-Fi with direct communication. In ICC 2019-2019 IEEE international conference on communications (ICC) (pp. 1–6) IEEE.

  109. Zinno, S., Di Stasi, G., Avallone, S., & Ventre, G. (2018). On a fair coexistence of LTE and Wi-Fi in the unlicensed spectrum: A Survey. Computer Communications, 115, 35–50.

    Article  Google Scholar 

  110. Voicu, A. M., Simić, L., & Petrova, M. (2018). Survey of spectrum sharing for inter-technology coexistence. IEEE Communications Surveys & Tutorials, 21(2), 1112–1144.

    Article  Google Scholar 

  111. Rangisetti, A. K., & Sathya, V. (2020). Qos aware and fault tolerant handovers in software defined lte networks. Wireless Networks (pp. 1–19).

  112. Sathya, V., Madhumathi, R., & Radhakrishnan, R. Modified aco algorithm for resource allocation in cloud computing environment.

  113. Waleed, S., Ullah, I., Khan, W. U., Rehman, A. U., Rahman, T., & Li, S. (2021). Resource allocation of 5g network by exploiting particle swarm optimization. Iran Journal of Computer Science, 4(3), 211–219.

    Article  Google Scholar 

  114. Kala, S. M., Sathya, V., Yamatsuta, E., Yamaguchi, H., & Higashino, T. (2021). Operator data driven cell-selection in lte-laa coexistence networks. International Conference on Distributed Computing and Networking, 2021, 206–214.

    Google Scholar 

  115. Kala, S. M., Sathya, V., Dahiya, K., Higashino, T., & Yamaguchi, H. (2021). Optimizing unlicensed coexistence network performance through data learning. arXiv preprint arXiv:2111.07583.

  116. Manas Kala, S., Sathya, V., Reddy, M., Lala, B., & Reddy Tamma, B. (2018). A socio-inspired calm approach to channel assignment performance prediction and wmn capacity estimation. Journal of Network and Computer Applications, 125, 42–66.

    Article  Google Scholar 

  117. Kala, S. M., Sathya, V., KG, S. W., & Tamma, B. R. (2020). Cirno: Leveraging capacity interference relationship for dense networks optimization. In 2020 IEEE wireless communications and networking conference (WCNC) (pp. 1–6) IEEE.

  118. Alsulami, M. H. (2022). Challenges facing the implementation of 5g. Journal of Ambient Intelligence and Humanized Computing 1–14.

  119. Atallah, H. A., El Negm Yousef, M. M. A., & Abdel-Rahman, A. B. (2021). Efficiency improvement of dual-band wireless power transfer (db-wpt) system with u-shape resonator and capacitively loaded e-shape defected ground structure (dgs). Wireless Personal Communications, 119(3), 2083–2091.

    Article  Google Scholar 

  120. Attaran, M. (2021). The impact of 5g on the evolution of intelligent automation and industry digitization. Journal of Ambient Intelligence and Humanized Computing 1–17.

  121. Aldmour, I. (2017). Wireless broadband tools and their evolution towards 5g networks. Wireless Personal Communications, 95(4), 4185–4210.

    Article  Google Scholar 

  122. Manjunath, L., & Prabakaran, N. (2022). Smart backhauling for 5g heterogeneous network with millimeter wave backhaul links to perform switching off, interference management and backhaul routing. Wireless Personal Communications, 123(1), 619–643.

    Article  Google Scholar 

  123. Kumar, P., Sharma, S. K., Singla, S., Gupta, V., & Sharma, A. (2021). A review on mmwave based energy efficient rof system for next generation mobile communication and broadband systems. Journal of Optical Communications.

  124. Bonnah, E., Ju, S., & Cai, W. (2020). Coverage maximization in wireless sensor networks using minimal exposure path and particle swarm optimization. Sensing and Imaging, 21(1), 1–16.

    Article  Google Scholar 

  125. FCC. (2018). FCC Notice of Proposed Rulemaking on Unlicensed Use of the 6 GHz Band.” (Online) https://docs.fcc.gov/public/attachments/FCC-18-147A1.pdf.

