[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Robustness of Temporal Logic Specifications

  • Conference paper
Formal Approaches to Software Testing and Runtime Verification (FATES 2006, RV 2006)

Abstract

In this paper, we consider the robust interpretation of metric temporal logic (MTL) formulas over timed sequences of states. For systems whose states are equipped with nontrivial metrics, such as continuous, hybrid, or general metric transition systems, robustness is not only natural, but also a critical measure of system performance. In this paper, we define robust, multi-valued semantics for MTL formulas, which capture not only the usual Boolean satisfiability of the formula, but also topological information regarding the distance, ε, from unsatisfiability. We prove that any other timed trace which remains ε-close to the initial one also satisfies the same MTL specification with the usual Boolean semantics. We derive a computational procedure for determining an under-approximation to the robustness degree ε of the specification with respect to a given finite timed state sequence. Our approach can be used for robust system simulation and testing, as well as form the basis for simulation-based verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hybrid embedded systems. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, pp. 487–492 (2004)

    Google Scholar 

  4. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Kapinski, J., Krogh, B.H., Maler, O., Stursberg, O.: On systematic simulation of open continuous systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 283–297. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic control systems. In: Proceedings of the International Workshop on the Algorithmic Foundations of Robotics (2004)

    Google Scholar 

  7. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Formal Models and Semantics, vol. B, pp. 995–1072. North-Holland Pub. Co./MIT Press (1990)

    Google Scholar 

  8. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 255–299 (1990)

    Article  Google Scholar 

  9. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantitative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. In: Runtime Verification. ENTCS, vol. 113, pp. 145–162. Elsevier, Amsterdam (2005)

    Google Scholar 

  11. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Proceedings of the 16th IEEE international conference on Automated software engineering (2001)

    Google Scholar 

  12. Shults, B., Kuipers, B.: Qualitative simulation and temporal logic: proving properties of continuous systems. Technical Report TR AI96-244, Dept. of Computer Sciences, University of Texas at Austin (1996)

    Google Scholar 

  13. Girard, A., Pappas, G.J.: Verification using simulation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Hybrid controllers for path planning: A temporal logic approach. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4885–4890 (2005)

    Google Scholar 

  15. Lamine, K.B., Kabanza, F.: Reasoning about robot actions: A model checking approach. In: Beetz, M., Hertzberg, J., Ghallab, M., Pollack, M.E. (eds.) Dagstuhl Seminar 2001. LNCS, vol. 2466, pp. 123–139. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  17. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: 20th IEEE Symposium on Logic in Computer Science (LICS), pp. 188–197 (2005)

    Google Scholar 

  18. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. In: Symposium on Principles of Distributed Computing, pp. 139–152 (1991)

    Google Scholar 

  19. Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. In: Fifth Annual IEEE Symposium on Logic in Computer Science, Washington, D.C, pp. 390–401. IEEE Computer Society Press, Los Alamitos (1990)

    Chapter  Google Scholar 

  20. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for finite state sequences in metric spaces. Technical Report MS-CIS-06-05, Dept. of CIS, Univ. of Pennsylvania (2006)

    Google Scholar 

  21. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. Technical Report MS-CIS-05-10, Dept. of CIS, Univ. of Pennsylvania (2005)

    Google Scholar 

  22. Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal Logic Verification Using Simulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 171–186. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Markey, N., Schnoebelen, P.: Model checking a path (preliminary report). In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Kristoffersen, K.J., Pedersen, C., Andersen, H.R.: Runtime verification of timed LTL using disjunctive normalized equation systems. In: Proceedings of the 3rd Workshop on Run-time Verification. ENTCS, vol. 89, pp. 1–16 (2003)

    Google Scholar 

  25. Huang, J., Voeten, J., Geilen, M.: Real-time property preservation in approximations of timed systems. In: Proceedings of the 1st ACM & IEEE International Conference on Formal Methods and Models for Co-Design, pp. 163–171 (2003)

    Google Scholar 

  26. Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fainekos, G.E., Pappas, G.J. (2006). Robustness of Temporal Logic Specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds) Formal Approaches to Software Testing and Runtime Verification. FATES RV 2006 2006. Lecture Notes in Computer Science, vol 4262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940197_12

Download citation

  • DOI: https://doi.org/10.1007/11940197_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49699-1

  • Online ISBN: 978-3-540-49703-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics