2016 - 12 - 24 統計・R・Stan関連の本、用途別のオススメ10冊 書評 R Stan 年末年始向けに、比較的読みやすい本を中心にオススメします。 統計学 入門 色々読んでみましたが、現在決定版と言えるものは存在しないように思えました。個人的には、シグマと 積分 の復習、場合の数・数え上げの方法、確率、確率変数、確率密度、度数分布と ヒストグラム 、代表値・平均・分散、確率分布、同時分布、周辺分布、確率変数の変数変換、検定、散布図と箱ひげ図、回帰、相関あたりをRなどを使いながらシンプルに説明していく本があるといいと思うのですが、なかなかバランスのとれたいい本がありません。初歩の初歩しか説明してない、グラフが少ない、検定にページを割きすぎ、分厚い、ちょっと難しいなどの不満点があります。立ち読みして自分にあった本を選ぶのがいいと思います。ネットで検索して調べるのでもいいと思います
新規作成日:2015年12月5日 最終更新日:2016年9月22日 理論がわかっても、実践ができなければ意味がありません。 ここでは、Stanというフリーソフトを使って、ベイズ統計学をもとにしたパラメタ推定をパソコンで実行する方法を説明します。 ベイズとMCMCの組み合わせでもって統計モデルのパラメタを推定することができるのでした。この方法を、以下では「ベイズ推定」と呼ぶことにします。 ここでは、Stanを用いて統計モデルのパラメタのベイズ推定をする方法を説明します。 重要な点は、「Stanの使い方」を覚えるだけではうまくいかないということです。 Stanの内部で使われているのは乱数生成アルゴリズムです。乱数を生成してパラメタを推定するという行為は、最小二乗法なりで方程式を解き、パラメタを一発で推定するやり方とは大きく異なります。 その違いをぜひ理解なさってください。 コードをまとめたもの
肝心のMCMCの勉強はどこ行ったゴルァとか怒られるとアレなんですが、先にツールの使い方覚えてしまおうと思ってStanで簡単な練習をやってみました。ちなみに参考にした資料はこちら。 Stanチュートリアルの資料を作成しました。 - Analyze IT. StanTutorial 割とよく一緒に飲んでるid:EulerDijkstra氏のブログがとにかく役に立ちました。ありがとさんです!!! あと、MCMCやるのはこれが初めてという人は最低限久保先生の緑本ぐらいは読んでおいて損はないと思います。ただしStanではなくWinBUGSを{R2WinBUGS}で回す系ですが。 データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC (確率と情報の科学) 作者: 久保拓弥出版社/メーカー: 岩波書店発売日: 2012/05/19メディア: 単行本購入: 16人 クリック
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く