  126. Patriciello, N., Lagén, S., Bojović, B., & Giupponi, L. (2020). Nr-u and ieee 802.11 technologies coexistence in unlicensed mmwave spectrum: Models and evaluation. IEEE Access, 8, 71254–71271.

    Article  Google Scholar 

  127. IEEE 802.11 coexistence workshop. (2019). IEEE 802.11 coexistence workshop.. (Online) https://grouper.ieee.org/groups/802/11/.

  128. Methley, S., & Webb, W. (2017). Wi-Fi spectrum needs study, final report to Wi-Fi alliance (3rd ed.)” (Online).

  129. Sathya, V., Kala, S. M., Rochman, M. I., Ghosh, M., & Roy, S. (2020). Standardization advances for cellular and wi-fi coexistence in the unlicensed 5 and 6 ghz bands. GetMobile: Mobile Computing and Communications, 24(1), 5–15.

    Article  Google Scholar 

  130. Chaganti, R., Sathya, V., Ahammed, S. A., Rex, R., & B. R. Tamma. (2013). Efficient son handover scheme for enterprise femtocell networks. In 2013 IEEE International conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6), IEEE.

  131. Sathya, V., Gudivada, H. V., Narayanam, H., Krishna, B. M., & Tamma, B. R. (2013). Enhanced distributed resource allocation and interference management in lte femtocell networks. In 2013 IEEE 9th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 553–558) IEEE.

  132. Krishna, B. M., Siddula, M., Sathya, V., & Tamma, B. R. (2014). A dynamic link aggregation scheme for hetregenous networks.

  133. Madhuri, S., Sathya, V., Tamma, B. R. (2014). A dynamic link aggregation scheme for heterogeneous wireless networks. In 2014 IEEE international conference on electronics, computing and communication technologies (CONECCT) (pp. 1–6) IEEE.

  134. Kala, S. M., Seah, W. K., Sathya, V., & Lala, B. (2019). Statistical relationship between interference estimates and network capacity. arXiv preprint arXiv:1904.12125.

  135. Ghosh, M., Sathya, V., Iqbal, M., Mehrnoush, M., & Roy, S. (2019). Coexistence of lte-laa and wi-fi: Analysis simulation and experiments. In P802. 11 coexistence SC workshop.

  136. Medepalli, K., & Tobagi, F. A. (2006). Towards performance modeling of IEEE 802.11 based wireless networks: A unified framework and its applications. In Proceeding of international conference on computer communications (INFOCOM) (pp. 1–12) IEEE.

  137. Sathya, V., Mehrnoush, M., Ghosh, M., & Roy, S. (2020). Wi-Fi/LTE-U coexistence: Real-time issues and solutions. IEEE Access, 8, 9221–9234.

    Article  Google Scholar 

  138. Vidhya, S., & Sasilatha, T. (2018). Secure data transfer using multi layer security protocol with energy power consumption aodv in wireless sensor networks. Wireless Personal Communications, 103(4), 3055–3077.

    Article  Google Scholar 

  139. Parikh, J., & Basu, A. (2020). Technologies assisting the paradigm shift from 4g to 5g. Wireless Personal Communications, 112(1), 481–502.

    Article  Google Scholar 

  140. Mishra, L., Varma, S., et al. (2021). Seamless health monitoring using 5g nr for internet of medical things. Wireless Personal Communications, 120(3), 2259–2289.

    Article  Google Scholar 

  141. Gavrilovska, L., Rakovic, V., & Atanasovski, V. (2016). Visions towards 5g: Technical requirements and potential enablers. Wireless Personal Communications, 87(3), 731–757.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanlin Sathya.

Ethics declarations

Conflict of interest

The authors declare that they have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, V., Kala, S.M. & Naidu, K. Heterogenous Networks: From Small Cells to 5G NR-U. Wireless Pers Commun 128, 2779–2810 (2023). https://doi.org/10.1007/s11277-022-10070-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10070-z

Keywords

Navigation