[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h, which can still maintain the asymptotically optimal accuracy compared with the standard finite element method. However, the two-grid scheme can reduce workload and save a lot of CPU time. The optimal error estimates in H1-norm show that the two-grid methods can achieve optimal convergence order when the mesh sizes satisfy h = O(H2). These estimates are shown to be uniform in time. Numerical results are provided to verify the theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelsson, O., Layton, W.: A two-level discretization of nonlinear boundary value problems. SIAM J. Numer. Anal. 33, 2359–2374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  3. Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 107, 177–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C., Yang, M., Bi, C.: Two-grid methods for finite volume element approximations of nonlinear parabolic equations. J. Comput. Appl. Math. 228, 123–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C., Liu, W.: Two-grid finite volume element methods for semilinear parabolic problems. Appl. Numer. Math. 60, 10–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C., Liu, W.: A two-grid method for finite element solutions for nonlinear parabolic equations. Abstract and Applied Analysis 2012, 11 (2012). Article ID 391918

    MathSciNet  MATH  Google Scholar 

  7. Chen, L., Chen, Y.: Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods. J. Sci. Comput. 49, 383–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, P., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Zeitschrif für Angewandte Mathematik und Physik 19, 614–627 (1968)

    Article  MATH  Google Scholar 

  9. Chen, Y., Huang, Y.: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Methods Eng. 57, 193–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y., H. Liu, Liu, S.: Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. Int. J. Numer. Methods Eng. 69, 408–422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Luan, P., Lu, Z.: Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods. Adv. Appl. Math. Mech. 1, 830–844 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Chen, L., Zhang, X.: Two-grid method for nonlinear parabolic equations by expanded mixed finite element methods. Numerical Methods for Partial Differential Equations 29, 1238–1256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis, P.L.: A quasilinear parabolic and a related third order problem. J. Math. Anal. Appl. 40, 327–335 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dawson, C.N., Wheeler, M.F.: Two-grid methods for mixed finite element approximations of nonlinear parabolic equations. Contemp. Math. 180, 191–203 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dawson, C.N., Wheeler, M.F., Woodward, C.S: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ewing, R.E: Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal. 15, 1125–1150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, H.: Characteristic finite element methods for nonlinear Sobolev equations. Appl. Math. Comput. 102, 51–62 (1999)

    MathSciNet  Google Scholar 

  18. Huang, Y., Chen, Y.: A multi-level iterative method for solving finite element equations of nonlinear singular two-point boundary value problems. Natural Science Journal of Xiantan University 16, 23–26 (1994)

    MATH  Google Scholar 

  19. He, S., Li, H., Liu, Y.: Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations. Frontiers of Mathematics in China 8, 825–836 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Y.: Galerkin methods for nonlinear Sobolev equations. Aequationes Math. 40, 54–66 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Y., Zhang, T.: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions. J. Math. Anal. Appl. 165, 180–191 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, W.: A two-grid method for the semi-linear reaction-diffusion system of the solutes in the groundwater flow by finite volume element. Math. Comput. Simul. 142, 34–50 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ohm, M.R., Lee, H.Y.: L 2-error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations. Bulletin of the Korean Mathematical Society 48, 897–915 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi, D., Tang, Q., Gong, W.: A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term. Math. Comput. Simul. 114, 25–36 (2015)

    Article  MathSciNet  Google Scholar 

  25. Shi, D., Yan, F., Wang, J.: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Appl. Math. Comput. 274, 182–194 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Showalter, R.E: Existence and representation theorems for a semi-linear Sobolev equation in Banach space. SIAM J. Math. Anal. 3, 527–543 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, T., Yang, D.: A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations. Appl. Math. Comput. 200, 147–159 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Wu, L., Allen, M.B.: A two-grid method for mixed finite-element solution of reaction-diffusion equations. Numerical Methods for Partial Differential Equations 15, 317–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, J.: A novel two-grid method for semi-linear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, J., Zhou, A: A two-grid discretization scheme for eigenvalue problems. Mathematics of Computation of the American Mathematical Society 70, 17–25 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, J., Zhang, Q., Zhu, L., Zhang, Z: Two-grid methods for finite volume element approximations of nonlinear Sobolev equations. Numer. Funct. Anal. Optim. 37, 391–414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, T., Lin, Y.P.: \(L^{\infty }\)-error bounds for some nonliner integro-differential equations by finite element approximations. Mathematica Numerica Sinica 13, 177–186 (1991)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for valuable constructive comments and suggestions, which led to a significant improvement of this paper.

Funding

The work is supported by the National Natural Science Foundation of China (Grant No. 11771375, 11671157, 11571297, 91430213), Shandong Province Natural Science Foundation(Grant No. ZR2018MAQ008), and China Postdoctoral Science Foundation funded project (Grant No. 2017M610501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Communicated by: Carlos Garcia-Cervera

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, K., Chen, Y. et al. Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv Comput Math 45, 611–630 (2019). https://doi.org/10.1007/s10444-018-9628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9628-2

Keywords

Mathematics Subject Classification (2010)

Navigation