Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management
<p>Schematic grouping of key geochemical reactions (not balanced) that control mine waste-rock drainage quality. The oxidative dissolution of sulfide minerals is the major acid-producing reaction (<b>a</b>), which has been extensively studied for pyrite and other major sulfides. Galvanic interactions (<b>b</b>) can promote the preferential dissolution of sulfide minerals (<a href="#sec2dot5-minerals-10-00728" class="html-sec">Section 2.5</a>). Additional reactions (<b>c</b>) can introduce metals and other solutes into the waste rock drainage without directly affecting drainage pH. The dissolution of carbonates, Fe/Al-(oxy)hydroxides, and silicates (simplified, generalized stoichiometries; (<b>d</b>) consumes protons and thereby perform a net-buffering action.</p> "> Figure 2
<p>Schematic of key geochemical attenuation processes in mine waste rock: adsorption (<b>a</b>) and secondary mineral formation (<b>b</b>). Through adsorption, (hydrated) ionic or ligated solutes and complexes adsorb to mineral surface groups (-M-(x)) through covalent bonding or electrostatic interaction. Secondary minerals form on mineral surfaces or spontaneously in solution through (co-)precipitation of cationic and anionic aqueous solutes. The occlusion of mineral surfaces by secondary mineral precipitation is referred to as passivation or armoring (<b>c</b>), discussed in <a href="#sec2dot5-minerals-10-00728" class="html-sec">Section 2.5</a>.</p> "> Figure 3
<p>Schematic illustration of relevant aqueous (blue) and gaseous (red) mass transport processes in waste-rock piles, distinguishing between macroscale (<b>a</b>) and porescale or microscale (<b>b</b>) processes.</p> "> Figure 4
<p>Schematic illustration of major couplings and feedbacks between geochemical reactions and physical transport processes. Solid arrow lines indicate interactions or a control-hierarchy between different processes, with the width of the arrow being (qualitatively) proportional to the magnitude or strength of the feedback. External controls include that of site meteorology on infiltration, temperature, and gas pressure and that of site geology and communition method on waste-rock particle sizes, as indicated by the asterisks.</p> ">
Abstract
:1. Introduction
1.1. A global Environmental Perspective on Mine Wastes
1.2. Waste Rock as Unique Class of Mine Waste
- The finer-grained nature of tailings materials compared to coarser-grained waste rock may yield elevated exposed mineral surface area (which can, depending on the mineralogy, increase geochemical reaction rates), whereas the wider particle size range and textural properties of waste rock give rise to quite unique (non-uniform) hydrodynamic behavior, and,
- Storage practices for waste rock and tailings materials create distinct conditions that alter the controls of certain geochemical processes and physical transport mechanisms. Namely, waste rock is mostly placed in tall stockpiles that are porous, hydraulically unsaturated, and therefore relatively exposed to atmospheric conditions (i.e., mostly oxic environments) [16]. In contrast, tailings slurries are often pumped into tailings ponds, where particulates settle under limited ambient exposure (i.e., fully saturated, inundated tailings that can exhibit sub-oxic, reducing conditions [17], although tailings may also be stored as backfills or dry stacks).
1.3. Scope of This Review
2. Geochemical Processes in Mine Waste Rock
2.1. Acid-Producing Reactions
2.1.1. Metal-Sulfide Mine Waste
2.1.2. Coal Mine Waste
2.2. Acid-Buffering Reactions
2.3. The Geochemistry of Neutral Drainage
- (i)
- (ii)
- Insufficient treatment of ARD (e.g., abandoned mine sites using passive ARD treatment), where the pH is successfully increased to near-neutral but certain contaminants remain present at elevated concentrations;
- (iii)
- Within reclaimed ARD-generating mine wastes, where the rate of acid generation is decreased to levels that can be buffered by neutralizing minerals, but still allows for the leaching of metals.
Antamina, Peru [128] | Hitura, Finland [149,150] | Lac Tio, Canada [130] | Beaver Brook, Canada [151] | Greens Creek, United States [152] | Giant Mine, Canada [153] | |
---|---|---|---|---|---|---|
pH | 6.5–8.5 | 6.1–7.0 | 6.5–7.5 | 5.7–8.6 | 6.5–8.5 | 6.7 |
Ni (mg/L) | N/R | 0.2–14.3 | 0.1–8.8 | N/R | 0–1 | 0.029 |
Zn (mg/L) | 0.1–80 | 25–660 | N/R | N/R | 0–150 | 0.027 |
Mn (mg/L) | 0.001–0.2 | 4.7–8.9 | N/R | N/R | 0–35 | 0.446 |
Co (mg/L) | N/R | 0.05–7.2 | N/R | N/R | N/R | <0.007 |
As (mg/L) | 0.001–1.0 | N/R | N/R | 0–2.3 | 0–0.03 | 4060 |
Se (mg/L) | 0.001–0.2 | N/R | N/R | N/R | 0–0.02 | <0.03 |
Sb (mg/L) | 0.001–0.2 | N/R | N/R | 0–26 | 0–0.06 | 11.9 |
Mo (mg/L) | 0.0–1.0 | N/R | N/R | N/R | 0–0.02 | 0.07 |
SO4 (g/L) | 0.1–2 | 2.1–5.2 | 0.1–3.5 | 0.075–0.9 | 2–8 | 0.5 |
Ca (mg/L) | 50–600 | 200–450 | 10–70 | 9–231 | 400–800 | 313 |
2.4. Attenuation Processes
2.4.1. Adsorption
2.4.2. Secondary Mineral Formation
2.5. Mineral Reactivity
2.6. Characterization of Bulk Waste-Rock Reactivity
2.6.1. Static and Kinetic Testing
2.6.2. Macroscale Geochemical Heterogeneity
3. Physical Transport Processes
3.1. Aqueous Transport
3.2. Gas Transport
3.3. Heat Transport
3.4. Physical Heterogeneity
3.5. Coupling Between Geochemical Reactions and Physical Transport
4. Practical Waste-Rock Drainage Predictions
4.1. Scaling Phenomena
4.2. Reactive-Transport Models (RTMs)
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine Wastes: Past, Present, Future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G. The geochemistry of acid mine drainage. Environ. Geochem. 2003, 9, 149–204. [Google Scholar] [CrossRef]
- Dino, G.A.; Cavallo, A.; Rossetti, P.; Garamvölgyi, E.; Sándor, R.; Coulon, F. Towards Sustainable Mining: Exploiting Raw Materials from Extractive Waste Facilities. Sustainability 2020, 12, 2383. [Google Scholar] [CrossRef] [Green Version]
- Lottermoser, B.G. Recycling, Reuse and Rehabilitation of Mine Wastes. Elements 2011, 7, 405–410. [Google Scholar] [CrossRef]
- Lèbre, É.; Corder, G.D.; Golev, A. Sustainable practices in the management of mining waste: A focus on the mineral resource. Miner. Eng. 2017, 107, 34–42. [Google Scholar] [CrossRef]
- Bian, Z.; Miao, X.; Lei, S.; Chen, S.; Wang, W.; Struthers, S. The challenges of reusing mining and mineral-processing wastes. Science 2012, 337, 702–703. [Google Scholar] [CrossRef]
- Byrne, P.; Hudson-Edwards, K.A.; Bird, G.; Macklin, M.G.; Brewer, P.A.; Williams, R.D.; Jamieson, H.E. Water quality impacts and river system recovery following the 2014 Mount Polley mine tailings dam spill, British Columbia, Canada. Appl. Geochem. 2018, 91, 64–74. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Torres-Cruz, L.A.; Bachus, R.C. Why coal ash and tailings dam disasters occur. Science 2019, 364, 526–528. [Google Scholar] [CrossRef]
- Fischer, S.; Rosqvist, G.; Chalov, S.; Jarsjö, J. Disproportionate water quality impacts from the century-old nautanen copper mines, Northern Sweden. Sustainability 2020, 12, 1394. [Google Scholar] [CrossRef] [Green Version]
- Demchak, J.; Skousen, J.; McDonald, L.M. Longevity of acid discharges from underground mines located above the regional water table. J. Environ. Qual. 2004, 33, 656–668. [Google Scholar] [CrossRef] [Green Version]
- Lottermoser, B.G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 3-642-12419-4. [Google Scholar] [CrossRef]
- Mudd, G.M. The Environmental sustainability of mining in Australia: Key mega-trends and looming constraints. Resour. Policy 2010, 35, 98–115. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Nordstrom, D.K.; Beckie, R.D.; Cicerone, D.S.; Elliot, T.; Edraki, M.; Valente, T.; França, S.C.A.; Kumar, P.; Oyarzún, R.; et al. Guidance for the Integrated Use of Hydrological, Geochemical, and Isotopic Tools in Mining Operations. Mine Water Environ. 2020, 39, 204–228. [Google Scholar] [CrossRef] [Green Version]
