Abstract
In this paper, we consider the robust interpretation of metric temporal logic (MTL) formulas over timed sequences of states. For systems whose states are equipped with nontrivial metrics, such as continuous, hybrid, or general metric transition systems, robustness is not only natural, but also a critical measure of system performance. In this paper, we define robust, multi-valued semantics for MTL formulas, which capture not only the usual Boolean satisfiability of the formula, but also topological information regarding the distance, ε, from unsatisfiability. We prove that any other timed trace which remains ε-close to the initial one also satisfies the same MTL specification with the usual Boolean semantics. We derive a computational procedure for determining an under-approximation to the robustness degree ε of the specification with respect to a given finite timed state sequence. Our approach can be used for robust system simulation and testing, as well as form the basis for simulation-based verification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)
Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hybrid embedded systems. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, pp. 487–492 (2004)
Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)
Kapinski, J., Krogh, B.H., Maler, O., Stursberg, O.: On systematic simulation of open continuous systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 283–297. Springer, Heidelberg (2003)
Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic control systems. In: Proceedings of the International Workshop on the Algorithmic Foundations of Robotics (2004)
Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Formal Models and Semantics, vol. B, pp. 995–1072. North-Holland Pub. Co./MIT Press (1990)
Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 255–299 (1990)
de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantitative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)
Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. In: Runtime Verification. ENTCS, vol. 113, pp. 145–162. Elsevier, Amsterdam (2005)
Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Proceedings of the 16th IEEE international conference on Automated software engineering (2001)
Shults, B., Kuipers, B.: Qualitative simulation and temporal logic: proving properties of continuous systems. Technical Report TR AI96-244, Dept. of Computer Sciences, University of Texas at Austin (1996)
Girard, A., Pappas, G.J.: Verification using simulation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006)
Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Hybrid controllers for path planning: A temporal logic approach. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4885–4890 (2005)
Lamine, K.B., Kabanza, F.: Reasoning about robot actions: A model checking approach. In: Beetz, M., Hertzberg, J., Ghallab, M., Pollack, M.E. (eds.) Dagstuhl Seminar 2001. LNCS, vol. 2466, pp. 123–139. Springer, Heidelberg (2002)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: 20th IEEE Symposium on Logic in Computer Science (LICS), pp. 188–197 (2005)
Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. In: Symposium on Principles of Distributed Computing, pp. 139–152 (1991)
Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. In: Fifth Annual IEEE Symposium on Logic in Computer Science, Washington, D.C, pp. 390–401. IEEE Computer Society Press, Los Alamitos (1990)
Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for finite state sequences in metric spaces. Technical Report MS-CIS-06-05, Dept. of CIS, Univ. of Pennsylvania (2006)
Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. Technical Report MS-CIS-05-10, Dept. of CIS, Univ. of Pennsylvania (2005)
Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal Logic Verification Using Simulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 171–186. Springer, Heidelberg (2006)
Markey, N., Schnoebelen, P.: Model checking a path (preliminary report). In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)
Kristoffersen, K.J., Pedersen, C., Andersen, H.R.: Runtime verification of timed LTL using disjunctive normalized equation systems. In: Proceedings of the 3rd Workshop on Run-time Verification. ENTCS, vol. 89, pp. 1–16 (2003)
Huang, J., Voeten, J., Geilen, M.: Real-time property preservation in approximations of timed systems. In: Proceedings of the 1st ACM & IEEE International Conference on Formal Methods and Models for Co-Design, pp. 163–171 (2003)
Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fainekos, G.E., Pappas, G.J. (2006). Robustness of Temporal Logic Specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds) Formal Approaches to Software Testing and Runtime Verification. FATES RV 2006 2006. Lecture Notes in Computer Science, vol 4262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940197_12
Download citation
DOI: https://doi.org/10.1007/11940197_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49699-1
Online ISBN: 978-3-540-49703-5
eBook Packages: Computer ScienceComputer Science (R0)