Kinetic Column Evaluation of Potential Construction Options for Lessening Solute Mobility in Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA
<p>Location of the Cordero Rojo Mine in the Powder River Basin of Wyoming, USA.</p> "> Figure 2
<p>An example of the removal of overburden and waste generation during open-pit coal mining at the Cordero Rojo Mine, Powder River Basin, Wyoming, USA.</p> "> Figure 3
<p>Overburden formations and coal seam at the Cordero Rojo Mine, Powder River Basin, Wyoming, USA. The pit perspective and stepped wall distort the coal seam thickness (about 8 m) in relation to the overburden thickness (about 75 m).</p> "> Figure 4
<p>Sieving of Cordero Rojo Mine waste rock to ≤6.3 mm onsite.</p> "> Figure 5
<p>Kinetic columns for benchtop experiments conducted with Cordero Rojo Mine waste rock.</p> "> Figure 6
<p>Major and trace element composition of the Fort Union and Wasatch waste rock from the Cordero Rojo Mine. * Total Fe expressed as FeO.</p> "> Figure 7
<p>Field parameter results for (<b>a</b>) Eh, (<b>b</b>) specific conductance, (<b>c</b>) pH, and (<b>d</b>) alkalinity of leachate from the (1) unamended column, (2) zeolite-amended column, (3) soil-amended column, (4) compaction column, and (5) rinsed column.</p> "> Figure 8
<p>Anion concentrations for leachate from unamended, zeolite, soil, compacted, and rinsed waste rock columns for (<b>a</b>) chloride, (<b>b</b>) fluoride, (<b>c</b>) nitrate, and (<b>d</b>) sulfate.</p> "> Figure 9
<p>Arsenic concentrations for leachate from (<b>a</b>) zeolite, (<b>b</b>) soil, (<b>c</b>) compacted, and (<b>d</b>) rinsed waste rock columns. Non-detection values were set to half the reporting limit (0.5 μg/L).</p> "> Figure 10
<p>Cadmium concentrations in leachate from (<b>a</b>) zeolite, (<b>b</b>) soil, (<b>c</b>) compacted, and (<b>d</b>) rinsed waste rock columns for the first 18 days of the experiment. Non-detection values were set to half the reporting limit (0.5 μg/L).</p> "> Figure 11
<p>Iron concentrations for (<b>a</b>) zeolite, (<b>b</b>) soil, (<b>c</b>) compaction, and (<b>d</b>) rinsed amended columns. Non-detection values were set to half the reporting limit (5 μg/L).</p> "> Figure 12
<p>Mean particle size and ζ potential of leachate from the unamended, zeolite, soil, compacted, and rinsed waste rock columns for the first 55 days of the experiment.</p> ">
Abstract
:1. Introduction
1.1. Powder River Basin Geology and Coal Mining
1.2. Construction Options for Reducing Contaminant Mobility
2. Materials and Methods
2.1. Waste Rock Sampling and Analysis
2.2. Kinetic Column Construction
2.3. Weathering Procedures and Leachate Analysis
3. Results
3.1. Physical and Chemical Characterization of Collected Waste Rock
3.2. Column Leachate Environment Condition Distributions and Trends
3.3. Column Leachate Solute Distributions and Trends
3.3.1. Anions
3.3.2. Metal(loid)s
3.4. Particle Size and Zeta Potential
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Analyte | Χ2 | p-Value | Unamend (U) | Zeolite (Z) | Soil (S) | Compact (C) | Rinse (R) |
---|---|---|---|---|---|---|---|
Environmental Conditions (unfiltered): | |||||||
Eh | 2.6 | 0.62 | 92 | 103 | 108 | 91 | 96 |
pH | 24.6 | <0.01 | 71 | 133 | 99 | 93 | 95 |
Dunn: U-Z, Z-C, Z-R | |||||||
Sp. Cond. | 41.7 | <0.01 | 85 | 130 | 129 | 74 | 72 |
Dunn: U-Z, U-S, Z-C, Z-R, S-C, S-R | |||||||
Alkalinity | 47.6 | <0.01 | 87 | 147 | 109 | 76 | 70 |
Dunn: U-Z, Z-S, Z-C, Z-R, S-R | |||||||
Anions (0.45-µm filtered samples): | |||||||
Cl | 3.8 | 0.43 | 81 | 86 | 71 | 70 | 69 |
F | 53.2 | <0.01 | 55 | 98 | 114 | 60 | 50 |
Dunn: U-Z, U-S, Z-S, Z-R, S-C, S-R | |||||||
NO3 | 19.5 | <0.01 | 84 | 98 | 55 | 76 | 64 |
Dunn: Z-S, Z-R | |||||||
SO4 | 21.7 | <0.01 | 73 | 86 | 101 | 56 | 61 |
Dunn: S-C, S-R | |||||||
Metal(loid)s (unfiltered and 0.45-µm and 0.2-µm filtered samples): | |||||||
As | |||||||
Unfiltered | 45.8 | <0.01 | 50 | 100 | 101 | 82 | 45 |
Dunn: U-Z, U-S, U-C, Z-R, S-R, C-R | |||||||
0.45 µm | 60.4 | <0.01 | 47 | 110 | 96 | 84 | 40 |
Dunn: U-Z, U-S, U-C, Z-R, S-R, C-R | |||||||
0.2 µm | 62.3 | <0.01 | 46 | 112 | 96 | 84 | 40 |
Dunn: U-Z, U-S, U-C, Z-R, S-R, C-R | |||||||
Fe | |||||||
Unfiltered | 34.3 | <0.01 | 83 | 89 | 81 | 90 | 34 |
Dunn: U-R, Z-R, S-R, C-R | |||||||
0.45 µm | 43.9 | <0.01 | 95 | 38 | 89 | 97 | 58 |
Dunn: U-Z, U-R, Z-S, Z-C, C-R | |||||||
0.2 µm | 42.0 | <0.01 | 96 | 41 | 89 | 95 | 56 |
Dunn: U-Z, U-R, Z-S, Z-C, S-R, C-R | |||||||
Mn | |||||||
Unfiltered | 39.2 | <0.01 | 82 | 37 | 106 | 76 | 77 |
Dunn: U-Z, Z-S, Z-C, Z-R | |||||||
0.45 µm | 38.5 | <0.01 | 81 | 37 | 106 | 76 | 77 |
Dunn: U-Z, Z-S, Z-C, Z-R | |||||||
0.2 µm | 38.4 | <0.01 | 81 | 37 | 105 | 76 | 78 |
Dunn: U-Z, Z-S, Z-C, Z-R | |||||||
Mo | |||||||
Unfiltered | 103 | <0.01 | 40 | 133 | 101 | 51 | 52 |
Dunn: U-Z, U-S, Z-S, Z-C, Z-R, S-C, S-R | |||||||
0.45 µm | 102 | <0.01 | 42 | 134 | 100 | 51 | 50 |
Dunn: U-Z, U-S, Z-S, Z-C, Z-R, S-C, S-R | |||||||
0.2 µm | 102 | <0.01 | 41 | 134 | 99 | 51 | 51 |
Dunn: U-Z, U-S, Z-S, Z-C, Z-R, S-C, S-R | |||||||
Solution Particle Characteristics: | |||||||
Particle size | 22.2 | <0.01 | 59 | 60 | 53 | 36 | 81 |
Dunn: S-R, C-R | |||||||
Ζ potential | 0.69 | 59 | 66 | 52 | 63 | 62 |
References
- Anderson, S.P.; Anderson, R.S.; Hinckley, E.-L.S.; Kelly, P.; Blum, A. Exploring Weathering and Regolith Transport Controls on Critical Zone Development with Models and Natural Experiments. Appl. Geochem. 2011, 26, S3–S5. [Google Scholar] [CrossRef]
- Bartos, T.T.; Ogle, K.M. Water Quality and Environmental Isotopic Analyses of Ground-Water Samples Collected from the Wasatch and Fort Union Formations in Areas of Coalbed Methane Development: Implications to Recharge and Ground-Water Flow, Eastern Powder River Basin, Wyoming; Water Resources Investigations Report; U.S. Geological Survey: Cheyenne, WY, USA, 2002.
- Colman, S.M. Rock-Weathering Rates as Functions of Time. Quat. Res. 1981, 15, 250–264. [Google Scholar] [CrossRef]
- Dosseto, A.; Turner, S.P.; Chappell, J. The Evolution of Weathering Profiles through Time: New Insights from Uranium-Series Isotopes. Earth Planet. Sci. Lett. 2008, 274, 359–371. [Google Scholar] [CrossRef]
- Drever, J.I.; Clow, D.W. Weathering Rates in Catchments. In Reviews in Mineralogy and Geochemistry; White, A.F., Brantley, S.L., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1995; Volume 31, pp. 463–483. [Google Scholar]
- Slagle, S.E.; Lewis, B.D.; Lee, R.W. Ground-Water Resources and Potential Hydrologic Effects of Surface Coal Mining in the Northern Powder River Basin, Southeastern Montana; Water Supply Paper 2239; U.S. Geological Survey: Reston, VA, USA, 1985. [CrossRef]
- St-Arnault, M.; Vriens, B.; Blaskovich, R.; Aranda, C.; Klein, B.; Ulrich Mayer, K.; Beckie, R.D. Geochemical and Mineralogical Assessment of Reactivity in a Full-Scale Heterogeneous Waste-Rock Pile. Miner. Eng. 2020, 145, 106089. [Google Scholar] [CrossRef]
- Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural Inorganic Nanoparticles—Formation, Fate, and Toxicity in the Environment. Chem. Soc. Rev. 2015, 44, 8410–8423. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Carrera, J.; Saaltink, M.W.; Olivella, S. Multiphase Flow and Reactive Transport Model in Vadose Tailings. Appl. Geochem. 2009, 24, 1238–1250. [Google Scholar] [CrossRef]
- Blowes, D.W.; Jambor, J.L. The Pore-Water Geochemistry and the Mineralogy of the Vadose Zone of Sulfide Tailings, Waite Amulet, Quebec, Canada. Appl. Geochem. 1990, 5, 327–346. [Google Scholar] [CrossRef]
- Yoo, K.; Mudd, S.M. Discrepancy between Mineral Residence Time and Soil Age: Implications for the Interpretation of Chemical Weathering Rates. Geology 2008, 36, 35–38. [Google Scholar] [CrossRef]
- Martin, J.; Langman, J.B. Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA. Geosciences 2024, 14, 4. [Google Scholar] [CrossRef]
- Langman, J.B.; Moore, M.L.; Ptacek, C.J.; Smith, L.; Sego, D.; Blowes, D.W. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment. Minerals 2014, 4, 257–278. [Google Scholar] [CrossRef]
- Twardowska, I.; Stefaniak, S.; Szczepańska, J., VI. 6—High-Volume Mining Waste Disposal. In Waste Management Series; Twardowska, I., Ed.; Solid Waste: Assessment, Monitoring and Remediation; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4, pp. 865–909. [Google Scholar]
- Nordstrom, D.K. Hydrogeochemical Processes Governing the Origin, Transport and Fate of Major and Trace Elements from Mine Wastes and Mineralized Rock to Surface Waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Vriens, B.; Plante, B.; Seigneur, N.; Jamieson, H. Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management. Minerals 2020, 10, 728. [Google Scholar] [CrossRef]
- McCullough, C.D.; Schultze, M.; Vandenberg, J.; Castendyk, D.; Fourie, A.B.; Tibbett, M.; Boggs, G. Mine Waste Disposal in Pit Lakes: A Good Practice Guide; Australian Centre for Geomechanics: Perth, Australia, 2024; pp. 1063–1076. [Google Scholar] [CrossRef]
- Ziemkiewicz, P.F.; Simmons, J.S.; Knox, A.S. The Mine Water Leaching Procedure: Evaluating the Environmental Risk of Backfilling Mines with Coal Ash. In Chemistry of Trace Elements in Fly Ash; Sajwan, K.S., Alva, A.K., Keefer, R.F., Eds.; Springer: Boston, MA, USA, 2003; pp. 75–90. ISBN 978-1-4757-4757-7. [Google Scholar]
- Langman, J.B. Kinetic Model Evaluation of Arsenic and Selenium Sources in Waste Rock of the Powder River Basin, USA. Mining 2024, 4, 469–488. [Google Scholar] [CrossRef]
- Hoy, R.; Ogle, K.; Taylor, M. Evaluation of Water Quality Conditions in Coal Mine Backfill in the Powder River Basin of Wyoming. J. Am. Soc. Min. Reclam. 2003, 2003, 427–447. [Google Scholar] [CrossRef]
- Ogle, K.M. Examination of Dissolved Concentrations of AS, B, Cd, Hg, Se, and Al in Water Quality from the Backfill Aquifer, Eastern Powder River Basin, Wyoming, 2005. In Proceedings of the 2007 National Meeting of the American Society of Mining and Reclamation, Gillette, WY, USA, 2–7 June 2007; pp. 561–580. [Google Scholar]
- Beikman, H.M. Geology of the Powder River Basin, Wyoming and Montana, with Reference to Subsurface Disposal of Radioactive Wastes; Open-File Report 62-7; United States Geological Survey: Reston, VA, USA, 1962; p. 84. [CrossRef]
- Rankl, J.G.; Lowry, M.E.; Geological Survey (U.S.). Ground-Water-Flow Systems in the Powder River Structural Basin, Wyoming and Montana; Water-Resources Investigations Report 85-4229; U.S. Geological Survey: Reston, VA, USA, 1990.
- Reddy, K.J.; Zhang, Z.; Vance, G.F. Selenite and Selenate Determination in Surface Coal Mine Backfill Ground Water. In Proceedings of the America Society of Mining and Reclamation, Gillette, WY, USA, 5–8 June 1995; pp. 237–245. [Google Scholar]
- Reed, S.M.; Singh, R.N. Groundwater Recovery Problems Associated with Opencast Mine Backfills in the United Kingdom. Int. J. Mine Water 1986, 5, 47–73. [Google Scholar] [CrossRef]
- Vance, G.F.; See, R.B.; Reddy, K.J. Selenite Sorption by Coal Mine Backfill Materials in the Presence of Organic Solutes. In Environmental Chemistry of Selenium; Frankenberger, W.T., Engberg, R.A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 259–280. ISBN 978-0-429-07812-5. [Google Scholar]
- Dolton, G.L.; Fox, J.E.; Clayton, J.L. Petroleum Geology of the Powder River Basin, Wyoming and Montana; Open-File Report 88-450-P; U.S. Geological Survey: Reston, VA, USA, 1990. [CrossRef]
- Flores, R.M. Coalbed Methane in the Powder River Basin, Wyoming and Montana: An Assessment of the Tertiary-Upper Cretaceous Coalbed Methane Total Petroleum System; U.S. Geological Survey Digital Data Series DDS–69–C; U.S. Geological Survey: Reston, VA, USA, 2004; ISBN 0-607-98080-X.
- Wyoming State Geological Survey—Coal Production & Mining. Available online: https://main.wsgs.wyo.gov/energy/coal/coal-production-mining (accessed on 30 December 2024).
- Lorenz, J.C.; Nadon, G.C. Braided-River Deposits in A Muddy Depositional Setting: The Molina Member of the Wasatch Formation (Paleogene), West-Central Colorado, U.S.A. J. Sediment. Res. 2002, 72, 376–385. [Google Scholar] [CrossRef]
- Pocknall, D.T. Paleoenvironments and Age of the Wasatch Formation (Eocene), Powder River Basin, Wyoming. Palaios 1987, 2, 368–376. [Google Scholar] [CrossRef]
- Yuretich, R.F.; Hickey, L.J.; Gregson, B.P.; Hsia, Y.L. Lacustrine Deposits in the Paleocene Fort Union Formation, Northern Bighorn Basin, Montana. J. Sediment. Res. 1984, 54, 836–852. [Google Scholar] [CrossRef]
- Engle, M.A.; Bern, C.R.; Healy, R.W.; Sams, J.I.; Zupancic, J.W.; Schroeder, K.T. Tracking Solutes and Water from Subsurface Drip Irrigation Application of Coalbed Methane–Produced Waters, Powder River Basin, Wyoming. Environ. Geosci. 2011, 18, 169–187. [Google Scholar] [CrossRef]
- Hickey, L.J.; Yuretich, R.F. The Paleocene Chance Member of the Fort Union Formation, Northern Bighorn Basin, Montana and Wyoming: Aperiodic Cyclothems in a Tectonically Dominated Lake Basin. Mt. Geol. 2016, 53, 259–281. [Google Scholar] [CrossRef]
- Ellis, M.S. Quality of Economically Extractable Coal Beds in the Gillette Coal Field as Compared with Other Tertiary Coal Beds in the Powder River Basin, Wyoming and Montana; Open-File Report 2002-174; U.S. Geological Survey: Reston, VA, USA, 2002; p. 174. [CrossRef]
- McClurg, J.E. Peat Forming Wetlands and the Thick Powder River Basin Coals. In Annual Field Conference Guidebook, 39th ed.; Eastern Powder River Basin-Black Hills; Wyoming Geological Association: Casper, WY, USA, 1988; pp. 29–236. [Google Scholar]
- Moore, T.A. The Effects of Clastic Sedimentation on Organic Facies Development within a Tertiary Subbituminous Coal Bed, Powder River Basin, Montana, U.S.A. Int. J. Coal Geol. 1991, 18, 187–209. [Google Scholar] [CrossRef]
- Palmer, C.A.; Mroczkowski, S.J.; Kolker, A.; Finkelman, R.B.; Bullock Jr., J. H. Chemical Analysis and Modes of Occurrence of Selected Trace Elements in a Powder River Basin Coal and Its Corresponding Simulated Cleaned Coal; Open-File Report 2000-323; U.S. Geological Survey: Reston, VA, USA, 2001. [CrossRef]
- Milligan, C.; Reddy, K. Monitoring of Groundwater Contamination by Trace Elements from CBNG Disposal Ponds Across the Powder River Basin, Wyoming. J. Am. Soc. Min. Reclam. 2007, 520–527. [Google Scholar] [CrossRef]
- Wyoming State Engineer’s Office. Fort Union Formation Aquifer Monitoring Plan and Preliminary Aquifer Management Plan. Wyoming Water Development Commission: Gillette, WY, USA, 1995; p. 73. [Google Scholar]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of Heavy Metals on Conventional and Nanostructured Materials for Wastewater Treatment Purposes. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Langman, J.B.; Sandlin, W.R.; Waynant, K.; Traver-Greene, M.; Moberly, J.G. Clinoptilolite and Iron Sorption/Desorption under Multiple pH Conditions: Testing a Substrate for Passive Treatment of Acidic, Iron-Rich Solutions. Water Environ. Res. 2021, 93, 1714–1721. [Google Scholar] [CrossRef]
- Pandová, I.; Panda, A.; Valíček, J.; Harničárová, M.; Kušnerová, M.; Palková, Z. Use of Sorption of Copper Cations by Clinoptilolite for Wastewater Treatment. Int. J. Environ. Res. Public Health 2018, 15, 1364. [Google Scholar] [CrossRef] [PubMed]
- Sandlin, W.R.; Langman, J.B.; Waynant, K.V.; Mukhopadhyay, M.; Thuneman, T.; Moberly, J.G. Comparison of APTES-Functionalized Silica Fiber and Clinoptilolite for Reducing Iron Concentrations in an Acidic Iron(II) Sulfate Solution: Potential Passive Treatment Substrates. Mine Water Environ. 2020, 39, 797–807. [Google Scholar] [CrossRef]
- Sandlin, W.; Langman, J.B.; Moberly, J.G. A Review of Acid Rock Drainage, Seasonal Flux of Discharge and Metal Concentrations, and Passive Treatment System Limitations. Int. J. Min. Reclam. Environ. 2020, 35, 34–47. [Google Scholar] [CrossRef]
- Holub, M.; Balintova, M.; Pavlikova, P.; Palascakova, L. Study of Sorption Properties of Zeolite in Acidic Conditions in Dependence on Particle Size. Ital. Assoc. Chem. Eng. 2013, 32, 559–564. [Google Scholar]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of Heavy Metals from Acid Mine Drainage by Natural Zeolite. Int. J. Miner. Process. 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Stylianou, M.A.; Hadjiconstantinou, M.P.; Inglezakis, V.J.; Moustakas, K.G.; Loizidou, M.D. Use of Natural Clinoptilolite for the Removal of Lead, Copper and Zinc in Fixed Bed Column. J. Hazard. Mater. 2007, 143, 575–581. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Fischer, A.M.; Van Hamme, J.D.; Gardner, W.C.; Fraser, L.H. Impacts from Topsoil Stockpile Height on Soil Geochemical Properties in Two Mining Operations in British Columbia: Implications for Restoration Practices. Mining 2022, 2, 315–329. [Google Scholar] [CrossRef]
- Adams, M.B.; Archer, V.A.; Bailey, S.; McGuire, K.; Miniat, C.F.; Neary, D.G.; O’Geen, T.; Robichaud, P.R.; Strobel, M. Soils and Water. In Forest and Rangeland Soils of the United States Under Changing Conditions: A Comprehensive Science Synthesis; Pouyat, R.V., Page-Dumroese, D.S., Patel-Weynand, T., Geiser, L.H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 33–49. ISBN 978-3-030-45216-2. [Google Scholar]
- Yi, Q.; Wu, S.; Southam, G.; Robertson, L.; You, F.; Liu, Y.; Wang, S.; Saha, N.; Webb, R.; Wykes, J.; et al. Acidophilic Iron- and Sulfur-Oxidizing Bacteria, Acidithiobacillus Ferrooxidans, Drives Alkaline pH Neutralization and Mineral Weathering in Fe Ore Tailings. Environ. Sci. Technol. 2021, 55, 8020–8034. [Google Scholar] [CrossRef]
- Doulati Ardejani, F.; Singh, R.N.; Baafi, E.; Porter, I. A Finite Element Model to Simulate Groundwater Rebound Problems in Backfilled Open Cut Mines. Mine Water Environ. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Dunrud, C.R.; Osterwald, F.W. Coal Mine Subsidence Near Sheridan, Wyoming. Environ. Eng. Geosci. 1978, 15, 175–190. [Google Scholar] [CrossRef]
- Karfakis, M.G.; Topuz, E. Post Mining Subsidence Abatements in Wyoming Abandoned Coal Mines. Min. Sci. Technol. 1991, 12, 215–231. [Google Scholar] [CrossRef]
- Naderian, A.R.; Williams, D.J.; Clark, I.H. Numerical Modelling of Settlements in Back-Filled Open-Cut Coal Mines. Int. J. Surf. Min. Reclam. Environ. 1996, 10, 25–29. [Google Scholar] [CrossRef]
- Sun, Q.; Zhou, N.; Quan, K.; Chen, Y. Stability Analysis and Control of Embankment with Solid Backfill Coal Mining. Min. Technol. 2017, 126, 104–112. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Taheri, A.; Zhang, W.; Wu, Z.; Song, W. Properties and Application of Backfill Materials in Coal Mines in China. Minerals 2019, 9, 53. [Google Scholar] [CrossRef]
- Technology Screening Matrix|Federal Remediation Technologies Roundtable (FRTR). Available online: https://www.frtr.gov/matrix/Solidification-and-Stabilization/ (accessed on 30 December 2024).
- U.S. Environmental Protection Agency. Method 1669, Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels; USEPA Office of Water Engineering and Analysis Division: Washington, DC, USA, 1996; p. 35.
- U.S. Geological Survey. National Field Manual for Collection of Water-Quality Data—Chapter A4. Collection of Water Samples; U.S. Geological Survey: Reston, VA, USA, 2006; p. 231.
- Lapakko, K.A. Developments in Humidity-Cell Tests and Their Application. In Environmental Aspects of Mine Wastes: Mineralogical Association of Canada Short Course Series; Jambor, J.L., Blowes, D.W., Ritchie, A.I.M., Eds.; Economic Geology Publishing Company: Littleton, CO, USA, 2003; pp. 147–164. [Google Scholar]
- ASTM C702/C702M-18; Standard Practice for Reducing Samples of Aggregate to Testing Size. ASTM International: Montgomery, PA, USA, 2018.
- ASTM D5744-18; Test Method for Laboratory Weathering of Solid Materials Using a Humidity Cell. ASTM International: Montgomery, PA, USA, 2018.
- Lapakko, K.A.; White, W.W. Modification of the ASTM 5744-96 Kinetic Test. In Proceedings of the Fifth International Conference on Acid Rock Drainage, Denver, CO, USA, 21–24 May 2000; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 2000; pp. 631–639. [Google Scholar]
- ASTM E105-16; Practice for Probability Sampling of Materials. ASTM International: Montgomery, PA, USA, 2016.
- ASTM D4644-16; Test Method for Slake Durability of Shales and Similar Weak Rocks. ASTM International: Montgomery, PA, USA, 2010.
