[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Two-grid finite element method for the dual-permeability-Stokes fluid flow model

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, two-grid finite element method for the steady dual-permeability-Stokes fluid flow model is proposed and analyzed. Dual-permeability-Stokes interface system has vast applications in many areas such as hydrocarbon recovery process, especially in hydraulically fractured tight/shale oil/gas reservoirs. Two-grid method is popular and convenient to solve a large multiphysics interface system by decoupling the coupled problem into several subproblems. Herein, the two-grid approach is used to reduce the coding task substantially, which provides computational flexibility without losing the approximate accuracy. Firstly, we solve a global problem through standard PkPk− 1PkPk finite elements on the coarse grid. After that, a coarse grid solution is applied for the decoupling between the interface terms and the mass exchange terms to solve three independent subproblems on the fine grid. The three independent parallel subproblems are the Stokes equations, the microfracture equations, and the matrix equations, respectively. Four numerical tests are presented to validate the numerical methods and illustrate the features of the dual-permeability-Stokes model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater surface water flows. SIAM J. Numer. Anal. 51, 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nassehi, V.: Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration. Chem. Eng. Sci. 53, 1253–1265 (1998)

    Article  Google Scholar 

  4. Yao, J., Huang, Z., Li, Y., Wang, C., Lv, X.: Discrete Fracture-Vug Network Model for Modeling Fluid Flow in Fractured Vuggy Porous Media. Society of Petroleum Engineers, International Oil and Gas Conference and Exhibition, Beijing, China (2010)

    Book  Google Scholar 

  5. Discacciati, M.: Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. Ph.d. dissertation École Polytechnique fédérale de Lausanne (2004)

  6. Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47, 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Comm. Math. Sci. 8, 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Olgac, U., Kurtcuoglu, V., Poulikakos, D.: Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Am. J. Physiol. Heart Circ. Physiol. 294, 909–919 (2008)

    Article  Google Scholar 

  11. Prosi, M., Zunino, P., Perktold, K., Quarteroni, A.: Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech. 38, 903–917 (2005)

    Article  Google Scholar 

  12. Sun, N., Wood, N., Hughes, A., Thom, A., Xu, X.-Y.: Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am. J. Physiol. Heart. Circ. Physiol. 292, 3148–3157 (2007)

    Article  Google Scholar 

  13. Kong, F.D., Cai, X.-C.A.: Highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity problems on domains with complex geometry, SIAM. J. Sci. Comput. 38, C73–C95 (2016)

    MATH  Google Scholar 

  14. Kong, F.D., Cai, X.-C.A.: Scalable nonlinear fluid-structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D. J. Comput. Phys. 340, 498–518 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abbasi, M., Madani, M., Sharifi, M., Kazemi, A.: Fluid flow in fractured reservoirs: Exact analytical solution for transient dual porosity model with variable rock matrix block size. J. Petrol. Sci. Eng. 164, 571–583 (2018)

    Article  Google Scholar 

  16. Abdelazim, R., Rahman, S.S.: Estimation of permeability of naturally fractured reservoirs by pressure transient analysis: an innovative reservoir characterisation and flow simulation. J. Petrol. Sci. Eng. 145, 404–422 (2016)

    Article  Google Scholar 

  17. Ranjbar, E., Hassanzadeh, H., Chen, Z.: Effect of fracture pressure depletion regimes on the dual-porosity shape factor for flow of compressible fluids in fractured porous media. Adv. Water Res. 34, 1681–1693 (2011)

    Article  Google Scholar 

  18. Chen, Z.X.: Transient flow of slightly compressible fluids through doubleporosity, double-permeability systems-a state-of-the-art review. Transp. Porous Med. 4, 147–184 (1989)

    Article  Google Scholar 

  19. Chen, H.-Y., Teufel, L.W.: Coupling Fluid Flow and Geomechanics in Dual-Porosity Modeling of Naturally Fractured reservoir-Model Description and Comparison, SPE-59043-MS, SPE International Petroleum Conference and Exhibition 1-3 February, Villahermosa, Mexico (2000)

  20. Sofla, S.J.D., Pouladi, B., Sharifi, M., Shabankareian, B., Moraveji, M.K.: Experimental and Simulation study of gas diffusion effect during gas injection into naturally fractured reservoirs. J. Nat Gas Sci. Eng. 33, 438–447 (2016)

