Abstract
We propose an efficient iterative method to solve the mixed Stokes–Darcy model for coupling fluid and porous media flow. The weak formulation of this problem leads to a coupled, indefinite, ill-conditioned and symmetric linear system of equations. We apply a decoupled preconditioning technique requiring only good solvers for the local mixed-Darcy and Stokes subproblems. We prove that the method is asymptotically optimal and confirm, with numerical experiments, that the performance of the preconditioners does not deteriorate on arbitrarily fine meshes.
Similar content being viewed by others
References
Adams, R.A., Fournier, J.J.F.: Sobolev spaces, vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)
Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)
Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning in \(H(div)\) and applications. Math. Comput. 66, 957–984 (1997)
Beavers, G., Joseph, D.: Boundary conditions at a naturally impermeable wall. J. Fluid Mech. 30, 197–207 (1967)
Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput. 50(181), 1–17 (1988)
Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991)
Cai, M., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)
Cai, M., Mu, M., Xu, J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233, 346–355 (2009)
Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117(4), 601–629 (2011)
Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49(3), 1064–1084 (2011)
Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications, ENUMATH 2001. Springer-Verlag, Milan (2003)
Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6(2), 93–103 (2004)
Discacciati, M., Quarteroni, A., Valli, A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)
Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)
Elman, H.C., Silvester, D.J., Wathen, J.A.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005)
Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004)
Gatica, G.N., Oyarzúa, R., Sayas, F.-J.: Convergence of a family of Galerkin discretizations for the Stokes–Darcy coupled problem. Numer. Methods Partial Differ. Equ. 27(3), 721–748 (2011)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)
Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in \({ H}({ curl})\) and \({ H}(\text{ div })\) spaces. SIAM J. Numer. Anal. 45(6), 2483–2509 (2007)
Jäger, W., Mikelic, M.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)
Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer Anal. 40(6), 2195–2218 (2003)
Mardal, K.-A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18(1), 1–40 (2011)
Márquez, A., Meddahi, S., Sayas, F.-J.: Strong coupling of finite element methods for the Stokes–Darcy problem (2012, preprint). arXiv:1206.6351v1
Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)
Peters, J., Reichelt, V., Reusken, A.: Fast iterative solvers for discrete Stokes equations. SIAM J. Sci. Comput. 27(2), 646–666 (2005)
Saffman, P.: On the boundary condition at a surface of porous media. Stud. Appl. Math. 50, 93–101 (1971)
Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)
Acknowledgments
The first two authors are partially supported by Ministry of Education of Spain through the Project MTM2010-18427 and the third author is partially supported by the NSF (Grant DMS 1216356).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Márquez, A., Meddahi, S. & Sayas, FJ. A Decoupled Preconditioning Technique for a Mixed Stokes–Darcy Model. J Sci Comput 57, 174–192 (2013). https://doi.org/10.1007/s10915-013-9700-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-013-9700-5