Abstract
Passive treatment systems provide lower cost alternatives for remediation of mine drainage; however, acidic drainage increases treatment difficulty because of higher metal concentrations and proton competition for reactive substrates. A silica fiber functionalized with (3-aminopropyl) triethoxysilane (Si + APTES) and a naturally-occurring, microporous silicate mineral (clinoptilolite of the zeolite family) were evaluated in the laboratory as potential reactive substrates for passive treatment of mild (≥ pH of 3) acid rock drainage. Column permeability experiments with spun, 10-µm median diameter, silica fiber and loosely packed, 3.6-mm median diameter clinoptilolite indicate greater permeability and stability of clinoptilolite under flowing conditions. Batch sorption experiments with silica fiber (Si), Si + APTES, and clinoptilolite in a synthetic Fe(II)–SO4, pH 3.0 solution indicate an Fe specific sorption efficacy of Si + APTES > clinoptilolite > Si at equivalent surface areas. Specific sorption normalized to packing densities indicate greater sorption per volume for clinoptilolite. Sorption results for Si + APTES and clinoptilolite did not produce isotherms described by the Langmuir or Freundlich models, likely because of surface heterogeneity and precipitation reactions. Column sorption experiments under flowing conditions indicate an Fe removal efficacy of clinoptilolite > Si + APTES for permeable packing densities. Si + APTES demonstrated high specific sorption of Fe in batch sorption experiments and has potential use in low-flow, passive treatment of mildly acidic solutions. The balance of minimal surface preparation, greater permeability, structural stability, large surface area, micropore structure, and ion-exchange properties make clinoptilolite a better reactive substrate for passive treatment of mildly acidic solutions in high- or low-flow conditions.
Zusammenfassung
Passive Wasserbehandlungssysteme stellen eine kostengünstige Alternative zur Sanierung von Grubenwässern dar. Saure Wässer erhöhen jedoch die Schwie¬rigkeit der Behandlung aufgrund hoher Metallkonzentrationen und der Protonenkonkurrenz für reaktive Substrate. Eine mit (3-Aminopropyl)-Tri¬ethoxysilan (Si+APTES) funktionalisierte Siliciumdioxidfaser und ein natür¬lich vorkommendes, mikroporöses Silikatmineral (Klinoptilolith aus der Familie der Zeolithe) wurden im Labor als potenzielle reaktive Substrate für die passive Behandlung schwach saurer (pH-Wert ≥ 3) Grubenwässer unter¬sucht. Säulenversuche zur Durchlässigkeit mit gesponnenem Klin-optilolith (mitt¬lerer Durchmesser von 10 µm), Siliciumdioxidfasern und lose gepacktem Klinoptilolith (mittlerer Durchmesser von 3,6 mm) weisen auf eine größere Durchlässigkeit und Stabilität des Klinoptiloliths unter Fließ-bedingungen hin. Batchversuche zur Sorption mit Siliciumdioxidfasern (Si), Si+APTES und Klinoptilolith in einer synthetischen Fe(II)-SO4-Lösung mit pH = 3,0 zeigen eine Fe-spezifische Sorptionswirksamkeit in absteigender Reihenfolge von Si+APTES über Klinoptilolith hin zu Si an vergleichbaren Oberflächen. Die spezi¬fische Sorption, normiert auf die Packungsdichte, weist auf eine höhere Sorptionsmenge pro Volumen für Klinoptilolith hin. Die Sorptionsergebnisse für Si+APTES und Klinoptilolith sind nicht durch Langmuir- oder Freundlich-Isothermen beschreibbar. Ursache dafür sind ver¬mut¬lich Oberflächen¬heterogenitäten und Fällungsreaktionen. ¬Säulen¬ver-suche zur Sorption unter Flie߬bedingungen deuten auf eine Fe-Ent¬fer¬nungs-wirksamkeit hin, die für permeable Packungsdichten bei Klinoptilolith grö-ßer ist als bei Si+APTES. Si+APTES zeigte in den Batchversuchen eine hohe spezifische Sorption von Fe und kann potenziell bei der passiven Be¬hand-lung schwach saurer Lösungen mit geringem Durchfluss eingesetzt werden. Die Ausge¬wogenheit von minimaler notwendiger Oberflächen¬vor¬bereitung, großer Perme¬abilität, struktureller Stabilität, großer Ober¬fläche, Mikro-poren¬struktur und Ionen¬austauscheigenschaften machen Klein¬optilolith zu einem gut geeig¬ne¬ten reaktiven Substrat zur passiven Be¬hand¬lung schwach saurer Lö¬sungen sowohl unter Bedingungen mit hohem als auch niedrigem Durch¬fluss.
Resumen
Los sistemas de tratamiento pasivo ofrecen alternativas de menor costo para la remediación del drenaje de las minas; no obstante, el drenaje ácido aumenta la dificultad del tratamiento debido a la gran concentración de metales y a la competencia de los protones por los sustratos reactivos. En el laboratorio, se evaluaron una fibra de sílice funcionalizada con (3-aminopropil) trietoxisilano (Si+APTES) y un mineral de silicato microporoso natural (clinoptilolita de la familia de las zeolitas) como posibles sustratos reactivos para el tratamiento pasivo del drenaje ácido de roca leve (≥ pH de 3). Los experimentos de permeabilidad de la columna con clinoptilolita hilada de 10 µm de diámetro medio, y de fibra de sílice, con un empaquetamiento suelto de 3,6 mm de diámetro medio, indican una mayor permeabilidad y estabilidad de la primera en condiciones de flujo. Los experimentos en batch de absorción con fibra de sílice (Si), Si+APTES y clinoptilolita en una solución sintética de Fe(II)-SO4, pH 3,0, indican una eficacia de absorción específica de Fe de Si+APTES > clinoptilolita > Si, considerando áreas superficiales equivalentes. La adsorción específica normalizada a las densidades de empaquetamiento indica una mayor adsorción por volumen para la clinoptilolita. Los resultados de la sorción para Si+APTES y clinoptilolita no produjeron las isotermas descritas por los modelos de Langmuir o Freundlich, probablemente debido a la heterogeneidad de la superficie y a las reacciones de precipitación. Los experimentos de sorción en columna en condiciones de flujo indican una eficacia de eliminación de Fe de clinoptilolita > Si+APTES para densidades de empaquetamiento permeables. Si+APTES demostró una alta absorción específica de Fe en experimentos de absorción por lotes y tiene un uso potencial en el tratamiento pasivo de bajo flujo de soluciones ligeramente ácidas. Considerando la preparación mínima de la superficie, la mayor permeabilidad, la estabilidad estructural, la gran superficie, la estructura de microporos y las propiedades de intercambio de iones, la clinoptilolita es un mejor sustrato reactivo para el tratamiento pasivo de soluciones ligeramente ácidas en condiciones de flujo alto o bajo.
抽象
被动处理是处理矿井排放废水的低成本替代方案。但是,由于酸性矿井排放废水的金属离子浓度更高和氢离子(质子)对活性基质的争夺,使其处理难度增大。利用室内实验,比较评价了(3-氨丙基)三乙氧基硅烷(Si+APTES)功能硅纤维和一种天然微孔硅酸盐矿物(沸石家族的斜发沸石)作为弱酸性(pH值≥3)矿井排放废水被动处理活性基质的潜力。中值直径10μm的纺丝硅纤维和中值直径3.6 mm的松散充填斜发沸石的柱渗透实验表明,斜发沸石动水条件下具有更好的渗透率和稳定性。硅纤维(Si)、Si+APTES功能纤维和斜发沸石对硫酸亚铁配制溶液(pH=3)的批次吸附试验表明:在等表面积条件下,Fe的单位吸附效率Si+APTES功能纤维 >斜发沸石> 硅纤维(Si)。以填充密度标准化的单位吸附率表明单位体积斜发沸石的吸附量更高。由于表面各向异性和沉淀反应,Si+APTES功能纤维和斜发沸石的吸附试验并未产生Langmuir型或Freundlich型吸附等温曲线结果。柱动水吸附实验表明,可渗透填充密度条件下的Fe离子去除率斜发沸石>Si+APTES功能纤维。Si+APTES功能纤维在批次吸附试验中表现出对铁离子较高的单位吸附能力,有望用于低流动条件下弱酸性排放废水的被动处理。斜发沸石的最小表面制备、强渗透性、结构稳定、表面积大、微孔结构和离子交换能力等综合特性,使之成为高或低流动条件下弱酸性废水被动处理的理想活性基质。
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Acres RG, Ellis AV, Alvino J, Lenahan CE, Khodakov DA, Metha GF, Andersson GG (2012) Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J Phys Chem C 116:6289–6297. https://doi.org/10.1021/jp212056s
Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006
Aksu Z, Gönen F (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem 39:599–613. https://doi.org/10.1016/S0032-9592(03)00132-8
Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th ed. Elsevier, Amsterdam. ISBN: 9780080554341
Barquist KN (2009) Synthesis and environmental adsorption applications of functionalized zeolites and iron oxide/zeolite composites. PhD thesis, University of Iowa. https://doi.org/10.17077/etd.xztd7s2g
Benner SG, Blowes DW, Gould WD, Herbert RB, Ptacek CJ (1999) Geochemistry of a permeable reactive barrier for metals and acid mine drainage. Environ Sci Technol 33:2793–2799. https://doi.org/10.1021/es981040u
Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Rev Mineral Geochem 40:351–403. https://doi.org/10.2138/rmg.2000.40.7
Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034
Costello C (2003) Acid mine drainage: innovative treatment technologies. US EPA Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC
Cotton A (2008) Dissolution kinetics of clinoptilolite and heulandite in alkaline conditions. Biosci Horiz 1:38–43. https://doi.org/10.1093/biohorizons/hzn003
Davis JA, Leckie JO (1978) Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J Colloid Interface Sci 67:90–107. https://doi.org/10.1016/0021-9797(78)90217-5
Dold B (2017) Acid rock drainage prediction: a critical review. J Geochem Explor 172:120–132. https://doi.org/10.1016/j.gexplo.2016.09.014
Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, Oxford
Egiebor NO, Oni B (2007) Acid rock drainage formation and treatment: a review. Asia-Pac J Chem Eng 2:47–62. https://doi.org/10.1002/apj.57
Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309–314. https://doi.org/10.1016/j.jcis.2004.08.028
Faghihian H, Ghannadi Marageh M, Kazemian H (1999) The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl Radiat Isot 50:655–660. https://doi.org/10.1016/S0969-8043(98)00134-1
Fan C, Zhang Y (2018) Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. J Geochem Explor 188:95–100. https://doi.org/10.1016/j.gexplo.2018.01.020
Felice V, Ntais S, Tavares AC (2013) Propyl sulfonic acid functionalization of faujasite-type zeolites: effect on water and methanol sorption and on proton conductivity. Micropor Mesopor Mat 169:128–136. https://doi.org/10.1016/j.micromeso.2012.10.011
Fryar AE, Schwartz FW (1998) Hydraulic-conductivity reduction, reaction-front propagation, and preferential flow within a model reactive barrier. J Contam Hydrol 32:333–351. https://doi.org/10.1016/S0169-7722(98)00057-6
Gainer GM (1993) Boron Adsorption on Hematite and Clinoptilolite. Los Alamos National Laboratory LA-SUB—93-64
Gibert O, de Pablo J, Luis Cortina J, Ayora C (2004) Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Water Res 38:4186–4196. https://doi.org/10.1016/j.watres.2004.06.023
Hashemian S, Hosseini SH, Salehifar H, Salari K (2013) Adsorption of Fe(III) from aqueous solution by Linde Type-A zeolite. Am J Anal Chem 4:123–126. https://doi.org/10.4236/ajac.2013.47A017
Heidmann I, Christl I, Kretzschmar R (2005) Sorption of Cu and Pb to kaolinite-fulvic acid colloids: assessment of sorbent interactions. Geochim Cosmochim Acta 69:1675–1686. https://doi.org/10.1016/j.gca.2004.10.002
Hem JD, Cropper WH (1959) Survey of ferrous-ferric chemical equilibria and redox potentials. U.S. Geological Survey Water Supply Paper 1459-A, Washington DC. https://doi.org/10.3133/wsp1459A
Holub M, Balintova M, Pavlikova P, Palascakova L (2013) Study of sorption properties of zeolite in acidic conditions in dependence on particle size. Ital Assoc Chem Eng 32:559–564. https://doi.org/10.3303/CET1332094
Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14. https://doi.org/10.1016/j.scitotenv.2004.09.002
Kassab H, Maksoud M, Aguado S, Pera-Titus M, Albela B, Bonneviot L (2012) Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture. RSC Adv 2:2508–2516. https://doi.org/10.1039/C2RA01007K
Kefeni KK, Msagati TAM, Mamba BB (2017) Acid mine drainage: prevention, treatment options, and resource recovery: a review. J Clean Prod 151:475–493. https://doi.org/10.1016/j.jclepro.2017.03.082
Langmuir I (1918) The Adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004
Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010
Liu Y, Li Y, Li XM, He T (2013) Kinetics of (3-aminopropyl) triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29:15275–15282. https://doi.org/10.1021/la403269u
Motsi T, Rowson NA, Simmons MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int J Miner Process 92:42–48. https://doi.org/10.1016/j.minpro.2009.02.005
Nelson J, Joe-Wong CM, Maher K (2019) Cr(VI) reduction by Fe(II) sorbed to silica surfaces. Chemosphere 234:98–107. https://doi.org/10.1016/j.chemosphere.2019.06.039
Nordstrom DK (2009) Acid rock drainage and climate change. J Geochem Explor 100:97–104. https://doi.org/10.1016/j.gexplo.2008.08.002
Nordstrom DK (2011) Mine waters: acidic to circumneutral. Elements 7:393–398. https://doi.org/10.2113/gselements.7.6.393
Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci 96:3455–3462. https://doi.org/10.1073/pnas.96.7.3455
Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16. https://doi.org/10.1016/j.apgeochem.2015.02.008
Pandová I, Panda A, Valíček J, Harničárová M, Kušnerová M, Palková Z (2018) Use of sorption of copper cations by clinoptilolite for wastewater treatment. Int J Environ Res Public Health 15:1364. https://doi.org/10.3390/ijerph15071364
Ramasamy DL, Khan S, Repo E, Sillanpää M (2017) Synthesis of mesoporous and microporous amine and non-amine functionalized silica gels for the application of rare earth elements (REE) recovery from the waste water-understanding the role of pH, temperature, calcination and mechanism in light REE and heavy REE separation. Chem Eng J 322:56–65. https://doi.org/10.1016/j.cej.2017.03.152
Ramasamy DL, Puhakka V, Iftekhar S, Wojtuś A, Repo E (2018) N- and O-ligand doped mesoporous silica-chitosan hybrid beads for the efficient, sustainable and selective recovery of rare earth elements (REE) from acid mine drainage (AMD): understanding the significance of physical modification and conditioning of the polymer. J Hazard Mater 348:84–91. https://doi.org/10.1016/j.jhazmat.2018.01.030
Sandlin W, Langman J, Moberly J (2020) A review of acid rock drainage, seasonal flux of discharge and metal concentrations, and passive treatment system limitations. Int J Min Reclam Environ. https://doi.org/10.1080/17480930.2020.1728035
Skousen J, Zipper CE, Rose A, Ziemkiewicz PF, Nairn R, McDonald LM, Kleinmann RL (2017) Review of passive systems for acid mine drainage treatment. Mine Water Environ 36:133–153. https://doi.org/10.1007/s10230-016-0417-1
Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In: Proc, Environmental Geochemistry Of Mineral Deposits, Part A. processes, techniques, and health issues, pp 161–182. https://doi.org/10.5382/Rev.06.07
Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, Oxford
Stylianou MA, Hadjiconstantinou MP, Inglezakis VJ, Moustakas KG, Lizidou MD (2007) Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column. J Hazard Mater 143:575–581. https://doi.org/10.1016/j.jhazmat.2006.09.096
Vilarrasa-García E, Cecilia JA, Moya EMO, Cavalcante CL, Azevedo DCS, Rodríguez-Castellón E (2015) “Low cost” pore expanded SBA-15 functionalized with amine groups applied to CO2 adsorption. Materials 8:2495–2513. https://doi.org/10.3390/ma8052495
Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156:11–24. https://doi.org/10.1016/j.cej.2009.10.029
Wingenfelder U, Nowack B, Furrer G, Schulin R (2005) Adsorption of Pb and Cd by amine-modified zeolite. Water Res 39:3287–3297. https://doi.org/10.1016/j.watres.2005.05.017
Yavuz Ö, Altunkaynak Y, Güzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952. https://doi.org/10.1016/S0043-1354(02)00409-8
Zhu M, Lerum MZ, Chen W (2012) How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir 28:416–423. https://doi.org/10.1021/la203638g
Acknowledgements
We thank the U.S. Department of the Interior’s Office of Surface Mining, Reclamation, and Enforcement; and in particular, Cecil Slaughter, for their support and funding of this project under the Applied Science Program, Cooperative Grant Agreement S17AC20000.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sandlin, W.R., Langman, J.B., Waynant, K.V. et al. Comparison of APTES-Functionalized Silica Fiber and Clinoptilolite for Reducing Iron Concentrations in an Acidic Iron(II) Sulfate Solution: Potential Passive Treatment Substrates. Mine Water Environ 39, 797–807 (2020). https://doi.org/10.1007/s10230-020-00721-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10230-020-00721-7