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-444-53064-6. [Google Scholar]
- Hunter, R.J. The Calculation of Zeta Potential. In Zeta Potential in Colloid Science; Academic Press: Cambridge, MA, USA, 1981; pp. 59–124. ISBN 978-0-12-361961-7. [Google Scholar]
- Roehler, H.W. Revised Stratigraphic Nomenclature for the Wasatch and Green River Formations of Eocene Age, Wyoming, Utah, and Colorado; Professional Paper 1506-B; U.S. Geological Survey: Reston, VA, USA, 1991. [CrossRef]
- Martin, P.L. Geological Investigations of the Vermillion Creek Coal Bed in the Eocene Niland Tongue of the Wasatch Formation, Sweetwater County, Wyoming; U.S. Geological Survey Professional Paper 1314-A-L; U.S. Geological Survey: Reston, VA, USA, 1987. [CrossRef]
- Ayers, W.B. Lacustrine and Fluvial-Deltaic Depositional Systems, Fort Union Formation (Paleocene), Powder River Basin, Wyoming and Montana. AAPG Bull. 1986, 70, 1651–1673. [Google Scholar]
- Hagmaier, J. Groundwater Flow, Hydrochemistry, and Uranium Deposition in the Powder River Basin, Wyoming. Ph.D. Thesis, University of North Dakota, Grand Forks, ND, USA, 1971. [Google Scholar]
- Szekeres, M.; Tombácz, E. Surface Charge Characterization of Metal Oxides by Potentiometric Acid–Base Titration, Revisited Theory and Experiment. Colloids Surf. Physicochem. Eng. Asp. 2012, 414, 302–313. [Google Scholar] [CrossRef]
- Drever, J.I.; Murphy, J.W.; Surdam, R.C. The Distribution of As, Be, Cd, Cu, Hg, Mo, Pb, and U Associated with the Wyodak Coal Seam, Powder River Basin, Wyoming. Rocky Mt. Geol. 1977, 15, 93–101. [Google Scholar]
- Jamieson, H.E. Geochemistry and Mineralogy of Solid Mine Waste: Essential Knowledge for Predicting Environmental Impact. Elements 2011, 7, 381–386. [Google Scholar] [CrossRef]
- Villeneuve, S.A.; Barbour, S.L.; Hendry, M.J.; Carey, S.K. Estimates of Water and Solute Release from a Coal Waste Rock Dump in the Elk Valley, British Columbia, Canada. Sci. Total Environ. 2017, 601–602, 543–555. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Lutz, B.D.; King, R.S.; Fay, J.P.; Carter, C.E.; Helton, A.M.; Campagna, D.; Amos, J. How Many Mountains Can We Mine? Assessing the Regional Degradation of Central Appalachian Rivers by Surface Coal Mining. Environ. Sci. Technol. 2012, 46, 8115–8122. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Dong, J.; Lei, S.; Leng, H.; Mu, S.; Wang, H. The Impact of Disposal and Treatment of Coal Mining Wastes on Environment and Farmland. Environ. Geol. 2009, 58, 625–634. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, T.; Wang, N. Groundwater Impact of Open Cut Coal Mine and an Assessment Methodology: A Case Study in NSW. Int. J. Min. Sci. Technol. 2017, 27, 861–866. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langman, J.B.; Martin, J. Kinetic Column Evaluation of Potential Construction Options for Lessening Solute Mobility in Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA. Hydrology 2025, 12, 8. https://doi.org/10.3390/hydrology12010008
Langman JB, Martin J. Kinetic Column Evaluation of Potential Construction Options for Lessening Solute Mobility in Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA. Hydrology. 2025; 12(1):8. https://doi.org/10.3390/hydrology12010008
Chicago/Turabian StyleLangman, Jeff B., and Julianna Martin. 2025. "Kinetic Column Evaluation of Potential Construction Options for Lessening Solute Mobility in Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA" Hydrology 12, no. 1: 8. https://doi.org/10.3390/hydrology12010008
APA StyleLangman, J. B., & Martin, J. (2025). Kinetic Column Evaluation of Potential Construction Options for Lessening Solute Mobility in Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA. Hydrology, 12(1), 8. https://doi.org/10.3390/hydrology12010008