    Article  Google Scholar 

  21. Abushaikha, A.S., Gosselin, O.R.: Matrix-Fracture Transfer Function in Dual-Media Flow Simulation: Review, Comparison and Validation, SPE-113890-MS, Europec/EAGE Conference and Exhibition 9-12 June 2008, Rome, Italy (2008)

  22. Douglas, C.C., Bai, B., He, X.-M., Wei, M., Hou, J.: A data assimilation enabled model for coupling dual porosity flow with free flow, 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (2018)

  23. Hou, J., Qiu, M., He, X.-M., Gu, C., Wei, M., Bai, B.A.: Dual-porosity-stokes model and finite element method for coupling dual-porosity flow and free flow. SIAM J. Sci. Comput. 38, B710–B739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bello, R.O., Wattenbarger, R.A.: Rate transient analysis in naturally fractured shale gas reservoirs, SPE-114591, Society of Petroleum Engineers, CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Calgary, Alberta, Canada (2008)

  25. Carlson, E.S., Mercer, J.C.: Devonian shale gas production: Mechanisms and simple models. J. Petro. Technol. 43, 476–482 (1991)

    Article  Google Scholar 

  26. Shan, L., Hou, J., Yan, W., Chen, J.: Partitioned time stepping method for a dual-porosity-Stokes model. J. Sci. Comput. 79, 389–413 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Al-Ghamdi, A., Ershaghi, I.: Pressure transient analysis of dually fractured reservoirs, SPE-26959-PA. SPE J. 1, 1–8 (1996)

    Article  Google Scholar 

  28. Mahbub, M.A.A., He, X.-M., Nasu, N.J., Qiu, C., Zheng, H.: Coupled and decoupled stabilized mixed finite element methods for nonstationary dual-porosity-Stokes fluid flow model. Int. J. Numer. Methods Eng. 120, 803–833 (2019)

    Article  MathSciNet  Google Scholar 

  29. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24, 1286–1303 (2016)

    Article  MATH  Google Scholar 

  30. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3, 245–255 (1963)

    Article  Google Scholar 

  31. Lim, K.T., Aziz, K.: Matrix-fracture transfer shape factors for dual-porosity simulators. J. Petro. Sci. Eng. 13, 169–178 (1995)

    Article  Google Scholar 

  32. Ranjbar, E., Hassanzadeh, H.: Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media. Adv. Water Resour. 34, 627–639 (2011)

    Article  Google Scholar 

  33. De Swaan, A.: Analytic solutions for determining naturally fractured reservoir properties by well testing. Soc. Petro. Eng. 16, 117–122 (1976)

    Article  Google Scholar 

  34. Arbogast, T., Douglas Jr., J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guo, C., Wei, M., Chen, H., He, X.-M., Bai, B.: Improved numerical simulation for shale gas reservoirs, OTC-24913, Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, March 25–28 (2014)

  36. Guo, C., Wang, J., Wei, M., He, X.-M., Bai, B.: Multi-stage fractured horizontal well numerical simulation and its application in tight shale reservoirs, SPE-176714, SPE Russian Petroleum Technology Conference, Moscow, Russia, October 26–28 (2015)

  37. Seale, R.A., Athans, J.: An effective openhole horizontal completion system for multistage fracturing and stimulation, Society of Petroleum Engineers, SPE Tight Gas Completions Conference, Texas, USA (2008)

  38. Brohi, I.G., Pooladi-Darvish, M., Aguilera, R.: Modeling fractured horizontal wells as dual porosity composite reservoirs-Application to tight gas, shale gas and tight oil cases, SPE-144057, Society of Petroleum Engineers, SPE Western North American Region Meeting, Anchorage, AK (2011)

  39. Bourbiaux, B., Granet, S., Landereau, P., Noetinger, B., Sarda, S., Sabathier, J.C.: Scaling up matrix-fracture transfers in dual-porosity models: Theory and application, SPE-56557, Society of Petroleum Engineers, SPE Annual Technical Conference and Exhibition, Houston TX (1999)

  40. Aguilera, R.: Naturally Fractured Reservoirs. Pennwell Publishing Company, Tulsa, OK (1995)

    Google Scholar 

  41. Chen, C.-C., Serra, K., Reynolds, A.C., Raghavan, R.: Pressure transient analysis methods for bounded naturally fractured reservoirs. Soc. Petro. Eng. J. 25, 451–464 (1985)

