Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada
<p>Location map and details of the Athabasca River Basin with the location of hydrological stations along the main river. The boundary line through Fort McMurray separates the lower region (Northern) and upper region (Southern), as adopted in the study.</p> "> Figure 2
<p>Spatial distribution of LULC classes in 2001 and 2015 in Athabasca River Basin, Canada.</p> "> Figure 3
<p>Average annual precipitation, maximum and minimum temperatures for the entire Athabasca River Basin from 1960 to 2019. Note: The shaded zone represents the recent 30-year period while unshaded zone represents baseline condition. The dashed lines represent best fit lines.</p> "> Figure 4
<p>Spatial distribution of average annual precipitation, the maximum and minimum temperature in the baseline period (1960–1989), recent period (1990–2019), and changes in the recent period compared to the baseline period.</p> "> Figure 5
<p>Seasonal distribution of precipitation, maximum and minimum temperature during the baseline period (1960–1989) for the entire watershed (<b>a</b>), percentage change in monthly precipitation (<b>b</b>), absolute change in monthly maximum (<b>c</b>) and minimum temperature (<b>d</b>) in the recent period (1990–2019) compared to baseline period for the upper, lower, and entire watershed.</p> "> Figure 6
<p>Model performance during calibration (2000–2019) and validation (1990–1999) at Athabasca, Fort McMurray, and Embarras stream gauge stations (Calibration only from 2015–2019). Note: The grey shading indicates the validation period.</p> "> Figure 7
<p>Percentage change under CC, under LULCC, and under both scenarios for monthly streamflow, evapotranspiration, and groundwater recharge for the entire watershed (1st row), upper (2nd row) and lower regions (3rd row).</p> "> Figure A1
<p>Validation of Hargreaves–Samani Method for Potential Evapotranspiration (ET) at four locations within Athabasca River Basin (April to September 2019). The dashed line represents the best fit line.</p> "> Figure A2
<p>Validation of Hargreaves–Samani Method for Potential Evapotranspiration (ET) at four locations within Athabasca River Basin (2019). The dashed line represents the best fit line.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological–Hydrodynamic Model
2.2.1. Model Domain and Grid
2.2.2. Climate Input
2.2.3. Surface Water Component
2.2.4. River Component and Coupling with MIKE SHE
2.2.5. Unsaturated Zone Component
2.2.6. Saturated Zone Component
2.3. Model Calibration, Validation, and Sensitivity Analysis
2.4. Scenario Settings and Hydrological Components
3. Results
3.1. Evolution of Land Use Pattern in the Basin
3.2. Climate Change Observed in the Basin
3.3. Performance of the Hydrological Model
3.4. Impacts of CC and LULCC on Hydrological Components
4. Discussion
4.1. Impact of CC and LULCC
4.2. Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Validation of Hargreaves–Samani (HS) Method
Appendix B
Population Changes in Athabasca River Basin
Year | Population | Percentage Change per 5 Years (%) |
---|---|---|
1981 | 167,261 | -- |
1986 | 177,604 | 6.18 |
1991 | 187,590 | 5.62 |
1996 | 204,343 | 8.93 |
2001 | 230,356 | 12.73 |
2006 | 274,462 | 19.15 |
2011 | 307,958 | 12.20 |
2016 | 311,811 | 1.25 |
2021 | 304,604 | −2.31 |
Appendix C
Calibrated Parameters
Date | Degree Day Coefficient (mm/Deg C/day) | Date | Degree Day Coefficient (mm/Deg C/day) |
---|---|---|---|
1-Jan | 0.2 | 10-Jul | 3.96 |
11-Jan | 0.28 | 20-Jul | 3.92 |
21-Jan | 0.36 | 30-Jul | 3.88 |
31-Jan | 0.44 | 9-Aug | 3.84 |
10-Feb | 0.52 | 19-Aug | 3.8 |
20-Feb | 0.6 | 29-Aug | 2 |
2-Mar | 0.68 | 8-Sep | 1.16 |
12-Mar | 0.76 | 18-Sep | 1.08 |
22-Mar | 0.84 | 28-Sep | 1 |
1-Apr | 0.92 | 8-Oct | 0.92 |
11-Apr | 1 | 18-Oct | 0.84 |
21-Apr | 1.08 | 28-Oct | 0.76 |
1-May | 1.16 | 7-Nov | 0.68 |
11-May | 2 | 17-Nov | 0.6 |
21-May | 4.8 | 27-Nov | 0.52 |
31-May | 5 | 7-Dec | 0.44 |
10-Jun | 4.8 | 17-Dec | 0.36 |
20-Jun | 4.6 | 27-Dec | 0.2 |
30-Jun | 4 |
Land Use Class | Range | Calibrated Value |
---|---|---|
Water | 20.00–40.00 | 25.04 |
Developed Areas | 80.00–100.00 | 90.90 |
Agriculture | 20.00–40.00 | 28.57 |
Vegetated Open Land | 20.00–40.00 | 33.33 |
Broadleaf Forests | 6.25–10.00 | 10.00 |
Coniferous Forests | 6.25–10.00 | 10.00 |
Mixed Forests | 6.25–10.00 | 10.00 |
Wetlands | 6.00–22.00 | 8.33 |
Rock/Rubble | 33.00–44.00 | 40.00 |
Parameter | Value |
---|---|
Interflow Time Constant | 16 days |
Baseflow Time Constant for Reservoir 1 | 60 days |
Baseflow Time Constant for Reservoir 2 | 3650 days |
References
- Rast, M.; Johannessen, J.; Mauser, W. Review of Understanding of Earth’s Hydrological Cycle: Observations, Theory and Modelling. Surv. Geophys. 2014, 35, 491–513. [Google Scholar] [CrossRef]
- Ji, L.; Duan, K. What Is the Main Driving Force of Hydrological Cycle Variations in the Semiarid and Semi-Humid Weihe River Basin, China? Sci. Total Environ. 2019, 684, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Dibike, Y.; Eum, H.-I.; Coulibaly, P.; Hartmann, J. Projected Changes in the Frequency of Peak Flows along the Athabasca River: Sensitivity of Results to Statistical Methods of Analysis. Climate 2019, 7, 88. [Google Scholar] [CrossRef]
- Leong, D.N.S.; Donner, S.D. Climate Change Impacts on Streamflow Availability for the Athabasca Oil Sands. Clim. Change 2015, 133, 651–663. [Google Scholar] [CrossRef]
- Saha, G.C.; Li, J.; Thring, R.W.; Hirshfield, F.; Paul, S.S. Temporal Dynamics of Groundwater-Surface Water Interaction under the Effects of Climate Change: A Case Study in the Kiskatinaw River Watershed, Canada. J. Hydrol. 2017, 551, 440–452. [Google Scholar] [CrossRef]
- Scibek, J.; Allen, D.M.; Cannon, A.J.; Whitfield, P.H. Groundwater–Surface Water Interaction under Scenarios of Climate Change Using a High-Resolution Transient Groundwater Model. J. Hydrol. 2007, 333, 165–181. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Su, J.; Ren, Y. Comparison of Urbanization and Climate Change Impacts on Urban Flood Volumes: Importance of Urban Planning and Drainage Adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the Hydrological Impacts of Land Use/Land Cover Changes in the Andassa Watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [Google Scholar] [CrossRef]
- Kayitesi, N.M.; Guzha, A.C.; Mariethoz, G. Impacts of Land Use Land Cover Change and Climate Change on River Hydro-Morphology- a Review of Research Studies in Tropical Regions. J. Hydrol. 2022, 615, 128702. [Google Scholar] [CrossRef]
- Farjad, B.; Gupta, A.; Razavi, S.; Faramarzi, M.; Marceau, D.J. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios. Water 2017, 9, 767. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Integrated Assessment of Climate Change and Land Use Change Impacts on Hydrology in the Kathmandu Valley Watershed, Central Nepal. Water 2019, 11, 2059. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Hoekstra, A.Y. Hydrological Response to Future Land-Use Change and Climate Change in a Tropical Catchment. Hydrol. Sci. J. 2018, 63, 1368–1385. [Google Scholar] [CrossRef]
- Dey, P.; Mishra, A. Separating the Impacts of Climate Change and Human Activities on Streamflow: A Review of Methodologies and Critical Assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.; Wang, D.; Liu, P.; Guo, S.; Xu, C.-Y. Separating the Impacts of Climate Change and Human Activities on Runoff Using the Budyko-Type Equations with Time-Varying Parameters. J. Hydrol. 2015, 522, 326–338. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of Land-Use and Climate Variability on Hydrological Components in the Johor River Basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Ahmed, N. Quantifying Relative Contribution of Land Use Change and Climate Change to Streamflow Alteration in the Bengawan Solo River, Indonesia. Hydrol. Sci. J. 2021, 66, 1059–1068. [Google Scholar] [CrossRef]
- Ramezani, M.R.; Helfer, F.; Yu, B. Individual and Combined Impacts of Urbanization and Climate Change on Catchment Runoff in Southeast Queensland, Australia. Sci. Total Environ. 2023, 861, 160528. [Google Scholar] [CrossRef]
- Zeng, S.; Xia, J.; Du, H. Separating the Effects of Climate Change and Human Activities on Runoff over Different Time Scales in the Zhang River Basin. Stoch. Environ. Res. Risk Assess. 2014, 28, 401–413. [Google Scholar] [CrossRef]
- Aryal, S.; Babel, M.S.; Gupta, A.; Farjad, B.; Khadka, D.; Hassan, Q.K. Assessment of Hydrological Baseline Condition and Its Alteration in Athabasca River Basin, Canada. J. Hydrol. Reg. Stud. 2024, 53, 101805. [Google Scholar] [CrossRef]
- Bawden, A.J.; Linton, H.C.; Burn, D.H.; Prowse, T.D. A Spatiotemporal Analysis of Hydrological Trends and Variability in the Athabasca River Region, Canada. J. Hydrol. 2014, 509, 333–342. [Google Scholar] [CrossRef]
- Peters, D.L.; Watt, D.; Devito, K.; Monk, W.A.; Shrestha, R.R.; Baird, D.J. Changes in Geographical Runoff Generation in Regions Affected by Climate and Resource Development: A Case Study of the Athabasca River. J. Hydrol. Reg. Stud. 2022, 39, 100981. [Google Scholar] [CrossRef]
- Peters, D.L.; Atkinson, D.; Monk, W.A.; Tenenbaum, D.E.; Baird, D.J. A Multi-scale Hydroclimatic Analysis of Runoff Generation in the Athabasca River, Western Canada. Hydrol. Process. 2013, 27, 1915–1934. [Google Scholar] [CrossRef]
- Zaghloul, M.S.; Ghaderpour, E.; Dastour, H.; Farjad, B.; Gupta, A.; Eum, H.; Achari, G.; Hassan, Q.K. Long Term Trend Analysis of River Flow and Climate in Northern Canada. Hydrology 2022, 9, 197. [Google Scholar] [CrossRef]
- Chen, Z.; Grasby, S.E. Reconstructing River Discharge Trends from Climate Variables and Prediction of Future Trends. J. Hydrol. 2014, 511, 267–278. [Google Scholar] [CrossRef]
- Rood, S.B.; Stupple, G.W.; Gill, K.M. Century-long Records Reveal Slight, Ecoregion-localized Changes in Athabasca River Flows. Hydrol. Process. 2015, 29, 805–816. [Google Scholar] [CrossRef]
- Sauchyn, D.J.; St-Jacques, J.-M.; Luckman, B.H. Long-Term Reliability of the Athabasca River (Alberta, Canada) as the Water Source for Oil Sands Mining. Proc. Natl. Acad. Sci. USA 2015, 112, 12621–12626. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Zaghloul, M.S.; Dastour, H.; Gupta, A.; Achari, G.; Hassan, Q.K. Least-Squares Triple Cross-Wavelet and Multivariate Regression Analyses of Climate and River Flow in the Athabasca River Basin. J. Hydrometeorol. 2023, 24, 1883–1900. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Du, X.; Wang, J. Assessing Climate Change Impacts on Fresh Water Resources of the Athabasca River Basin, Canada. Sci. Total Environ. 2017, 601–602, 425–440. [Google Scholar] [CrossRef]
- Eum, H.-I.; Dibike, Y.; Prowse, T. Climate-Induced Alteration of Hydrologic Indicators in the Athabasca River Basin, Alberta, Canada. J. Hydrol. 2017, 544, 327–342. [Google Scholar] [CrossRef]
- Hwang, H.; Park, Y.; Sudicky, E.A.; Berg, S.J.; McLaughlin, R.; Jones, J.P. Understanding the Water Balance Paradox in the Athabasca River Basin, Canada. Hydrol. Process. 2018, 32, 729–746. [Google Scholar] [CrossRef]
- Kerkhoven, E.; Gan, T.Y. Differences in the Potential Hydrologic Impact of Climate Change to the Athabasca and Fraser River Basins of Canada with and without Considering Shifts in Vegetation Patterns Induced by Climate Change. J. Hydrometeorol. 2013, 14, 963–976. [Google Scholar] [CrossRef]
- DHI MIKE SHE: User Guide and Reference Manual. 2024. Available online: https://manuals.mikepoweredbydhi.help/latest/Water_Resources/MIKE_SHE_Print.pdf (accessed on 15 January 2024).
- Keilholz, P.; Disse, M.; Halik, Ü. Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model. Water 2015, 7, 3040–3056. [Google Scholar] [CrossRef]
- Ramteke, G.; Singh, R.; Chatterjee, C. Assessing Impacts of Conservation Measures on Watershed Hydrology Using MIKE SHE Model in the Face of Climate Change. Water Resour. Manag. 2020, 34, 4233–4252. [Google Scholar] [CrossRef]
- Government of Alberta. Lower Athabasca Region: Surface Water Quantitiy Management Framework for the Lower Athabasca River; Government of Alberta: Edmonton, AB, Canada, 2015; ISBN 978-1-4601-2173-3.
- WaterSMART Solutions Ltd. A Roadmap for Sustainable Water Management in the Athabasca River Basin; WaterSMART Solutions Ltd. for Alberta Innovates: Calgary, AB, Canada, 2018; p. 247. [Google Scholar]
- Eum, H.-I.; Gupta, A. Hybrid Climate Datasets from a Climate Data Evaluation System and Their Impacts on Hydrologic Simulations for the Athabasca River Basin in Canada. Hydrol. Earth Syst. Sci. 2019, 23, 5151–5173. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Wijesekara, G.N.; Farjad, B.; Gupta, A.; Qiao, Y.; Delaney, P.; Marceau, D.J. A Comprehensive Land-Use/Hydrological Modeling System for Scenario Simulations in the Elbow River Watershed, Alberta, Canada. Environ. Manag. 2014, 53, 357–381. [Google Scholar] [CrossRef]
- Dastour, H.; Ghaderpour, E.; Zaghloul, M.S.; Farjad, B.; Gupta, A.; Eum, H.; Achari, G.; Hassan, Q.K. Wavelet-Based Spatiotemporal Analyses of Climate and Vegetation for the Athabasca River Basin in Canada. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103044. [Google Scholar] [CrossRef]
- Kalyanapu, A.J.; Burian, S.J.; McPherson, T.N. Effect of Land Use-Based Surface Roughness on Hydrologic Model Output. J. Spat. Hydrol. 2009, 9, 51. [Google Scholar]
- Pradhan, N.R.; Downer, C.W.; Marchenko, S. Catchment Hydrological Modeling with Soil Thermal Dynamics during Seasonal Freeze-Thaw Cycles. Water 2019, 11, 116. [Google Scholar] [CrossRef]
- Thompson, J.R.; Green, A.J.; Kingston, D.G.; Gosling, S.N. Assessment of Uncertainty in River Flow Projections for the Mekong River Using Multiple GCMs and Hydrological Models. J. Hydrol. 2013, 486, 1–30. [Google Scholar] [CrossRef]
- Ma, L.; He, C.; Bian, H.; Sheng, L. MIKE SHE Modeling of Ecohydrological Processes: Merits, Applications, and Challenges. Ecol. Eng. 2016, 96, 137–149. [Google Scholar] [CrossRef]
- Turgeon, F.; Larocque, M.; Meyzonnat, G.; Dorner, S.; Bourgault, M.-A. Examining the Challenges of Simulating Surface Water–Groundwater Interactions in a Post-Glacial Environment. Can. Water Resour. J./Rev. Can. Des Ressour. Hydr. 2018, 43, 262–280. [Google Scholar] [CrossRef]
- Waseem, M.; Kachholz, F.; Klehr, W.; Tränckner, J. Suitability of a Coupled Hydrologic and Hydraulic Model to Simulate Surface Water and Groundwater Hydrology in a Typical North-Eastern Germany Lowland Catchment. Appl. Sci. 2020, 10, 1281. [Google Scholar] [CrossRef]
- Dastour, H.; Hassan, Q.K. Quantifying the Influence of Climate Variables on Vegetation Through Remote Sensing and Multi-Dimensional Data Analysis. Earth Syst. Environ. 2024, 8, 165–180. [Google Scholar] [CrossRef]
- Downing, D.J.; Pettapiece, W.W. Natural Regions and Subregions of Alberta; Natural Regions Committee: Edmonton, AB, Canada, 2006; ISBN 978-0-7785-4572-9. [Google Scholar]
- Environment Canada. Scientific Review for the Identification of Critical Habitat for Woodland Caribou (Rangifer Tarandus Caribou), Boreal Population, in Canada; Environment Canada: Ottawa, ON, Canada, 2008.
- Biodiversity in the Boreal Forest-Regional Aquatics Monitoring Program (RAMP). Available online: http://www.ramp-alberta.org/river/boreal/alberta.aspx (accessed on 3 December 2024).
- Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Introducing a New Remote Sensing-Based Model for Forecasting Forest Fire Danger Conditions at a Four-Day Scale. Remote Sens. 2019, 11, 2101. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Bi, H.; Liu, B.; Wu, J.; Yun, L.; Chen, Z.; Cui, Z. Effects of Precipitation and Landuse on Runoff during the Past 50 Years in a Typical Watershed in Loess Plateau, China. Int. J. Sediment Res. 2009, 24, 352–364. [Google Scholar] [CrossRef]
- Ahmed, N.; Wang, G.; Booij, M.J.; Xiangyang, S.; Hussain, F.; Nabi, G. Separation of the Impact of Landuse/Landcover Change and Climate Change on Runoff in the Upstream Area of the Yangtze River, China. Water Resour. Manag. 2022, 36, 181–201. [Google Scholar] [CrossRef]
- Akbari, S.; Reddy, M.J. Change Detection and Attribution of Flow Regime: A Case Study of Allegheny River Catchment, PA (US). Sci. Total Environ. 2019, 662, 192–204. [Google Scholar] [CrossRef]
- Tong, S.T.Y.; Yang, H.; Chen, H.; Yang, J.Y. Hydrologic Impacts of Climate Change and Urbanization in the Las Vegas Wash Watershed, Nevada. J. Water Clim. Change 2016, 7, 598–620. [Google Scholar] [CrossRef]
- Government of Alberta. Annual Report 2022: Land Use Changes in Alberta; Government of Alberta: Edmonton, AB, Canada, 2023.
- Peace-Athabasca Delta Ecological Monitoring Program (PADEMP). Available online: https://web.archive.org/web/20190718032140/pademp.com/ (accessed on 25 December 2024).
- Morales-Marín, L.A.; Rokaya, P.; Sanyal, P.R.; Sereda, J.; Lindenschmidt, K.E. Changes in Streamflow and Water Temperature Affect Fish Habitat in the Athabasca River Basin in the Context of Climate Change. Ecol. Model. 2019, 407, 108718. [Google Scholar] [CrossRef]
- Chernos, M.; MacDonald, R.J.; Nemeth, M.W.; Craig, J.R. Current and Future Projections of Glacier Contribution to Streamflow in the Upper Athabasca River Basin. Can. Water Resour. J./Rev. Can. Des Ressour. Hydr. 2020, 45, 324–344. [Google Scholar] [CrossRef]
- Dibike, Y.; Prowse, T.; Bonsal, B.; O’Neil, H. Implications of Future Climate on Water Availability in the Western Canadian River Basins. Int. J. Climatol. 2017, 37, 3247–3263. [Google Scholar] [CrossRef]
- Karlsson, I.B.; Sonnenborg, T.O.; Refsgaard, J.C.; Trolle, D.; Børgesen, C.D.; Olesen, J.E.; Jeppesen, E.; Jensen, K.H. Combined Effects of Climate Models, Hydrological Model Structures and Land Use Scenarios on Hydrological Impacts of Climate Change. J. Hydrol. 2016, 535, 301–317. [Google Scholar] [CrossRef]
- Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis. Water 2020, 13, 28. [Google Scholar] [CrossRef]
- Orth, R.; Staudinger, M.; Seneviratne, S.I.; Seibert, J.; Zappa, M. Does Model Performance Improve with Complexity? A Case Study with Three Hydrological Models. J. Hydrol. 2015, 523, 147–159. [Google Scholar] [CrossRef]
- Government of Canada, S.C. Census Datasets. Available online: https://www12.statcan.gc.ca/datasets/index-eng.cfm?Temporal=2021 (accessed on 26 March 2024).
- Alberta’s Municipal Population Total from 1960 to 2023-Open Government. Available online: https://open.alberta.ca/publications/alberta-municipal-population-total (accessed on 26 March 2024).
Scenario | Climate Period | LULC | Remarks |
---|---|---|---|
S1 | 1960–1989 | Baseline (2001) | Baseline |
S2 | 1990–2019 | Recent (2015) | Recent |
S3 | 1960–1989 | Recent (2015) | Hypothetical baseline |
S4 | 1990–2019 | Baseline (2001) | Hypothetical recent |
LULC Class | Entire | Upper | Lower | |||
---|---|---|---|---|---|---|
2001 | 2015 | 2001 | 2015 | 2001 | 2015 | |
Water Bodies | 1.76 | 1.75 | 1.96 | 1.94 | 0.57 | 0.61 |
Grasslands | 12.26 | 10.19 | 13.92 | 10.54 | 2.83 | 8.36 |
Shrublands | 0.04 | 0.01 | 0.01 | 0.01 | 0.15 | 0.04 |
Savannas | 44.88 | 46.16 | 42.13 | 42.92 | 60.41 | 64.27 |
Evergreen Broadleaf Forests | 4.68 | 6.35 | 4.91 | 7.17 | 3.35 | 1.69 |
Deciduous Broadleaf Forests | 35.60 | 33.85 | 36.21 | 35.68 | 32.51 | 23.87 |
Evergreen Needleleaf Forests | 0.02 | 0.63 | 0.02 | 0.61 | 0.03 | 0.72 |
Non-Vegetated Lands | 0.73 | 0.99 | 0.81 | 1.08 | 0.14 | 0.44 |
Urban Areas | 0.04 | 0.06 | 0.04 | 0.07 | 0.01 | 0.01 |
Variables | Region | Mean Value in Each Scenario | Absolute Contribution of Each Factor (%) | |||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | CC | LULCC | Combined | ||
Annual streamflow (m3/s) | Entire | 675.0 | 620.9 | 673.6 | 622.1 | −52.9 (7.9%) | −1.5 (0.2%) | −54.1 (8.0%) |
Upper | 574.9 | 527.6 | 573.5 | 528.7 | −46.2 (8.0%) | −1.4 (0.2%) | −47.3 (8.2%) | |
Lower | 107.5 | 99.5 | 107.5 | 99.4 | −8.1 (7.6%) | −0.1 (0.01%) | −8.0 (7.4%) | |
Annual 7-day minimum flow (m3/s) | Entire | 169.3 | 162.4 | 168.6 | 161.5 | −7.8 (4.6%) | −0.6 (0.4%) | −6.8 (4.0%) |
Upper | 143.1 | 135.9 | 142.5 | 136.4 | −6.7 (4.7%) | −0.5 (0.4%) | −7.2 (5.0%) | |
Lower | 11.7 | 12.6 | 12.0 | 13.1 | 1.4 (12.4%) | 0.3 (2.5%) | 0.9 (7.6%) | |
Annual 7-day maximum flow (m3/s) | Entire | 2442.1 | 2042.7 | 2431.3 | 2088.4 | −353.6 (14.5%) | −10.8 (0.5%) | −399.4 (16.4%) |
Upper | 2160.3 | 1826.4 | 2151.1 | 1831.6 | −328.7 (15.2%) | −9.2 (0.4%) | −333.9 (15.4%) | |
Lower | 511.3 | 426.1 | 510.0 | 425.4 | −86.0 (16.8%) | −1.3 (0.3%) | −85.3 (16.6%) | |
Annual date of minimum flow (day) | Entire | 63.0 | 58 | 64 | 57 | −6.0 (9.5%) | 1.0 (1.6%) | −5.0 (7.9%) |
Upper | 63.0 | 58 | 64 | 57 | −6.0 (9.5%) | 1.0 (1.6%) | −5.0 (7.9%) | |
Lower | 172.0 | 173 | 173 | 171 | −1.0 (0.6%) | 1.0 (0.6%) | 1.0(0.6%) | |
Annual date of maximum flow (day) | Entire | 184.0 | 186.0 | 186.0 | 185 | 1.0 (0.5%) | 2.0 (1.1%) | 2.0 (1.1%) |
Upper | 182.0 | 183.0 | 183.0 | 180 | −2.0 (−1.1%) | 1.0 (0.5%) | 1.0 (0.5%) | |
Lower | 190.0 | 187.0 | 191.0 | 186 | −4.0 (2.1%) | 1.0 (0.5%) | −3.0 (1.6%) | |
Annual evapotranspiration (mm) | Entire | 384 | 365.6 | 384.3 | 365.4 | −18.6 (4.8%) | 0.2 (0.0%) | −18.4 (4.8%) |
Upper | 390.5 | 371.5 | 391.3 | 370.8 | −19.7 (5.0%) | 0.7 (0.2%) | −19.0 (4.9%) | |
Lower | 346.6 | 331.8 | 344.1 | 334.2 | −12.4 (3.6%) | −2.5 (0.7%) | −14.8 (4.3%) | |
Annual groundwater recharge (mm) | Entire | 144.3 | 133.8 | 143.7 | 134.3 | −10.0 (6.9%) | −0.6 (0.4%) | −10.5 (7.3%) |
Upper | 148.3 | 136.5 | 147.4 | 137.3 | −11.0 (7.4%) | −0.9 (0.6%) | −11.8 (8.0%) | |
Lower | 121.4 | 118.2 | 122.5 | 117.1 | −4.3 (3.6%) | 1.1 (0.9%) | −3.2 (2.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aryal, S.; Babel, M.S.; Gupta, A.; Farjad, B.; Khadka, D.; Hassan, Q.K. Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada. Hydrology 2025, 12, 7. https://doi.org/10.3390/hydrology12010007
Aryal S, Babel MS, Gupta A, Farjad B, Khadka D, Hassan QK. Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada. Hydrology. 2025; 12(1):7. https://doi.org/10.3390/hydrology12010007
Chicago/Turabian StyleAryal, Sharad, Mukand S. Babel, Anil Gupta, Babak Farjad, Dibesh Khadka, and Quazi K. Hassan. 2025. "Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada" Hydrology 12, no. 1: 7. https://doi.org/10.3390/hydrology12010007
APA StyleAryal, S., Babel, M. S., Gupta, A., Farjad, B., Khadka, D., & Hassan, Q. K. (2025). Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada. Hydrology, 12(1), 7. https://doi.org/10.3390/hydrology12010007