- Hudson-Edwards, A.K.; Dold, B. Mine waste characterization, management and remediation. Minerals 2015, 5, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, H.E. Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements 2011, 7, 381–386. [Google Scholar] [CrossRef]
- Amos, R.T.; Blowes, D.W.; Bailey, B.L.; Sego, D.C.; Smith, L.; Ritchie, A.I.M. Waste-rock hydrogeology and geochemistry. Appl. Geochem. 2015, 57, 140–156. [Google Scholar] [CrossRef]
- Lindsay, M.B.J.; Moncur, M.C.; Bain, J.G.; Jambor, J.L.; Ptacek, C.J.; Blowes, D.W. Geochemical and mineralogical aspects of sulfide mine tailings. Appl. Geochem. 2015, 57, 157–177. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Franzidis, J.-P.; Petersen, J. Heap leaching technology—current state, innovations, and future directions: A review. Miner. Process. Extr. Metall. Rev. 2016, 37, 73–119. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.O.; Botz, M.M. Heap leach modeling—A review of approaches to metal production forecasting. Miner. Metall. Process. 2017, 34, 53–64. [Google Scholar] [CrossRef]
- Pradhan, N.; Nathsarma, K.C.; Srinivasa Rao, K.; Sukla, L.B.; Mishra, B.K. Heap bioleaching of chalcopyrite: A review. Miner. Eng. 2008, 21, 355–365. [Google Scholar] [CrossRef]
- Dold, B. Sustainability in metal mining: From exploration, over processing to mine waste management. Rev. Environ. Sci. Bio/Technol. 2008, 7, 275. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef]
- Evangelou, V.P.; Zhang, Y.L. A review: Pyrite oxidation mechanisms and acid mine drainage prevention. Crit. Rev. Environ. Sci. Technol. 1995, 25, 141–199. [Google Scholar] [CrossRef]
- Cornelis, G.; Johnson, C.A.; Van Gerven, T.; Vandecasteele, C. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: A review. Appl. Geochem. 2008, 23, 955–976. [Google Scholar] [CrossRef]
- Chandra, A.P.; Gerson, A.R. The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surf. Sci. Rep. 2010, 65, 293–315. [Google Scholar] [CrossRef]
- Li, Y.; Kawashima, N.; Li, J.; Chandra, A.P.; Gerson, A.R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv. Colloid Interface Sci. 2013, 197–198, 1–32. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.; Lottermoser, B. Principles of Sulfide Oxidation and Acid Rock Drainage. In Environmental Indicators in Metal Mining; Springer: Berlin/Heidelberg, Germany, 2016; pp. 15–34. ISBN 978-3-319-42729-4. [Google Scholar]
- Bosecker, K. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591–604. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Southam, G. Geomicrobiology of sulfide mineral oxidation. In Reviews in Mineralogy; Banfield, J.F., Nealson, K.H., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1997; Volume 35, pp. 361–390. [Google Scholar]
- Rawlings, D.E. Heavy metal mining using microbes. Annu. Rev. Microbiol. 2002, 56, 65–91. [Google Scholar] [CrossRef]
- Baker, B.J.; Banfield, J.F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B.; Hallberg, K.B. The microbiology of acidic mine waters. Res. Microbiol. 2003, 154, 466–473. [Google Scholar] [CrossRef]
- Watling, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy 2006, 84, 81–108. [Google Scholar] [CrossRef]
- Rawlings, D.E.; Johnson, D.B. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology 2007, 153, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-N.; Kuang, J.-L.; Shu, W.-S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol. 2016, 24, 581–593. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Boxall, N.J.; Gumulya, Y.; Khaleque, H.N.; Morris, C.; Bohu, T.; Cheng, K.Y.; Usher, K.M.; Lakaniemi, A.M. Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy 2018, 180, 7–25. [Google Scholar] [CrossRef]
- Ledin, M.; Pedersen, K. The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes. Earth-Sci. Rev. 1996, 41, 67–108. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Neculita, C.M.; Zagury, G.J.; Bussière, B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: Critical review and research needs. J. Environ. Qual. 2007, 36, 1–16. [Google Scholar] [CrossRef]
- RoyChowdhury, A.; Sarkar, D.; Datta, R. Remediation of acid mine drainage-impacted water. Curr. Pollut. Rep. 2015, 1, 131–141. [Google Scholar] [CrossRef]
- Jamieson, H.E.; Walker, S.R.; Parsons, M.B. Mineralogical characterization of mine waste. Appl. Geochem. 2015, 57, 85–105. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.; Lottermoser, B.G. A critical review of acid rock drainage prediction methods and practices. Miner. Eng. 2015, 82, 107–124. [Google Scholar] [CrossRef]
- Dold, B. Acid rock drainage prediction: A critical review. J. Geochem. Explor. 2017, 172, 120–132. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Environmental Indicators in Metal. Mining; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-42729-4. [Google Scholar] [CrossRef] [Green Version]
- Moodley, I.; Sheridan, C.M.; Kappelmeyer, U.; Akcil, A. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Miner. Eng. 2018, 126, 207–220. [Google Scholar] [CrossRef]
- Rajaram, V.; Dutta, S.; Parameswaran, K. Sustainable Mining Practices: A Global Perspective; A.A. Balkema: Leiden, The Netherlands, 2005; ISBN 9058096890. [Google Scholar]
- Nordstrom, D.K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Öhlander, B.; Chatwin, T.; Alakangas, L. Management of sulfide-bearing waste, a challenge for the mining industry. Minerals 2012, 2, 1–10. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Batterham, R.J. The mine of the future—Even more sustainable. Miner. Eng. 2017, 107, 2–7. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; García-Gómez, J.J.; Velasco-Muñoz, J.F.; Carretero-Gómez, A. Mining waste and its sustainable management: Advances in worldwide research. Minerals 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kawashima, N.; Fan, R.; Schumann, R.C.; Gerson, A.R.; Smart, R.S.C. Method for distinctive estimation of stored acidity forms in acid mine wastes. Environ. Sci. Technol. 2014, 48, 11445–11452. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.J. Minerals Sulphides. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-409548-9. [Google Scholar]
- Elberling, B.; Schippers, A.; Sand, W. Bacterial and chemical oxidation of pyritic mine tailings at low temperatures. J. Contam. Hydrol. 2000, 41, 225–238. [Google Scholar] [CrossRef]
- Singer, P.C.; Stumm, W. Acidic mine drainage: The rate-determining step. Science 1970, 167, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.C.; de Mendonça Silva, J.C.; Duarte, H.A. Pyrite oxidation mechanism by oxygen in aqueous medium. J. Phys. Chem. C 2016, 120, 2760–2768. [Google Scholar] [CrossRef] [Green Version]
- Tabelin, C.B.; Suchol, V.; Mayumi, I.; Naoki, H.; Toshifumi, I. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions. Sci. Total Environ. 2017, 581–582, 126–135. [Google Scholar] [CrossRef]
- Schippers, A.; Breuker, A.; Blazejak, A.; Bosecker, K.; Kock, D.; Wright, T.L. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 2010, 104, 342–350. [Google Scholar] [CrossRef]
- Luther, G.W.; Findlay, A.; MacDonald, D.; Owings, S.; Hanson, T.; Beinart, R.; Girguis, P. Thermodynamics and kinetics of sulfide oxidation by oxygen: A look at inorganically controlled reactions and biologically mediated processes in the environment. Front. Microbiol. 2011, 2, 62. [Google Scholar] [CrossRef] [Green Version]
- Schrenk, M.O.; Edwards, K.J.; Goodman, R.M.; Hamers, R.J.; Banfield, J.F. Distribution of thiobacillus ferrooxidans and Leptospirillum ferrooxidans: Implications for generation of acid mine drainage. Science 1998, 279, 1519–1522. [Google Scholar] [CrossRef] [Green Version]
- Korehi, H.; Blöthe, M.; Schippers, A. Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage. Res. Microbiol. 2014, 165, 713–718. [Google Scholar] [CrossRef]
- Hallberg, K.B. New perspectives in acid mine drainage microbiology. Hydrometall. 2010, 104, 448–453. [Google Scholar] [CrossRef]
- Blackmore, S.; Vriens, B.; Sorensen, M.; Power, I.M.; Smith, L.; Hallam, S.J.; Mayer, U.K.; Beckie, R.D. Microbial and geochemical controls on waste rock weathering and drainage quality. Sci. Total Environ. 2018, 640–641, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Rimstidt, J.D.; Vaughan, D.J. Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 2003, 67, 873–880. [Google Scholar] [CrossRef]
- Schippers, A.; Sand, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 1999, 65, 319–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borilova, S.; Mandl, M.; Zeman, J.; Kucera, J.; Pakostova, E.; Janiczek, O.; Tuovinen, O.H. Can sulfate be the first dominant aqueous sulfur species formed in the oxidation of pyrite by acidithiobacillus ferrooxidans? Front. Microbiol. 2018, 9, 3134. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.C.; Romaniello, S.J.; Reinhard, C.T.; Gregory, D.D.; Garcia-Robledo, E.; Revsbech, N.P.; Canfield, D.E.; Lyons, T.W.; Anbar, A.D. Experimental determination of pyrite and molybdenite oxidation kinetics at nanomolar oxygen concentrations. Geochim. Cosmochim. Acta 2019, 249, 160–172. [Google Scholar] [CrossRef]
- Kameia, G.; Ohmotob, H. The kinetics of reactions between pyrite and O2-bearing water revealed from in situ monitoring of DO, Eh and pH in a closed system. Geochim. Cosmochim. Acta 2000, 64, 2585–2601. [Google Scholar] [CrossRef]
- Janzen, M.P.; Nicholson, R.V.; Scharer, J.M. Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochim. Cosmochim. Acta 2000, 64, 1511–1522. [Google Scholar] [CrossRef]
- Nicholson, R.V.; Gillham, R.W.; Reardon, E.J. Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics. Geochim. Cosmochim. Acta 1988, 52, 1077–1085. [Google Scholar] [CrossRef]
- Williamson, M.A.; Rimstidt, J.D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 1994, 58, 5443–5454. [Google Scholar] [CrossRef]
- Rimstidt, J.D.; Chermak, J.A.; Gagen, P.M. Rates of Reaction of Galena, Sphalerite, Chalcopyrite, and Arsenopyrite with Fe(III) in Acidic Solutions. In Environmental Geochemistry of Sulfide Oxid; American Chemical Society: Washington, DC, USA, 1993; Volume 550, pp. 1–2. ISBN 9780841227729. [Google Scholar]
- Walker, F.P.; Schreiber, M.E.; Rimstidt, J.D. Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim. Cosmochim. Acta 2006, 70, 1668–1676. [Google Scholar] [CrossRef] [Green Version]
- Heidel, C.; Tichomirowa, M.; Breitkopf, C. Sphalerite oxidation pathways detected by oxygen and sulfur isotope studies. Appl. Geochem. 2011, 26, 2247–2259. [Google Scholar] [CrossRef]
- Olson, G.J.; Clark, T.R. Bioleaching of molybdenite. Hydrometallurgy 2008, 93, 10–15. [Google Scholar] [CrossRef]
- Jerz, J.K.; Rimstidt, J.D. Pyrite oxidation in moist air Associate editor: M. A. McKibben. Geochim. Cosmochim. Acta 2004, 68, 701–714. [Google Scholar] [CrossRef]
- Moses, C.O.; Herman, J.S. Pyrite oxidation at circumneutral pH. Geochim. Cosmochim. Acta 1991, 55, 471–482. [Google Scholar] [CrossRef]
- Sun, H.; Chen, M.; Zou, L.; Shu, R.; Ruan, R. Study of the kinetics of pyrite oxidation under controlled redox potential. Hydrometallurgy 2015, 155, 13–19. [Google Scholar] [CrossRef]
- Long, H.; Dixon, D.G. Pressure oxidation of pyrite in sulfuric acid media: A kinetic study. Hydrometallurgy 2004, 73, 335–349. [Google Scholar] [CrossRef]
- Boon, M.; Heijnen, J.J. Chemical oxidation kinetics of pyrite in bioleaching processes. Hydrometallurgy 1998, 48, 27–41. [Google Scholar] [CrossRef]
- McKibben, M.A.; Barnes, H.L. Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochim. Cosmochim. Acta 1986, 50, 1509–1520. [Google Scholar] [CrossRef]
- Lehner, S.; Savage, K. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: Batch and flow-through reactor experiments with synthetic pyrite. Geochim. Cosmochim. Acta 2008, 72, 1788–1800. [Google Scholar] [CrossRef]
- Navarro, C.A.; von Bernath, D.; Jerez, C.A. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for Biomining and Bioremediation. Biol. Res. 2013, 46, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; He, F.; Zhang, X.; Sun, X.; Zheng, J.; Zheng, J. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol. Ecol. 2014, 87, 164–181. [Google Scholar] [CrossRef] [PubMed]
- Hendry, M.J.; Biswas, A.; Essilfie-Dughan, J.; Chen, N.; Day, S.J.; Barbour, S.L. Reservoirs of Selenium in Coal Waste Rock: Elk Valley, British Columbia, Canada. Environ. Sci. Technol. 2015, 49, 8228–8236. [Google Scholar] [CrossRef] [PubMed]
- Chon, H.-T.; Hwang, J.-H. Geochemical Characteristics of the Acid Mine Drainage in the Water System in the Vicinity of the Dogye Coal Mine in Korea. Environ. Geochem. Health 2000, 22, 155–172. [Google Scholar] [CrossRef]
- Black, A.; Craw, D. Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand. Int. J. Coal Geol. 2001, 45, 181–193. [Google Scholar] [CrossRef]
- Qureshi, A.; Maurice, C.; Öhlander, B. Potential of coal mine waste rock for generating acid mine drainage. J. Geochem. Explor. 2016, 160, 44–54. [Google Scholar] [CrossRef]
- Equeenuddin, S.M.; Tripathy, S.; Sahoo, P.K.; Panigrahi, M.K. Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India. J. Geochem. Explor. 2010, 105, 75–82. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Tripathy, S.; Equeenuddin, S.M.; Panigrahi, M.K. Geochemical characteristics of coal mine discharge vis-à-vis behavior of rare earth elements at Jaintia Hills coalfield, northeastern India. J. Geochem. Explor. 2012, 112, 235–243. [Google Scholar] [CrossRef]
- Szczepanska, J.; Twardowska, I. Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environ. Geol. 1999, 38, 249–258. [Google Scholar] [CrossRef]
- Banks, S.B.; Banks, D. Abandoned mines drainage: Impact assessment and mitigation of discharges from coal mines in the UK. Eng. Geol. 2001, 60, 31–37. [Google Scholar] [CrossRef]
- Hughes, J.; Craw, D.; Peake, B.; Lindsay, P.; Weber, P. Environmental characterisation of coal mine waste rock in the field: An example from New Zealand. Environ. Geol. 2007, 52, 1501–1509. [Google Scholar] [CrossRef]
- Calkins, W.H. The chemical forms of sulfur in coal: A review. Fuel 1994, 73, 475–484. [Google Scholar] [CrossRef]
- Kazadi Mbamba, C.; Harrison, S.T.L.; Franzidis, J.-P.; Broadhurst, J.L. Mitigating acid rock drainage risks while recovering low-sulfur coal from ultrafine colliery wastes using froth flotation. Miner. Eng. 2012, 29, 13–21. [Google Scholar] [CrossRef]
- Banerjee, D. Acid drainage potential from coal mine wastes: Environmental assessment through static and kinetic tests. Int. J. Environ. Sci. Technol. 2014, 11, 1365–1378. [Google Scholar] [CrossRef] [Green Version]
- Dutta, M.; Saikia, J.; Taffarel, S.R.; Waanders, F.B.; de Medeiros, D.; Cutruneo, C.M.N.L.; Silva, L.F.O.; Saikia, B.K. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geosci. Front. 2017, 8, 1285–1297. [Google Scholar] [CrossRef]
- Ghosh, W.; Dam, B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol. Rev. 2009, 33, 999–1043. [Google Scholar] [CrossRef] [Green Version]
- Acharya, C.; Sukla, L.B.; Misra, V.N. Biodepyritisation of coal. J. Chem. Technol. Biotechnol. 2004, 79, 1–12. [Google Scholar] [CrossRef]
- Schippers, A.; Rohwerder, T.; Sand, W. Intermediary sulfur compounds in pyrite oxidation: Implications for bioleaching and biodepyritization of coal. Appl. Microbiol. Biotechnol. 1999, 52, 104–110. [Google Scholar] [CrossRef]
- Davalos, A.; Pecina, E.T.; Soria, M.; Carrillo, F.R. Kinetics of Coal Desulfurization in An Oxidative Acid Media. Int. J. Coal Prep. Util. 2009, 29, 152–172. [Google Scholar] [CrossRef]
- Juszczak, A.; Domka, F.; Kozłowski, M.; Wachowska, H. Microbial desulfurization of coal with Thiobacillus ferrooxidans bacteria. Fuel 1995, 74, 725–728. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Faust, B.C.; Panda, F.A.; Koo, H.H.; Tsuchiya, H.M. Kinetics of the Removal of Iron Pyrite from Coal by Microbial Catalysis. Appl. Environ. Microbiol. 1981, 42, 259–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, L.; McNabb, J.A.; Paulk, J.M.; Gu, B.; McCarthy, J.F. Kinetics of iron(II) oxygenation at low partial pressure of oxygen in the presence of natural organic matter. Environ. Sci. Technol. 1993, 27, 1864–1870. [Google Scholar] [CrossRef]
- Kalin, M.; Cairns, J.; McCready, R. Ecological engineering methods for acid mine drainage treatment of coal wastes. Resour. Conserv. Recycl. 1991, 5, 265–275. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Puhakka, J.A. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng. Life Sci. 2007, 7, 541–564. [Google Scholar] [CrossRef]
- Lefticariu, L.; Walters, E.R.; Pugh, C.W.; Bender, K.S. Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: Field experiments. Appl. Geochem. 2015, 63, 70–82. [Google Scholar] [CrossRef]
- Küsel, K. Microbial cycling of iron and sulfur in acidic coal mining lake sediments. Water Air Soil Pollut. Focus 2003, 3, 67–90. [Google Scholar] [CrossRef]
- Ayora, C.; Caraballo, M.A.; Macias, F.; Rötting, T.S.; Carrera, J.; Nieto, J.-M. Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences. Environ. Sci. Pollut. Res. 2013, 20, 7837–7853. [Google Scholar] [CrossRef]
- Vriens, B.; Peterson, H.E.; Laurenzi, L.; Smith, L.; Aranda, C.; Mayer, K.U.; Beckie, R.D. Long-term monitoring of waste-rock weathering at Antamina, Peru. Chemosphere 2019, 215, 858–869. [Google Scholar] [CrossRef]
- Maree, J.P.; de Beer, M.; Strydom, W.F.; Christie, A.D.M.; Waanders, F.B. Neutralizing Coal Mine Effluent with Limestone to Decrease Metals and Sulphate Concentrations. Mine Water Environ. 2004, 23, 81–86. [Google Scholar] [CrossRef]
- Alakangas, L.; Andersson, E.; Mueller, S. Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes. Environ. Sci. Pollut. Res. 2013, 20, 7907–7916. [Google Scholar] [CrossRef]
- Davies, H.; Weber, P.; Lindsay, P.; Craw, D.; Peake, B.; Pope, J. Geochemical changes during neutralisation of acid mine drainage in a dynamic mountain stream, New Zealand. Appl. Geochem. 2011, 26, 2121–2133. [Google Scholar] [CrossRef]
- Chou, L.; Garrels, R.M.; Wollast, R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 1989, 78, 269–282. [Google Scholar] [CrossRef]
- Morse, J.W.; Arvidson, R.S. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Sci. Rev. 2002, 58, 51–84. [Google Scholar] [CrossRef]
- Kaufmann, G.; Dreybrodt, W. Calcite dissolution kinetics in the system CaCO3–H2O–CO2 at high undersaturation. Geochim. Cosmochim. Acta 2007, 71, 1398–1410. [Google Scholar] [CrossRef]
- Stumm, W.; Wollast, R. Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide minerals. Rev. Geophys. 1990, 28, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Schwertmann, U. Solubility and dissolution of iron oxides. Plant. Soil 1991, 130, 1–25. [Google Scholar] [CrossRef]
- White, A.F.; Brantley, S.L. Chemical weathering rates of silicate minerals; an overview. Rev. Mineral. Geochem. 1995, 31, 1–22. [Google Scholar]
- Gruber, C.; Kutuzov, I.; Ganor, J. The combined effect of temperature and pH on albite dissolution rate under far-from-equilibrium conditions. Geochim. Cosmochim. Acta 2016, 186, 154–167. [Google Scholar] [CrossRef]
- Rimstidt, J.D.; Dove, P.M. Mineral/solution reaction rates in a mixed flow reactor: Wollastonite hydrolysis. Geochim. Cosmochim. Acta 1986, 50, 2509–2516. [Google Scholar] [CrossRef]
- Kirste, D.; Pearce, J.; Golding, S. Parameterizing Geochemical Models: Do Kinetics of Calcite Matter? Procedia Earth Planet. Sci. 2017, 17, 606–609. [Google Scholar] [CrossRef]
- Vriens, B.; Skierszkan, E.K.; St-Arnault, M.; Salzsauler, K.A.; Aranda, C.; Mayer, K.U.; Beckie, R.D. Mobilization of metal(loid) oxyanions through circumneutral waste-rock drainage. ACS Omega 2019, 4, 10205–10215. [Google Scholar] [CrossRef] [Green Version]
- Plante, B.; Benzaazoua, M.; Bussière, B. Predicting Geochemical Behaviour of Waste Rock with Low Acid Generating Potential Using Laboratory Kinetic Tests. Mine Water Environ. 2011, 30, 2–21. [Google Scholar] [CrossRef]
- Plante, B.; Bussière, B.; Benzaazoua, M. Lab to field scale effects on contaminated neutral drainage prediction from the Tio mine waste rocks. J. Geochem. Explor. 2014, 137, 37–47. [Google Scholar] [CrossRef]
- Nicholson, R.V.; Rinker, M.J. Metal leaching from sulphide mine waste under neutral pH conditions. In Proceedings of the 5th International Conference on Acid Rock Drainage (ICARD), Denver, CO, USA, 21–24 May 2000; pp. 951–958. [Google Scholar]
- Price, W.A. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials. MEND Report 1.20.1. Available online: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5336546.pdf (accessed on 1 July 2020).
- Tabelin, C.B.; Silwamba, M.; Paglinawan, F.C.; Mondejar, A.J.S.; Duc, H.G.; Resabal, V.J.; Opiso, E.M.; Igarashi, T.; Tomiyama, S.; Ito, M.; et al. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere 2020, 260, 127574. [Google Scholar] [CrossRef]
- Tamoto, S.; Tabelin, C.B.; Igarashi, T.; Ito, M.; Hirojohsi, N. Short and long term release mechanisms of arsenic, selenium and boron from a tunnel-excavated sedimentary rock under in situ conditions. J. Cont. Hydr. 2015, 175–176, 60–71. [Google Scholar] [CrossRef]
- Demers, I.; Molson, J.; Bussière, B.; Laflamme, D. Numerical modeling of contaminated neutral drainage from a waste-rock field test cell. Appl. Geochem. 2013, 33, 346–356. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Sasaki, R.; Igarashi, T.; Park, I.; Tamoto, S.; Arima, T.; Ito, M.; Hiroyoshi, N. Simultaneous leaching of arsenite, arsenate, selenite and selenate, and their migration in tunnel-excavated sedimentary rocks: II. Kinetic and reactive transport modeling. Chemosphere 2017, 188, 444–454. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Archer, D.G. Arsenic Thermodynamic Data and Environmental Geochemistry—Arsenic in Ground Water: Geochemistry and Occurrence; Welch, A.H., Stollenwerk, K.G., Eds.; Springer: Boston, MA, USA, 2003; pp. 1–25. ISBN 978-0-306-47956-4. [Google Scholar]
- Kocourková, E.; Sracek, O.; Houzar, S.; Cempírek, J.; Losos, Z.; Filip, J.; Hršelová, P. Geochemical and mineralogical control on the mobility of arsenic in a waste rock pile at Dlouhá Ves, Czech Republic. J. Geochem. Explor. 2011, 110, 61–73. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, S.; Shimko, J.; Dengler, R.W., II. Mine drainage: Treatment technologies and rare earth elements. Water Environ. Res. 2019, 91, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- González, V.; Vignati, D.; Leyval, C.; Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 2014, 71, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Romero-Freire, A.; Turlin, F.; André-Mayer, A.-S.; Pelletier, M.; Cayer, A.; Giamberini, L. Giamberini Biogeochemical Cycle of Lanthanides in a Light Rare Earth Element-Enriched Geological Area (Quebec, Canada). Minerals 2019, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- Ayora, C.; Macías, F.; Torres, E.; Lozano, A.; Carrero, S.; Nieto, J.-M.; Pérez-López, R.; Fernández-Martínez, A.; Castillo-Michel, H. Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage. Environ. Sci. Technol. 2016, 50, 8255–8262. [Google Scholar] [CrossRef]
- Royer-Lavallée, A.; Neculita, C.M.; Coudert, L. Removal and potential recovery of rare earth elements from mine water. J. Ind. Eng. Chem. 2020, 89, 47–57. [Google Scholar] [CrossRef]
- Edahbi, M.; Plante, B.; Benzaazoua, M. Environmental challenges and identification of the knowledge gaps associated with REE mine wastes management. J. Clean. Prod. 2019, 212, 1232–1241. [Google Scholar] [CrossRef]
- Jamieson, H.; Laidlow, A.; Parsons, M. Characterization of U and REE Mobility Downstream of U Tailings near Bancroft, Ontario. In Proceedings of the International Conference on Acid Rock Drainage (ICARD), Santiago, Chile, 21–24 April 2015. [Google Scholar]
