[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Specifications for Labelled Patterns

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12288))

Abstract

In this work, we introduce a supervised learning framework for inferring temporal logic specifications from labelled patterns in signals, so that the formulae can then be used to correctly detect the same patterns in unlabelled samples. The input patterns that are fed to the training process are labelled by a Boolean signal that captures their occurrences. To express the patterns with quantitative features, we use parametric specifications that are increasing, which we call Increasing Parametric Pattern Predictor (IPPP). This means that augmenting the value of the parameters makes the predicted pattern true on a larger set. A particular class of parametric specification formalisms that we use is Parametric Signal Temporal Logic (PSTL). One of the main contributions of this paper is the definition of a new measure, called \(\epsilon \)-count, to assess the quality of the learned formula. This measure enables us to compare two Boolean signals and, hence, quantifies how much the labelling signal induced by the formula differs from the true labelling signal (e.g. given by an expert). Therefore, the \(\epsilon \)-count can measure the number of mismatches (either false positives or false negatives) up to some error tolerance \(\epsilon \). Our supervised learning framework can be expressed by a multicriteria optimization problem with two objective functions: the minimization of false positives and false negatives given by the parametric formula on a signal. We provide an algorithm to solve this multi-criteria optimization problem. Our approach is demonstrated on two case studies involving characterization and classification of labeled ECG (electrocardiogram) data.

This work has been partially supported by the ANR Project ANR-15-IDEX-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A subset of \(\mathbb {R}\) is compact if and only if it is closed and bounded.

  2. 2.

    Here and in the rest of the paper we slightly simplified the syntax of [8] by replacing \((\mathop {\mathrm {On}_{[a,b]}} \mathop {\mathrm {Max}}s)\) by \((\mathop {\mathrm {Max_{[a,b]}}} s)\) whose value in t is \(\max _{t'\in [t+a,t+b]} s(t')\).

  3. 3.

    where \((\mathop {\mathrm {F}_{[-\sigma ,\sigma ]}}\lambda _s)(t)=1\) iff \(\exists t'\in [t-\delta ,t+\delta ], s(t')=1\).

  4. 4.

    \(\bigtriangleup \) is the symmetric difference of two sets.

References

  1. ECGFiveDays data set. http://www.timeseriesclassification.com/description.php?Dataset=ECGFiveDays

  2. Implementation of Pareto front intersection algorithm. https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/tempo/multidimensional_search/-/tree/intersectionAkshay

  3. Implementation of the StlEval \(\epsilon \)-count operator. https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/tempo/StlEval/-/tree/akshayTest

  4. Learning specifications for labelled patterns (technical report). http://www-verimag.imag.fr/TR/TR-2020-1.pdf

  5. Abbas, H., Rodionova, A., Mamouras, K., Bartocci, E., Smolka, S.A., Grosu, R.: Quantitative regular expressions for arrhythmia detection. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(5), 1586–1597 (2019)

    Article  Google Scholar 

  6. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  7. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of temporal properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_12

    Chapter  Google Scholar 

  8. Bakhirkin, A., Basset, N.: Specification and efficient monitoring beyond STL. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 79–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_5

    Chapter  Google Scholar 

  9. Bakhirkin, A., Basset, N., Maler, O., Requeno, J.I.: Learning pareto front from membership queries. Working paper or preprint (2019). https://hal.archives-ouvertes.fr/hal-02125140

  10. Bakhirkin, A., Basset, N., Maler, O., Jarabo, J.-I.R.: ParetoLib: a python library for parameter synthesis. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 114–120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29662-9_7

    Chapter  Google Scholar 

  11. Bakhirkin, A., Ferrére, T., Maler, O.: Efficient parametric identification for STL. In: Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control, HSCC 2018, pp. 177–186. ACM, New York (2018)

    Google Scholar 

  12. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree approach to data classification using signal temporal logic. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, HSCC 2016, pages 1–10. ACM, New York (2016)

    Google Scholar 

  13. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: A Simulink hybrid heart model for quantitative verification of cardiac pacemakers. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, HSCC 2013, pp. 131–136. ACM, New York (2013)

    Google Scholar 

  14. Cutulenco, G., Joshi, Y., Narayan, A., Fischmeister, S.: Mining timed regular expressions from system traces. In: Proceedings of the 5th International Workshop on Software Mining, Software Mining 2016, pp. 3–10. ACM, New York (2016)

    Google Scholar 

  15. Dau, H.A.: et al.: The UCR time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

  16. Goldberger, A.L., et al.: PhysioBank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  17. Jha, S., Tiwari, A., Seshia, S.A., Sahai, T., Shankar, N.: TeLEx: learning signal temporal logic from positive examples using tightness metric. Formal Methods Syst. Des. 54(3), 364–387 (2019). https://doi.org/10.1007/s10703-019-00332-1

    Article  MATH  Google Scholar 

  18. Kolmogorov, A.N., Tikhomirov, V.M.: \(\varepsilon \)-entropy and \(\varepsilon \)-capacity of sets in function spaces. Uspekhi Matematicheskikh Nauk, 14(2(86)), 386 (1959)

    Google Scholar 

  19. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal logic inference for classification and prediction from data. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (part of CPS Week), HSCC 2014, pp. 273–282. ACM, New York (2014)

    Google Scholar 

  20. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anomalous behavior. IEEE Trans. Automatic Control 62(3), 1210–1222 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T). In: Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, pp. 81–92. IEEE (2015)

    Google Scholar 

  22. Maler, O.: Learning monotone partitions of partially-ordered domains (work in progress). Working paper or preprint (2017) https://hal.archives-ouvertes.fr/hal-01556243

  23. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G.: Mining environment assumptions for cyber-physical system models. In: Proceedings of the 11th ACM/IEEE International Conference on Cyber-Physical Systems (to appear), ICCPS 2020. IEEE (2020)

    Google Scholar 

  24. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M., Donzé, A.: Interpretable classification of time-series data using efficient enumerative techniques. In: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control (to appear), HSCC 2020. ACM, New York (2020)

    Google Scholar 

  25. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Google Scholar 

  26. Neider, D., Gavran, I.: Learning linear temporal properties. In: Proceedings of the 18th International Conference on Formal Methods in Computer Aided Design, FMCAD 2011, pp. 1–10. ACM, Austin (2018)

    Google Scholar 

  27. Ničković, D., Qin, X., Ferrère, T., Mateis, C., Deshmukh, J.: Shape expressions for specifying and extracting signal features. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 292–309. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_17

    Chapter  Google Scholar 

  28. Vazquez-Chanlatte, M., Deshmukh, J.V., Jin, X., Seshia, S.A.: Logical clustering and learning for time-series data. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 305–325. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_15

    Chapter  Google Scholar 

  29. Vazquez-Chanlatte, M., Ghosh, S., Deshmukh, J.V., Sangiovanni-Vincentelli, A., Seshia, S.A.: Time-series learning using monotonic logical properties. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 389–405. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_22

    Chapter  Google Scholar 

  30. von Birgelen, A., Niggemann, O.: Using self-organizing maps to learn hybrid timed automata in absence of discrete events. In: Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2017, pp. 1–8. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Mambakam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basset, N., Dang, T., Mambakam, A., Jarabo, J.I.R. (2020). Learning Specifications for Labelled Patterns. In: Bertrand, N., Jansen, N. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2020. Lecture Notes in Computer Science(), vol 12288. Springer, Cham. https://doi.org/10.1007/978-3-030-57628-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57628-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57627-1

  • Online ISBN: 978-3-030-57628-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics