Abstract
In this paper, based on a two-grid method and a recent local and parallel finite element method, a parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem is proposed and analyzed. This method ensures that all the local subproblems on the fine grid can be solved in parallel. Optimal error bounds of the approximate solution are obtained. Finally, numerical experiments are presented to demonstrate the accuracy and effectiveness of the proposed method.
Similar content being viewed by others
References
Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115, 195–227 (2010)
Beavers, G., Joseph, D.: Boundary conditions at a naturally impermeable. J. Fluid. Mech. 30, 197–207 (1967)
Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes-Darcy problems with bondary integrals. SIAM J. Sci. Comput. 35, B82–B106 (2013)
Chen, W., Chen, P., Gunzburger, M., Yan, N.: Superconvergence analysis of FEMs for the Stokes-Darcy system. Math. Methods. Appl. Sci. 33, 1605–1617 (2010)
Chen, W., Gunzburger, M., Hua, F., Wang, X.M.: A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011)
Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes-Darcy flow with the Beavers-Joseph interface conditions. Comm. Math. Sci. 8, 1–25 (2010)
Cai, M.C., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)
Cai, M.C., Mu, M., Xu, J.C.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233, 346–355 (2009)
Cai, M.C., Mu, M., Xu, J.C.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)
Cesmelioglu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40, 115–140 (2009)
Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198, 3806–3820 (2009)
Chidyagwai, P., Rivière, B.: A two-grid method for coupled free flow with porous media flow. Adv. Water Resour. 34, 1113–1123 (2011)
Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows, Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (2004)
Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6, 93–103 (2004)
Discacciati, M., Quarteroni, A.: A.Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)
Du, G.Z., Hou, Y.R.: A parallel partition of unity method for the time-dependent convection-diffusion equations. Int. J. Numer. Method. H 25, 1947–1956 (2015)
Du, G.Z., Hou, Y.R., Zuo, L.Y.: Local and parallel finite element methods for the mixed Navier-Stokes/Darcy model. Int. J. Comput. Math., 1–18 (2015)
Du, G.Z., Hou, Y.R., Zuo, L.Y.: A modified local and parallel Parallel finite element method for the mixed Stokes-Darcy model. J. Math. Anal Appl. 435, 1129–1145 (2016)
Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47, 929–952 (2009)
Feng, M., Qi, R., Zhu, R., Ju, B.: Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem. Appl. Math. Mech. 31, 393–404 (2010)
Girault, B.R.: Rivière DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Nuer. Anal. 47, 2052–2089 (2009)
Galvis, J., Sarkis, M.: Balancing domain decomposition methods for mortar coupling Stokes-Darcy Systems, Proceedings of the 16th International Conference on Domain Decomposition Methods (2005)
Glowinski, R., Pan, T., Periaux, J.: A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving grid bodies: I. Case where the rigid body motions are known a priori. C. R. Acad. Sci. Paris Ser. I Math. 324, 361–369 (1997)
He, X.M., Li, J., Liu, Y.P., Ming, J.: A domain decomposition method for the steady-state Navier-Stokes-Darcy model with the Beavers-Joseph interface condition. SIAM J. Sci. Comput. 37, S264–S290 (2015)
He, Y.N., Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)
He, Y.N., Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24, 227–238 (2006)
Jiang, B.: A parallel domain decomposition method for coupling of surface and groundwarter flows. Comput. Methods Appl. Mech. Eng. 198, 947–957 (2009)
Kanschat, G., Rivière, B.: A strongly conservative finite element method for the coupling f Stokes and Darcy flow. J. Commput. Phys. 229, 5933–5943 (2010)
Liu, Q.F., Hou, Y.R.: Local and parallel finite element algorithms for time-dependent convection-diffusion equations. Appl. Math. Mech. Engl. Ed. 30, 787–794 (2009)
Li, R., Li, J., Chen, Z.X., Gao, Y.L.: A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem. J. Comput. Appl. Math. 292, 92–104 (2016)
Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)
Ma, F., Ma, Y., Wo, W.: Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. 28, 27–35 (2007)
Markus, S., Houstis, E., Catlin, A., Rice, J., Tsompanopoulou, P., Vavalis, E., Gottfried, D., Su, K., Balakrishnan, G.: An agent-based netcentric framework for multidisciplinary problem solving environments (MPSE). Int. J. Comput. Engrg. Sci. 1, 33–60 (2000)
Mu, M.: Solving composite problems with interface relaxation. SIAM J. Sci. Comput. 20, 1394–1416 (1999)
Marquez, A., Meddahi, S., Sayas, F.J.: A decoupled preconditioning technique for a mixed Stokes-Darcy model. J. Sci. Comput. 57, 174–192 (2013)
Mu, M., Xu, J.C.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)
Saffman, P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 93–101 (1971)
Rivière, B.: Analysis of a discontinuous finite element methods for the coupled Stokes-and Darcy problems. J. Sci. Comput. 22, 1959–1977 (205)
Rivière, B., Yotov, I.: Locally conservative coupling of Stokes-and Darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2005)
Xu, J.C., Zhou, A.H.: Some local and parallel properties of finite element discretizations. Proceedings for Eleventh International Conference on Domain Decomposition Methods, 140–147 (1999)
Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Advan. Comput. Math. 14, 293–327 (2001)
Zuo, L.Y., Hou, Y.R.: A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition. Numer. Methods Partial Differ. Eqns. 3, 1066–1082 (2014)
Zuo, L.Y., Hou, Y.R.: Numerical analysis for the mixed Navier-Stokes and Darcy Problem with the Beavers-Joseph interface condition. Numer. Methods Partial Differ. Eqns. 31, 1009–1030 (2015)
Zuo, L.Y., Hou, Y.R.: A two-grid decoupling method for the mixed Stokes-Darcy model. J. Comput. Appl. Math. 275, 139–147 (2015)
Acknowledgment
Subsidized by NSFC (Grant Nos. 11571274 and 11401466)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zuo, L., Du, G. A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem. Numer Algor 77, 151–165 (2018). https://doi.org/10.1007/s11075-017-0308-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0308-y