- Edahbi, M.; Plante, B.; Benzaazoua, M.; Pelletier, M. Geochemistry of rare earth elements within waste rocks from the Montviel carbonatite deposit, Québec, Canada. Environ. Sci. Pollut. Res. 2018, 25, 10997–11010. [Google Scholar] [CrossRef]
- Edahbi, M.; Plante, B.; Benzaazoua, M.; Kormos, L.; Pelletier, M. Rare earth elements (La, Ce, Pr, Nd, and Sm) from a carbonatite deposit: Mineralogical characterization and geochemical behavior. Minerals 2018, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Edahbi, M.; Plante, B.; Benzaazoua, M.; Ward, M.; Pelletier, M. Mobility of rare earth elements in mine drainage: Influence of iron oxides, carbonates, and phosphates. Chemosphere 2018, 199, 647–654. [Google Scholar] [CrossRef]
- Kauppila, P.; Räisänen, M. Mineralogical and geochemical alteration of Hitura sulphide mine tailings with emphasis on nickel mobility and retention. J. Geochem. Explor. 2008, 97, 1–20. [Google Scholar] [CrossRef]
- Kauppila, P.; Räisänen, M.; Johnson, R. Geochemical Characterisation of Seepage and Drainage Water Quality from Two Sulphide Mine Tailings Impoundments: Acid Mine Drainage versus Neutral Mine Drainage. Mine Water Environ. 2008, 28, 30–49. [Google Scholar] [CrossRef]
- Radkova, A.; Jamieson, H.; Campbell, K. Antimony mobility during the early stages of stibnite weathering in tailings at the Beaver Brook Sb deposit, Newfoundland. Appl. Geochem. 2020, 115, 104528. [Google Scholar] [CrossRef]
- Lindsay, M.B.J.; Condon, P.D.; Jambor, J.L.; Lear, K.G.; Blowes, D.W.; Ptacek, C.J. Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage. Appl. Geochem. 2009, 24, 2212–2221. [Google Scholar] [CrossRef]
- Jamieson, H.E.; Bromstad, M.; Nordstrom, D.K. Extremely arsenic-rich, pH-neutral waters from the Giant mine, Canada. In Proceedings of the First International Conference on Mine Water Solutions in Extreme Environments, Lima, Peru, 15–17 April 2013; pp. 82–94. [Google Scholar]
- Kwong, Y.T.J.; Percival, J.B.; Soprovich, E.A. Arsenic Mobilization and Attenuation in Near-Neutral Drainage—Implications for Tailings and Waste Rock Management for Saskatchewan Uranium Mines; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2000; ISBN 1-894475-05-4. [Google Scholar]
- Plante, B.; Benzaazoua, M.; Bussière, B.; Biesinger, M.C.; Pratt, A.R. Study of Ni sorption onto Tio mine waste rock surfaces. Appl. Geochem. 2010, 25, 1830–1844. [Google Scholar] [CrossRef]
- Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanner, H. Chemical speciation of environmentally significant metals with inorganic ligands Part 2: The Cu2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report). Pure Appl. Chem. 2007, 79, 895–950. [Google Scholar] [CrossRef]
- Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 2249–2311. [Google Scholar] [CrossRef]
- Grafe, M.; Eick, M.J.; Grossl, P.R.; Saunders, A.M. Adsorption of Arsenate and Arsenite on Ferrihydrite in the Presence and Absence of Dissolved Organic Carbon. J. Environ. Qual. 2002, 31, 1115–1123. [Google Scholar] [CrossRef]
- Zhou, Y.-F.; Haynes, R.J. Sorption of Heavy Metals by Inorganic and Organic Components of Solid Wastes: Significance to Use of Wastes as Low-Cost Adsorbents and Immobilizing Agents. Crit. Rev. Environ. Sci. Technol. 2010, 40, 909–977. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry—Chemical Equilibria and Rates in Natural Waters, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 1995; ISBN 978-0471511854. [Google Scholar]
- Skierszkan, E.K.; Stockwell, J.S.; Dockrey, J.W.; Weis, D.; Beckie, R.D.; Mayer, K.U. Molybdenum (Mo) stable isotopic variations as indicators of Mo attenuation in mine waste-rock drainage. Appl. Geochem. 2017, 87, 71–83. [Google Scholar] [CrossRef]
- Bao, Z.; Blowes, D.W.; Ptacek, C.J.; Bain, J.; Holland, S.P.; Wilson, D.; Wilson, W.; MacKenzie, P. Faro waste rock project: Characterizing variably saturated flow behavior through full-scale waste-rock dumps in the continental subarctic region of northern Canada using field measurements and stable isotopes of water. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef] [Green Version]
- St-Arnault, M.; Vriens, B.; Klein, B.; Blaskovich, R.; Aranda, C.; Mayer, K.U.; Beckie, R.D. Geochemical and mineralogical assessment of localized reactive zones through a full scale heterogeneous waste rock pile. Miner. Eng. 2020, 145, 106089. [Google Scholar] [CrossRef]
- Al, T.A.; Martin, C.J.; Blowes, D.W. Carbonate-mineral/water interactions in sulfide-rich mine tailings. Geochim. Cosmochim. Acta 2000, 64, 3933–3948. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Corpuz, R.D.; Igarashi, T.; Villacorte-Tabelin, M.; Diaz Alorro, R.; Yoo, K.; Raval, S.; Ito, M.; Hiroyoshi, N. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. J. Hazard. Mat. 2020, 399, 122844. [Google Scholar] [CrossRef]
- Hirsche, D.T.; Blaskovich, R.; Mayer, K.U.; Beckie, R.D. A study of Zn and Mo attenuation by waste-rock mixing in neutral mine drainage using mixed-material field barrels and humidity cells. Appl. Geochem. 2017, 84, 114–125. [Google Scholar] [CrossRef]
- Conlan, M.J.W.; Mayer, K.U.; Blaskovich, R.; Beckie, R.D. Solubility controls for molybdenum in neutral rock drainage. Geochem. Explor. Environ. Anal. 2012, 12, 21–32. [Google Scholar] [CrossRef]
- Moncur, M.C.; Jambor, J.L.; Ptacek, C.J.; Blowes, D.W. Mine drainage from the weathering of sulfide minerals and magnetite. Appl. Geochem. 2009, 24, 2362–2373. [Google Scholar] [CrossRef]
- Plumlee, G.S. The environmental geology of mineral deposis. In The Environmental Geochemistry of Mineral Deposits. Part A: Processes, Techniques and Health Issues; Plumlee, G.S., Longsdon, M.S., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 71–116. [Google Scholar]
- Weisener, C.G.; Weber, P.A. Preferential oxidation of pyrite as a function of morphology and relict texture. N. Z. J. Geol. Geophys. 2010, 53, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Dold, B. Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Appl. Geochem. 2003, 18, 1531–1540. [Google Scholar] [CrossRef]
- Huminicki, D.M.C.; Rimstidt, J.D. Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl. Geochem. 2009, 24, 1626–1634. [Google Scholar] [CrossRef]
- V. Nicholson, R.; Gillham, R.W.; Reardon, E.J. Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochim. Cosmochim. Acta 1990, 54, 395–402. [Google Scholar] [CrossRef]
- Stott, M.B.; Watling, H.R.; Franzmann, P.D.; Sutton, D. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner. Eng. 2000, 13, 1117–1127. [Google Scholar] [CrossRef]
- Roy, V.; Demers, I.; Plante, B.; Thériault, M. Kinetic Testing for Oxidation Acceleration and Passivation of Sulfides in Waste Rock Piles to Reduce Contaminated Neutral Drainage Generation Potential. Mine Water Environ. 2020, 39, 242–255. [Google Scholar] [CrossRef]
- Maest, A.S.; Nordstrom, D.K. A geochemical examination of humidity cell tests. Appl. Geochem. 2017, 81, 109–131. [Google Scholar] [CrossRef] [Green Version]
- St-Arnault, M.; Vriens, B.; Klein, B.; Mayer, K.U.; Beckie, R.D. Mineralogical controls on drainage quality during the weathering of waste rock. Appl. Geochem. 2019, 108, 104376. [Google Scholar] [CrossRef]
- Fan, R.; Short, M.D.; Zeng, S.-J.; Qian, G.; Li, J.; Schumann, R.C.; Kawashima, N.; Smart, R.S.C.; Gerson, A.R. The Formation of Silicate-Stabilized Passivating Layers on Pyrite for Reduced Acid Rock Drainage. Environ. Sci. Technol. 2017, 51, 11317–11325. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fan, R.; Short, M.D.; Li, J.; Schumann, R.C.; Xu, H.; Smart, R.S.C.; Gerson, A.R.; Qian, G. Formation of aluminum hydroxide-doped surface passivating layers on pyrite for acid rock drainage control. Environ. Sci. Technol. 2018, 52, 11786–11795. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hiroyoshi, N.; Tabelin, C.B.; Naruwa, K.; Harada, C.; Ito, M. Suppressive effects of ferric-catecholate complexes on pyrite oxidation. Chemosphere 2019, 214, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Tabelin, C.B.; Seno, K.; Jeon, S.; Ito, M.; Hiroyoshi, N. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes. Chemosphere 2018, 205, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Berry, V.K.; Murr, L.E.; Hiskey, J.B. Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste. Hydrometall. 1978, 3, 309–326. [Google Scholar] [CrossRef]
- Kwong, Y.T.J.; Swerhone, G.W.; Lawrence, J.R. Galvanic sulphide oxidation as a metal-leaching mechanism and its environmental implications. Geochem. Explor. Environ. Anal. 2003, 3, 337–343. [Google Scholar] [CrossRef]
- Qian, G.; Fan, R.; Short, M.D.; Schumann, R.C.; Li, J.; St.C. Smart, R.; Gerson, A.R. The effects of galvanic interactions with pyrite on the generation of acid and metalliferous drainage. Environ. Sci. Technol. 2018, 52, 5349–5357. [Google Scholar] [CrossRef]
- Chopard, A.; Plante, B.; Benzaazoua, M.; Bouzahzah, H.; Marion, P. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides. Chemosphere 2017, 166, 281–291. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Schell, C.; Macklin, M.G. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl. Geochem. 1999, 14, 1015–1030. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.; Lottermoser, B.; Bradshaw, D. Evaluating waste rock mineralogy and microtexture during kinetic testing for improved acid rock drainage prediction. Miner. Eng. 2013, 52, 111–124. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.K.; Edraki, M.; Walters, S.; Bradshaw, D. Development of a textural index for the prediction of acid rock drainage. Miner. Eng. 2011, 24, 1277–1287. [Google Scholar] [CrossRef]
- Brough, C.P.; Warrender, R.; Bowell, R.J.; Barnes, A.; Parbhakar-Fox, A. The process mineralogy of mine wastes. Miner. Eng. 2013, 52, 125–135. [Google Scholar] [CrossRef]
- Wang, H.; Dowd, P.A.; Xu, C. A reaction rate model for pyrite oxidation considering the influence of water content and temperature. Miner. Eng. 2019, 134, 345–355. [Google Scholar] [CrossRef]
- Dold, B. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings. Minerals 2014, 4, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Sracek, O.; Gélinas, P.; Lefebvre, R.; Nicholson, R. V Comparison of methods for the estimation of pyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada. J. Geochem. Explor. 2006, 91, 99–109. [Google Scholar] [CrossRef]
- Hollings, P.; Hendry, M.J.; Nicholson, R.V.; Kirkland, R.A. Quantification of oxygen consumption and sulphate release rates for waste rock piles using kinetic cells: Cluff lake uranium mine, northern Saskatchewan, Canada. Appl. Geochem. 2001, 16, 1215–1230. [Google Scholar] [CrossRef]
- Vriens, B.; St.Arnault, M.; Laurenzi, L.; Smith, L.; Mayer, K.U.; Beckie, R.D. Localized Sulfide oxidation limited by oxygen availability in a full-scale waste-rock pile. Vadose Zone J. 2018, 17, 1–68. [Google Scholar] [CrossRef]
- Eriksson, N.; Destouni, G. Combined effects of dissolution kinetics, secondary mineral precipitation, and preferential flow on copper leaching from mining waste rock. Water Resour. Res. 1997, 33, 471–483. [Google Scholar] [CrossRef]
- Strömberg, B.; Banwart, S. Weathering kinetics of waste rock from the Aitik copper mine, Sweden: Scale dependent rate factors and pH controls in large column experiments. J. Contam. Hydrol. 1999, 39, 59–89. [Google Scholar] [CrossRef]
- Lapakko, K. Comparison of Duluth Complex rock dissolution in the laboratory and field. In Proceedings of the Proceedings American Society of Mining and Reclamation, Pittsburgh, PA, USA, 24–29 April 1994; pp. 419–428. [Google Scholar]
- Lorca, M.E.; Mayer, K.U.; Pedretti, D.; Smith, L.; Beckie, R.D. Spatial and temporal fluctuations of pore-gas composition in sulfidic mine waste rock. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Vriens, B.; Smith, L.; Mayer, K.U.; Beckie, R.D. Poregas distributions in waste-rock piles affected by climate seasonality and physicochemical heterogeneity. Appl. Geochem. 2019, 100, 305–315. [Google Scholar] [CrossRef]
- Linklater, C.M.; Sinclair, D.J.; Brown, P.L. Coupled chemistry and transport modelling of sulphidic waste rock dumps at the Aitik mine site, Sweden. Appl. Geochem. 2005, 20, 275–293. [Google Scholar] [CrossRef]
- Strömberg, B.; Banwart, S. Kinetic modelling of geochemical processes at the Aitik mining waste rock site in northern Sweden. Appl. Geochem. 1994, 9, 583–595. [Google Scholar] [CrossRef]
- Harries, J.R.; Ritchie, A.I.M. The use of temperature profiles to estimate the pyritic oxidation rate in a waste rock dump from an opencut mine. Water. Air. Soil Pollut. 1981, 15, 405–423. [Google Scholar] [CrossRef]
- Molson, J.W.; Fala, O.; Aubertin, M.; Bussière, B. Numerical simulations of pyrite oxidation and acid mine drainage in unsaturated waste rock piles. J. Contam. Hydrol. 2005, 78, 343–371. [Google Scholar] [CrossRef]
- Lefebvre, R.; Hockley, D.; Smolensky, J.; Geélinas, P. Multiphase transfer processes in waste rock piles producing acid mine drainage. 1: Conceptual model and system characterization. J. Contam. Hydrol. 2001, 52, 137–164. [Google Scholar] [CrossRef]
- Lefebvre, R.; Hockley, D.; Smolensky, J.; Lamontagne, A. Multiphase transfer processes in waste rock piles producing acid mine drainage: 2. Applications of numerical simulation. J. Contam. Hydrol. 2001, 52, 165–186. [Google Scholar] [CrossRef]
- Kuo, E.Y.; Ritchie, A.I.M. The impact of convection on the overall oxidation rate in sulfidic waste rock dumps. In Proceedings Mining and the Environment II; Goldsack, D., Belzile, N., Yerwood, P., Hall, G., Eds.; Laurentian University: Sudbury, ON, Canada, 1999; pp. 211–220. [Google Scholar]
- Lefebvre, R.; Lamontagne, A.; Wels, C. Numerical simulations of acid drainage in the Sugar Shack South rock pile, Questa Mine, New Mexico, USA. In Proceedings of the Proceedings 2nd Joint IAH-CNC and CGS Groundwater Specialty Conference, 54th Canadian Geotechnical Conference, Calgary, AB, Canada, 16–19 September 2001. [Google Scholar]
- Karlsson, T.; Räisänen, M.L.; Lehtonen, M.; Alakangas, L. Comparison of static and mineralogical ARD prediction methods in the Nordic environment. Environ. Monit. Assess. 2018, 190, 719. [Google Scholar] [CrossRef] [Green Version]
- Chopard, A.; Benzaazoua, M.; Bouzahzah, H.; Plante, B.; Marion, P. A contribution to improve the calculation of the acid generating potential of mining wastes. Chemosphere 2017, 175, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Schumann, R.; Stewart, W.; Miller, S.; Kawashima, N.; Li, J.; Smart, R. Acid–base accounting assessment of mine wastes using the chromium reducible sulfur method. Sci. Total Environ. 2012, 424, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Weber, P.A.; Thomas, J.E.; Skinner, W.M.; Smart, R.S.C. A methodology to determine the acid-neutralization capacity of rock samples. Can. Mineral. 2005, 43, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Paktunc, A.D. Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ. Geol. 1999, 39, 103–112. [Google Scholar] [CrossRef]
- Skousen, J.; Renton, J.; Brown, H.; Evans, P.; Leavitt, B.; Brady, K.; Cohen, L.; Ziemkiewicz, P. Neutralization potential of overburden samples containing siderite. J. Environ. Qual. 1997, 26, 673–681. [Google Scholar] [CrossRef]
- Weber, P.A.; Thomas, J.E.; Skinner, W.M.; Smart, R.S.C. Improved acid neutralisation capacity assessment of iron carbonates by titration and theoretical calculation. Appl. Geochem. 2004, 19, 687–694. [Google Scholar] [CrossRef]
- Skousen, J.; Simmons, J.; McDonald, L.M.; Ziemkiewicz, P. Acid–base accounting to predict post-mining drainage quality on surface mines. J. Environ. Qual. 2002, 31, 2034–2044. [Google Scholar] [CrossRef] [PubMed]
- Morin, K.A.; Hutt, N.M. On the Nonsense of Arguing the Superiority of an Analytical Method for Neutralization Potential. Minesite Drainage Assessment Group, case study# 32. Available online: www.mdag.com/case_studies/cs32.html (accessed on 1 July 2020).
- Bouzahzah, H.; Benzaazoua, M.; Plante, B.; Bussiere, B. A quantitative approach for the estimation of the “fizz rating” parameter in the acid-base accounting tests: A new adaptations of the Sobek test. J. Geochem. Explor. 2015, 153, 53–65. [Google Scholar] [CrossRef]
- Bouzahzah, H.; Benzaazoua, M.; Bussiere, B.; Plante, B. Prediction of acid mine drainage: Importance of mineralogy and the test protocols for static and kinetic tests. Mine Water Environ. 2014, 33, 54–65. [Google Scholar] [CrossRef]
- Gerson, A.R.; Rolley, P.J.; Davis, C.; Feig, S.T.; Doyle, S.; Smart, R.S.C. Unexpected non-acid drainage from sulfidic rock waste. Sci. Rep. 2019, 9, 4357. [Google Scholar] [CrossRef]
- Pope, J.; Weber, P.; Mackenzie, A.; Newman, N.; Rait, R. Correlation of acid base accounting characteristics with the Geology of commonly mined coal measures, West Coast and Southland, New Zealand. N. Z. J. Geol. Geophys. 2010, 53, 153–166. [Google Scholar] [CrossRef]
- Miller, S.D.; Stewart, W.S.; Rusdinar, Y.; Schumann, R.E.; Ciccarelli, J.M.; Li, J.; Smart, R.S.C. Methods for estimation of long-term non-carbonate neutralisation of acid rock drainage. Sci. Total Environ. 2010, 408, 2129–2135. [Google Scholar] [CrossRef] [PubMed]
- Jambor, J.L.; Dutrizac, J.E.; Raudsepp, M. Measured and computed neutralization potentials from static tests of diverse rock types. Environ. Geol. 2007, 52, 1173–1185. [Google Scholar] [CrossRef]
- Sapsford, D.J.; Bowell, R.J.; Dey, M.; Williams, K.P. Humidity cell tests for the prediction of acid rock drainage. Miner. Eng. 2009, 22, 25–36. [Google Scholar] [CrossRef]
- Strömberg, B.; Banwart, S.A. Experimental study of acidity-consuming processes in mining waste rock: Some influences of mineralogy and particle size. Appl. Geochem. 1999, 14, 1–16. [Google Scholar] [CrossRef]
- Smith, L.J.D.; Bailey, B.L.; Blowes, D.W.; Jambor, J.L.; Smith, L.; Sego, D.C. The Diavik waste rock project: Initial geochemical response from a low sulfide waste rock pile. Appl. Geochem. 2013, 36, 210–221. [Google Scholar] [CrossRef]
- Pham, N.H.; Sego, D.C.; Arenson, L.U.; Blowes, D.W.; Amos, R.T.; Smith, L. The Diavik Waste Rock Project: Measurement of the thermal regime of a waste-rock test pile in a permafrost environment. Appl. Geochem. 2013, 36, 234–245. [Google Scholar] [CrossRef]
- Wilson, D.; Amos, R.; W. Blowes, D.; B. Langman, J.; Smith, L.; C. Sego, D. Diavik Waste Rock Project: Scale-up of a reactive transport model for temperature and sulfide-content dependent geochemical evolution of waste rock. Appl. Geochem. 2018, 96, 177–190. [Google Scholar] [CrossRef]
- Langman, B.J.; Moore, L.M.; Ptacek, J.C.; Smith, L.; Sego, D.; Blowes, W.D. Diavik Waste Rock Project: Evolution of mineral weathering, element release, and acid generation and neutralization during a five-year humidity cell experiment. Minerals 2014, 4, 257–278. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, S.; Smith, L.; Ulrich Mayer, K.; Beckie, R.D. Comparison of unsaturated flow and solute transport through waste rock at two experimental scales using temporal moments and numerical modeling. J. Contam. Hydrol. 2014, 171, 49–65. [Google Scholar] [CrossRef]
- Blackmore, S.; Pedretti, D.; Mayer, K.U.; Smith, L.; Beckie, R.D. Evaluation of single- and dual-porosity models for reproducing the release of external and internal tracers from heterogeneous waste-rock piles. J. Contam. Hydrol. 2018, 214, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Lahmira, B.; Lefebvre, R.; Aubertin, M.; Bussière, B. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles. J. Contam. Hydrol. 2016, 184, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Pearce, S.; Birkham, T.; O’Kane, M.; Dobchuk, D. Linking Waste Rock Dump Construction and Design with AMD Risk: A Quantitative Approach; British Columbia Mine Reclamation Symposium, The University of British Columbia: Vancouver, BC, Canada, 2016. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.; Fox, N.; Jackson, L.; Cornelius, R. Forecasting geoenvironmental risks: Integrated applications of mineralogical and chemical data. Minerals 2018, 8, 541. [Google Scholar] [CrossRef] [Green Version]
- Pedretti, D.; Mayer, K.U.; Beckie, R.D. Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals. J. Contam. Hydrol. 2017, 201, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Pedretti, D.; Mayer, K.U.; Beckie, R.D. Controls of uncertainty in acid rock drainage predictions from waste rock piles examined through Monte-Carlo multicomponent reactive transport. Stoch. Environ. Res. Risk Assess. 2020, 34, 219–233. [Google Scholar] [CrossRef]
- Lahmira, B.; Lefebvre, R.; Aubertin, M.; Bussière, B. Effect of material variability and compacted layers on transfer processes in heterogeneous waste rock piles. J. Contam. Hydrol. 2017, 204, 66–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, D.A.; Barbour, S.L.; Wilson, G.W.; O’Kane, M. Soil-atmosphere modelling of an engineered soil cover for acid generating mine waste in a humid, alpine climate. Can. Geotech. J. 2003, 40, 276–292. [Google Scholar] [CrossRef]
- Nicholls, E.M.; Drewitt, G.B.; Fraser, S.; Carey, S.K. The influence of vegetation cover on evapotranspiration atop waste rock piles, Elk Valley, British Columbia. Hydrol. Process. 2019, 33, 2594–2606. [Google Scholar] [CrossRef]
- Carey, S.K.; Barbour, S.L.; Hendry, M.J. Evaporation from a waste-rock surface, Key Lake, Saskatchewan. Can. Geotech. J. 2005, 42, 1189–1199. [Google Scholar] [CrossRef]
- Birkham, T.; O’Kane, M.; Goodbrand, A.; Barbour, S.L.; Carey, S.K.; Straker, J.; Baker, T.; Klein, R. Near-surface water balances of waste rock dumps. In Proceedings of the British Columbia Mine Reclamation Symposium, Prince George, BC, Canada, 22–25 September 2014. [Google Scholar]
- Peterson, H.E. Unsaturated Hydrology, Evaporation, and Geochemistry of Neutral and Acid Rock Drainage in Highly Heterogeneous Mine Waste Rock at the Antamina Mine, Peru. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 2014. [Google Scholar]
- Rohde, T.K.; Defferrard, P.L.; Lord, M. Store and release cover water balance for the south waste rock dump at Century mine. In Proceedings of the 11th International Conference on Mine Closure 2016, Perth, Australia, 15–17 March 2016; Fourie, A.B., Fourie, A.B., Tibbett, M., Tibbett, M., Eds.; Australian Centre for Geomechanics PP—Perth: Perth, Australia, 2016; pp. 47–59. [Google Scholar]
- Chi, X.; Amos, R.T.; Stastna, M.; Blowes, D.W.; Sego, D.C.; Smith, L. The Diavik Waste Rock Project: Implications of wind-induced gas transport. Appl. Geochem. 2013, 36, 246–255. [Google Scholar] [CrossRef]
- Sjoberg, D.B.; Lee, B.S.; Jian, Z. Prediction of water vapor movement through waste rock. J. Geotech. Geoenvironmental Eng. 2004, 130, 293–302. [Google Scholar] [CrossRef]
- Haghighi, E.; Or, D. Evaporation from porous surfaces into turbulent airflows: Coupling eddy characteristics with pore scale vapor diffusion. Water Resour. Res. 2013, 49, 8432–8442. [Google Scholar] [CrossRef]
- Wilson, G.W.; Fredlund, D.G.; Barbour, S.L. The effect of soil suction on evaporative fluxes from soil surfaces. Can. Geotech. J. 1997, 34, 145–155. [Google Scholar] [CrossRef]
- Ramasamy, M.; Power, C. Evolution of acid mine drainage from a coal waste rock pile reclaimed with a simple soil cover. Hydrology 2019, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Neuner, M.; Smith, L.; Blowes, D.W.; Sego, D.C.; Smith, L.J.D.; Fretz, N.; Gupton, M. The Diavik waste rock project: Water flow through mine waste rock in a permafrost terrain. Appl. Geochem. 2013, 36, 222–233. [Google Scholar] [CrossRef]
- Trinchero, P.; Beckie, R.; Sanchez-Vila, X.; Nichol, C. Assessing preferential flow through an unsaturated waste rock pile using spectral analysis. Water Resour. Res. 2011, 47, W07532. [Google Scholar] [CrossRef]
- Šimůnek, J.; Jarvis, N.J.; van Genuchten, M.T.; Gärdenäs, A. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 2003, 272, 14–35. [Google Scholar] [CrossRef]