    Article  Google Scholar 

  42. Wang, W., Yuan, B., Su, Y., Sheng, G., Yao, W., Gao, H., Wang, K.A.: Composite dual-porosity fractal model for channel-fractured horizontal wells. Eng. Appl. Comput. Fluid Mech. 12, 104–116 (2018)

    Google Scholar 

  43. Cordero, J.A.R., Sanchez, E.C.M., Roehl, D.: Integrated discrete fracture dual porosity-dual permeability models for fluid flow in deformable fractured media. J. Petrol. Sci Eng. 175, 644–653 (2019)

    Article  Google Scholar 

  44. Mahbub, M.A.A., Shi, F., Nasu, N.J., Wang, Y., Zheng, H.: Mixed stabilized finite element method for the stationary Stokes-dual-permeability fluid flow model. Comput. Methods Appl. Mech. Engrg. 358, 1–31 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mahbub, M.A.A., He, X.-M., Nasu, N.J., Qiu, C., Wang, Y., Zheng, H.: A Coupled multiphysics model and a decoupled stabilized finite element method for the closed-loop geothermal system. SIAM J. Sci. Comput. 42, B951–B982 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Carneiro, J.F.: Numerical simulations on the influence of matrix diffusion to carbon sequestration in double porosity fissured aquifers. Int. J. Greenh. Gas Con. 3, 431–443 (2009)

    Article  Google Scholar 

  47. Cicek, O.: Compositional and non-isothermal simulation of CO2 sequestration in naturally fractured reservoirs/coalbeds: Development and verification of the model, SPE-84341, PE Annual Technical Conference and Exhibition, Denver CO (2003)

  48. Gerke, H.H., Van Genuchten, M.T.: Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models. Water Resour. Res. 29, 1225–1238 (1993)

    Article  Google Scholar 

  49. Haws, N.W., Rao, P.S.C., Simunek, J., Poyer, I.C.: Single-porosity and dual-porosity modeling of water flow and solute transport in subsurface-drained fields using effective field-scale parameters. J. Hydrol. 313, 257–273 (2005)

    Article  Google Scholar 

  50. Shaik, A.R., Rahman, S.S., Tran, N.H., Tran, T.: Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system. Appl. Therm. Eng. 31, 1600–1606 (2011)

    Article  Google Scholar 

  51. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes-Darcy problems with bondary integrals. SIAM J. Sci. Comput. 35, B82–B106 (2013)

    Article  MATH  Google Scholar 

  52. He, X.-M., Li, J., Lin, Y., Ming, J.A.: Domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition. SIAM J. Sci. Comput. 37, S264–S290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Discacciati, M., Quarteroni, A., Valli, A.: Robin-robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Jiang, B.: A parallel domain decomposition method for coupling of surface and groundwater flows. Comput. Methods Appl. Mech. Engrg. 198, 947–957 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83, 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Qiu, C., He, X.-M., Li, J., Lin, Y.: A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition. J. Comput. Phys. 411, 109400 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  57. Marquez, A., Meddahi, S., Sayas, F.J.A.: Decoupled preconditioning technique for a mixed Stokes-Darcy model. J. Sci. Comput. 57, 174–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Mu, M., Zhu, X.H.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput. 79, 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shan, L., Zheng, H., Layton, W.J.A.: Decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer. Methods Partial Differ. Eqns. 29, 549–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with the Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 51, 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Gunzburger, M., He, X.-M., Li, B.: On Stokes-Ritz projection and multistep backward differentiation schemes in decoupling the Stokes-Darcy Model. SIAM J. Numer. Anal. 56, 397–427 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  63. Xu, J.A.: Novel two-grid method for semi-linear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mu, M., Xu, J.A.: Two grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Cai, M.C., Mu, M., Xu, J.C.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zuo, L.Y., Hou, Y.A.: Decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition. Numer. Methods Partial Differ. Eqns. 3, 1066–1082 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, T., Yuan, J.Y.: Two novel decoupling algorithms for the steady Stokes-Darcy model based on two-grid discretizations. Discrete Contin. Dyn. Syst.-Ser. B 19, 849–865 (2014)

