Abstract
We propose a novel passive learning approach, TeLEx, to infer signal temporal logic formulas that characterize the behavior of a dynamical system using only observed signal traces of the system. The approach requires two inputs: a set of observed traces and a template Signal Temporal Logic (STL) formula. The unknown parameters in the template can include time-bounds of the temporal operators, as well as the thresholds in the inequality predicates. TeLEx finds the value of the unknown parameters such that the synthesized STL property is satisfied by all the provided traces and it is tight. This requirement of tightness is essential to generating interesting properties when only positive examples are provided and there is no option to actively query the dynamical system to discover the boundaries of legal behavior. We propose a novel quantitative semantics for satisfaction of STL properties which enables TeLEx to learn tight STL properties without multidimensional optimization. The proposed new metric is also smooth. This is critical to enable use of gradient-based numerical optimization engines and it produces a 30\(\times \)–100\(\times \) speed-up with respect to the state-of-art gradient-free optimization. The approach is implemented in a publicly available tool.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In: 2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1–6. IEEE (2014)
Abbas, H., Winn, A., Fainekos, G., Julius, A.A.: Functional gradient descent method for metric temporal logic specifications. In: 2014 American Control Conference (ACC), pp. 2312–2317. IEEE (2014)
Akazaki, T.: Falsification of conditional safety properties for cyber-physical systems with Gaussian process regression. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 439–446. Springer, Cham (2016). doi:10.1007/978-3-319-46982-9_27
Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for robust satisfaction of signal temporal logic specifications. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6565–6570. IEEE (2016)
Angluin, D.: Identifying languages from stochastic examples. Technical report, YALEU/DCS/RR-614, Yale University, Department of Computer Science (1988)
Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9_21
Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-Driven Statistical Learning of Temporal Logic Properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Cham (2014). doi:10.1007/978-3-319-10512-3_3
Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the Skorokhod metric. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 234–250. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3_14
Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6_17
Donzé, A.: On signal temporal logic. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 382–383. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40787-1_27
Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15297-9_9
Facchinei, F., Lucidi, S., Palagi, L.: A truncated newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12(4), 1100–1125 (2002)
Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006). doi:10.1007/11940197_12
Fu, J., Topcu, U.: Synthesis of joint control and active sensing strategies under temporal logic constraints. IEEE Trans. Autom. Control 61(11), 3464–3476 (2016). doi:10.1109/TAC.2016.2518639
Giuseppe, B., Cristian Ioan, V., Francisco, P.A., Hirotoshi, Y., Calin, B.: A decision tree approach to data classification using signal temporal logic. In: Hybrid Systems: Computation and Control (HSCC), Vienna, Austria, pp. 1–10, April 2016
Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
Horning, J.J.: A study of grammatical inference. Technical report, DTIC Document (1969)
Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic properties in model based design for cyber-physical systems. arXiv preprint arXiv:1512.07956 (2015)
Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative monitoring of STL with edit distance. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 201–218. Springer, Cham (2016). doi:10.1007/978-3-319-46982-9_13
Jha, S., Raman, V.: Automated synthesis of safe autonomous vehicle control under perception uncertainty. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 117–132. Springer, Cham (2016). doi:10.1007/978-3-319-40648-0_10
Jha, S., Raman, V.: On optimal control of stochastic linear hybrid systems. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 69–84. Springer, Cham (2016). doi:10.1007/978-3-319-44878-7_5
Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta Inform. (2017). doi:10.1007/s00236-017-0294-5
Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(11), 1704–1717 (2015)
Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., Belta, C.: Temporal logic inference for classification and prediction from data. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, pp. 273–282. ACM (2014)
Lindemann, L., Dimarogonas, D.V.: Robust control for signal temporal logic specifications using average space robustness. arXiv preprint arXiv:1607.07019 (2016)
Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3_12
Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78127-1_26
Muggleton, S.: Learning from positive data. In: Muggleton, S. (ed.) ILP 1996. LNCS, vol. 1314, pp. 358–376. Springer, Heidelberg (1997). doi:10.1007/3-540-63494-0_65
Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer Science & Business Media, New York (2006)
Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Model predictive control with signal temporal logic specifications. In: CDC, pp. 81–87, December 2014
Sadraddini, S., Belta, C.: Robust temporal logic model predictive control. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 772–779. IEEE (2015)
Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic properties on embedded systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 136–151. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34691-0_11
Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. (TOMS) 23(4), 550–560 (1997)
Acknowledgement
This work is supported in part by DARPA under contract FA8750-16-C-0043 and NSF grant CNS-1423298.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Jha, S., Tiwari, A., Seshia, S.A., Sahai, T., Shankar, N. (2017). TeLEx: Passive STL Learning Using Only Positive Examples. In: Lahiri, S., Reger, G. (eds) Runtime Verification. RV 2017. Lecture Notes in Computer Science(), vol 10548. Springer, Cham. https://doi.org/10.1007/978-3-319-67531-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-67531-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67530-5
Online ISBN: 978-3-319-67531-2
eBook Packages: Computer ScienceComputer Science (R0)