もうすぐ春ですね。花粉さえ飛ばなければ最高なのに。岡野原です。 先日、Hadoop Conference Japan 2011で、”MapReduceによる大規模データを利用した機械学習”というタイトルで発表しました。 発表内容は三部構成になっています。 最初に、機械学習の基本と、それがMapReduceとどのような関係にあるかを紹介しました。その中でHadoop上で動く機械学習ライブラリMahoutの簡単な紹介をしました。 次に、機械学習の最前線ではどのような問題が解かれているかを紹介し、グラフィカルモデルの例、一般の最適化(教師付き学習におけるパラメータ学習)の分散並列化についての話題をしました。 最後に、MapReduceの補完として使えるようなシステムの例としてdremelを紹介しました。このシステムはMapReduceがバッチ型処理で、全データが処理対象の場合が得意なのに対し、一
ウルシステムズは2011年2月9日、オープンソースソフトウエア(OSS)の分散バッチ処理ソフト「Hadoop」を使って基幹バッチ処理を開発できるソフトウエアフレームワーク「Asakusa Framework」を、OSSとして公開すると発表した。プログラマーはHadoop独特の分散処理の仕組みを理解しなくても、基幹バッチ処理を開発できる。ソースコードは3月に公開する予定。 Hadoopは、米グーグルの並列プログラミングモデル「MapReduce」と分散ファイルシステム「Google File System」を模した分散バッチ処理ソフト。I/O処理を複数台のサーバーで分散処理することで、バッチ処理の速度を大幅に高速化できる。 Hadoopのプログラムは、プログラミング言語のJavaを使い、「Map処理」と「Reduce処理」というMapReduce独特の機構を組み合わせて開発する必要がある。そ
リクルートや楽天が、オープンソースの分散バッチ処理ソフト「Hadoop」の利用を拡大している。リクルートはWebサーバーのログ解析用DWH(データウエアハウス)としてHadoopを採用。楽天はグループ内の全ログデータを対象とした統合ログ解析基盤の構築を、Hadoopベースで進めている。 NTTデータやウルシステムズなどのシステムインテグレータも、Hadoopを使ったシステム構築に取り組み始めており、1000台規模のHadoopクラスターもすでに稼働している。これら事例は、2010年12月15日に東京・秋葉原で開催された「日経コンピュータセミナー・Hadoopが変える企業情報システムの実像」で発表された。 DWHの構築にHadoopとHiveを採用--リクルート リクルートは、同社の「じゃらんnet」や「カーセンサー.net」「suumo」といった様々なWebサイトのログデータを一元的に解析
Part1 / Part2 更新履歴 2010/06/20 リンク追加 入門、事例紹介、ニュース Part2へ移動 EC2、Pig、MapReduce、HDFS 新規追加 性能測定 公式 Welcome to Apache Hadoop! 日本語訳 Hadoopユーザー会 Welcome to Hadoop MapReduce! "大規模な計算ノード・クラスタ上において膨大なデータを高速で並列処理するアプリケーションを作成するためのプログラミングモデルおよびソフトウェアフレームワーク" Welcome to Pig! "大規模なデータセットを分析するためのプラットフォーム""Pig の言語レイヤを構成しているのは、Pig Latin と呼ばれるテキストベースの言語" wikipedia Apache Hadoop - Wikipedia, the free encyclopedia Apa
id:kaigai の主催する勉強会で発表してきました。 Hadoop for programmerView more presentations from shiumachi. 答えられなかった質問 Shuffleフェーズって、ソートをどういう仕組みでやってるの? データ全部をなめてるの? Partitionerというクラスでデータを振り分けてる。タスクごとは独立してるのでデータをまたがってアクセスすることはないと思う。でも細かいことはちょっとわからない。 Map中にデータ追加したらどうなるのか? さすがに扱うデータは最初に決めていると思うが、やったことないのでわからない。 Streamingって具体的にどんな処理してるの? jarファイルは投げてるけど、実行時に使うスクリプトはどうやって投げてるのかわからない。 あとで調べときます。 今の世の中に出てるHadoop本って構築とか運用の話
業界トップ のエンタープライズ Hadoop 企業 Cloudera に入社しました http://www.cloudera.co.jp/ 今年の6月に、「平成21年度 産学連携ソフトウェア工学実践事業報告書」というドキュメント群が経産省から公表されました。 そのうちの一つに、NTTデータに委託されたHadoopに関する実証実験の報告書がありましたので、今更ながら読んでみることにしました。 Hadoop界隈の人はもうみんなとっくに読んでるのかもしれませんけど。 http://www.meti.go.jp/policy/mono_info_service/joho/downloadfiles/2010software_research/clou_dist_software.pdf 「高信頼クラウド実現用ソフトウェア開発(分散制御処理技術等に係るデータセンター高信頼化に向けた実証事業)」という
ペタバイト規模のデータを格納させる分散コンピューティング用プラットフォームを探しているのであれば、そのフレームワークとして Hadoop の使用を検討すべきだろう。HadoopはJavaベースで作成されているため、Linux、Windows、Solaris、BSD、Mac OS Xにて使用できる。こうしたHadoopを実際に採用している組織に共通するのは、安価(特殊なハードウェアが不要)かつ効率的でスケーラビリティと信頼性を兼ね備えたプラットフォームによる、膨大な量のデータ処理を必要としているという点だ。 Hadoopでは、こうした膨大な量のデータを格納するために、Hadoop Distributed File System(HDFS)を採用している。実際、HDFSのマスタ/スレーブアーキテクチャは、Hadoopのクラスタ機能の中核を成している。ここでサポートされているのは、ファイルシステ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く