    MathSciNet  MATH  Google Scholar 

  68. Jia, H., Jia, H., Huang, Y.A.: Modified two-grid decoupling method for the mixed Navier-Stokes/Darcy Model. Comput. Math. Appl. 72, 1142–1152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  69. You, J., Zheng, H., Shi, F., Zhao, R.: Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete Contin. Dyn. Syst.-Ser. B. 24, 387–402 (2019)

    MathSciNet  MATH  Google Scholar 

  70. Zhang, Y., Zheng, H., Hou, Y., Shan, L.: Optimal error estimates of both coupled and two-grid decoupled methods for a mixed Stokes-Stokes model. Appl. Numer. Math. 133, 116–129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  71. Chen, C., Li, K., Chen, Y., Huang, Y.: Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv. Comput. Math. 45, 611–630 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  72. Nasu, N.J., Mahbub, M.A.A., Hussain, S., Zheng, H.: Two-level finite element approximation for Oseen viscoelastic fluid flow. Mathematics 6, 71 (2018)

    Article  Google Scholar 

  73. Cai, M.C., Mu, M.A.: Multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hou, Y.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Appl. Math. Lett. 57, 90–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  75. Du, G., Li, Q., Zhang, Y.: A two-grid method with backtracking for the mixed Navier–Stokes/Darcy model. Numer. Methods Partial Differential Equations 36, 1601–1610 (2020)

    Article  MathSciNet  Google Scholar 

  76. Zuo, L., Du, G.A.: Parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem. Numer. Algorithms 77, 151–165 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  77. Babuška, I., Gatica, G.N.A.: Residual-based a posteriori error estimator for the Stokes-Darcy coupled problem. SIAM J. Numer. Anal. 48, 498–523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  78. Gatica, G.N., Meddahi, S., Oyarzú, R.A.: Conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  79. Kanschat, G., Riviére, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. Lipnikov, K., Vassilev, D., Yotov, I.: Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer. Math. 126, 321–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  81. Li, R., Gao, Y., Li, J., Chen, Z.: Discontinuous finite volume element method for a coupled non-stationary Stokes-Darcy problem. J. Sci. Comput. 74, 693–727 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  82. Li, R., Li, J., He, X.-M., Chen, Z.A.: Stabilized finite volume element method for a coupled Stokes-Darcy problem. Appl. Numer. Math. 133, 2–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  83. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61, 1198–1222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  85. He, X.-M., Jiang, N., Qiu, C.: An artificial compressibility ensemble algorithm for a stochastic Stokes-Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Methods. Eng. 121, 712–739 (2020)

    Article  MathSciNet  Google Scholar 

  86. Li, Y., Hou, Y., Rong, Y.A.: Second-order artificial compression method for the evolutionary Stokes-Darcy system. Numer. Algorithm 84, 1019–1048 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  87. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  88. Saffman, P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 93–101 (1971)

    Article  MATH  Google Scholar 

  89. Li, R., Li, J., Chen, Z.X., Gao, Y.L.A.: Stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem. J. Comput. Appl. Math. 292, 92–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  90. Hecht, F., Le Hyaric, A., Ohtsuka, K., Pironneau, O.: FreeFem++, Finite elements software, http://www.freefem.org/ff++/

  91. Chen, Y., Wang, Y., Huang, Y., Fu, L.: Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems. Appl. Numer. Math. 144, 204–222 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  92. Goswami, D., Damázio, P.D.A.: Two-grid finite element method for time-dependent incompressible Navier-Stokes equations with non-smooth initial data. Numer. Math. Theory Methods Appl. 8, 549–581 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  93. Shi, D., Yang, H.: Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation. Appl. Math. Comput. 310, 40–47 (2017)

    MathSciNet  MATH  Google Scholar 

  94. Chen, C., Liu, W.: Two-grid finite volume element methods for semilinear parabolic problems. Appl. Numer. Math. 60, 10–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

All authors are partially supported by NSF of China (Grant No. 11971174), NSF of Shanghai (Grant No. 19ZR1414300), and Science and Technology Commission of Shanghai Municipality (Grant No. 18dz2271000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibiao Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasu, N.J., Mahbub, M.A.A., Hussain, S. et al. Two-grid finite element method for the dual-permeability-Stokes fluid flow model. Numer Algor 88, 1703–1731 (2021). https://doi.org/10.1007/s11075-021-01091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01091-z

Keywords

Navigation