- Nimmo, J.R. Simple predictions of maximum transport rate in unsaturated soil and rock. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Gerke, H.H. Preferential flow descriptions for structured soils. J. Plant. Nutr. Soil Sci. 2006, 169, 382–400. [Google Scholar] [CrossRef]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Doulati Ardejani, F.; Amini, M.; Ebrahimi, L. The spatial assessment of acid mine drainage potential within a low-grade ore dump: The role of preferential flow paths. Environ. Earth Sci. 2019, 79, 28. [Google Scholar] [CrossRef]
- Nichol, C.; Smith, L.; Beckie, R. Field-scale experiments of unsaturated flow and solute transport in a heterogeneous porous medium. Water Resour. Res. 2005, 41, 1–11. [Google Scholar] [CrossRef]
- Eriksson, N.; Gupta, A.; Destouni, G. Comparative analysis of laboratory and field tracer tests for investigating preferential flow and transport in mining waste rock. J. Hydrol. 1997, 194, 143–163. [Google Scholar] [CrossRef]
- Sinclair, S.A.; Pham, N.; Amos, R.T.; Sego, D.C.; Smith, L.; Blowes, D.W. Influence of freeze–thaw dynamics on internal geochemical evolution of low sulfide waste rock. Appl. Geochem. 2015, 61, 160–174. [Google Scholar] [CrossRef]
- Langman, J.B.; Blowes, D.W.; Amos, R.T.; Atherton, C.; Wilson, D.; Smith, L.; Sego, D.C.; Sinclair, S.A. Influence of a tundra freeze-thaw cycle on sulfide oxidation and metal leaching in a low sulfur, granitic waste rock. Appl. Geochem. 2017, 76, 9–21. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; Watanabe, K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils. Adv. Water Resour. 2013, 60, 160–177. [Google Scholar] [CrossRef]
- Birkham, T.K.; Hendry, M.J.; Wassenaar, L.I.; Mendoza, C.A.; Lee, E.S. Characterizing Geochemical Reactions in Unsaturated Mine Waste-Rock Piles Using Gaseous O2, CO2, 12CO2, and 13CO2. Environ. Sci. Technol. 2003, 37, 496–501. [Google Scholar] [CrossRef]
- Elberling, B.; Nicholson, R.V.; Scharer, J.M. A combined kinetic and diffusion model for pyrite oxidation in tailings: A change in controls with time. J. Hydrol. 1994, 157, 47–60. [Google Scholar] [CrossRef]
- Pantelis, G.; Ritchie, A.I.M. Rate-limiting factors in dump leaching of pyritic ores. Appl. Math. Model. 1992, 16, 553–560. [Google Scholar] [CrossRef]
- Massmann, J.; Farrier, D. Effects of atmospheric pressures on gas transport in the vadose zone. Water Resour. Res. 1992, 28, 777–791. [Google Scholar] [CrossRef]
- Amos, R.T.; Blowes, D.W.; Smith, L.; Sego, D.C. Measurement of Wind-Induced Pressure Gradients in a Waste Rock Pile. Vadose Zone J. 2009, 8, 953–962. [Google Scholar] [CrossRef]
- Lahmira, B.; Lefebvre, R.; Hockley, D.; Phillip, M. Atmospheric Controls on Gas Flow Directions in a Waste Rock Dump. Vadose Zone J. 2014, 13. [Google Scholar] [CrossRef]
- Pantelis, G.; Ritchie, A.I.M.; Stepanyants, Y.A. A conceptual model for the description of oxidation and transport processes in sulphidic waste rock dumps. Appl. Math. Model. 2002, 26, 751–770. [Google Scholar] [CrossRef] [Green Version]
- Collin, M.; Rasmuson, A. A comparison of gas diffusivity models for unsaturated porous media. Soil Sci. Soc. Am. J. 1988, 52, 1559–1565. [Google Scholar] [CrossRef]
- Millington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Y.; Chen, X.; Chen, X. Using grain-size distribution methods for estimation of air permeability. Groundwater 2016, 54, 131–142. [Google Scholar] [CrossRef]
- Rohwerder, T.; Schippers, A.; Sand, W. Determination of reaction energy values for biological pyrite oxidation by calorimetry. Thermochim. Acta 1998, 309, 79–85. [Google Scholar] [CrossRef]
- Sracek, O.; Choquette, M.; Gélinas, P.; Lefebvre, R.; Nicholson, R. V Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. J. Contam. Hydrol. 2004, 69, 45–71. [Google Scholar] [CrossRef]
- Tan, Y.; Ritchie, A.I.M. In situ determination of thermal conductivity of waste rock dump material. Water. Air. Soil Pollut. 1997, 98, 345–359. [Google Scholar] [CrossRef]
- Ning, L.; Zhang, Y. Onset of thermally induced gas convection in mine wastes. Int. J. Heat Mass Transf. 1997, 40, 2621–2636. [Google Scholar] [CrossRef]
- Gou, W.; Parizek, R.R.; Rose, A.W. The role of thermal convection in resupplying O2 to strip coal-mine spoil. Soil Sci. 1994, 158, 47–55. [Google Scholar] [CrossRef]
- Anterrieu, O.; Chouteau, M.; Aubertin, M. Geophysical characterization of the large-scale internal structure of a waste rock pile from a hard rock mine. Bull. Eng. Geol. Environ. 2010, 69, 533–548. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- Appels, W.M.; Ireson, A.M.; Barbour, S.L. Impact of bimodal textural heterogeneity and connectivity on flow and transport through unsaturated mine waste rock. Adv. Water Resour. 2018, 112, 254–265. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef] [Green Version]
- Nichol, C.; Smith, L.; Beckie, R. Time domain reflectrometry measurements of water content in coarse waste rock. Can. Geotech. J. 2003, 40, 137–148. [Google Scholar] [CrossRef]
- Smith, L.J.D.; Moncur, M.C.; Neuner, M.; Gupton, M.; Blowes, D.W.; Smith, L.; Sego, D.C. The Diavik waste rock project: Design, construction, and instrumentation of field-scale experimental waste-rock piles. Appl. Geochem. 2013, 36, 187–199. [Google Scholar] [CrossRef]
- Dimech, A.; Chouteau, M.; Aubertin, M.; Bussière, B.; Martin, V.; Plante, B. Three-dimensional time-lapse geoelectrical monitoring of water infiltration in an experimental mine waste rock pile. Vadose Zone J. 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Dubuc, J.; Pabst, T.; Aubertin, M. An assessment of the hydrogeological response of the flow control layer installed on the experimental waste rock pile at the lac Tio mine. In Proceedings of the GeoOttawa 2017—70th Canadian Geotechnical Conference, Ottawa, ON, Canada, 1–4 October 2017. [Google Scholar]
- Keller, J.; Busker, L.; Milczarek, M.; Rice, R.; Williamson, M. Monitoring of the geochemical evolution of waste rock facilities at Newmont’s Phoenix Mine. In Proceedings of the VI International Seminar on Mine Closure, Lake Louise, AB, Canada, 18–21 September 2011. [Google Scholar]
- Poisson, J.; Chouteau, M.; Aubertin, M.; Campos, D. Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. J. Appl. Geophys. 2009, 67, 179–192. [Google Scholar] [CrossRef]
- Van Dam, R.; Gutierrez, L.; Mclemore, V.; Wilson, G.; Hendrickx, J.; Walker, B. Near Surface Geophysics for the Structural Analysis of a Mine Rock Pile, Northern New Mexico. J. Am. Soc. Min. Reclam. 2005, 2005, 1178–1201. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Cui, X.; Liu, Q.; Cao, X.; Chen, X. Measurement of soil water content using ground-penetrating radar: A review of current methods. Int. J. Digit. Earth 2019, 12, 95–118. [Google Scholar] [CrossRef]
- Power, C.; Tsourlos, P.; Ramasamy, M.; Nivorlis, A.; Mkandawire, M. Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada. J. Appl. Geophys. 2018, 150, 40–51. [Google Scholar] [CrossRef]
- Wu, R.; Martin, V.; McKenzie, J.; Broda, S.; Bussière, B.; Aubertin, M.; Kurylyk, B.L. Laboratory-scale assessment of a capillary barrier using fibre optic distributed temperature sensing (FO-DTS). Can. Geotech. J. 2020, 57, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Topal, E.; Ramazan, S. Optimising the long-term mine waste management and truck schedule in a large-scale open pit mine. Min. Technol. 2016, 125, 35–46. [Google Scholar] [CrossRef]
- Seigneur, N.; Ulrich Mayer, K.; Steefel, C.I. Reactive transport in evolving porous media. In Reviews in Mineralogy and Geochemistry; Mineralogical Society: Twickenham, UK, 2019; pp. 197–238. [Google Scholar]
- Beckingham, L.E.; Mitnick, E.H.; Steefel, C.I.; Zhang, S.; Voltolini, M.; Swift, A.M.; Yang, L.; Cole, D.R.; Sheets, J.M.; Ajo-Franklin, J.B.; et al. Evaluation of mineral reactive surface area estimates for prediction of reactivity of a multi-mineral sediment. Geochim. Cosmochim. Acta 2016, 188, 310–329. [Google Scholar] [CrossRef] [Green Version]
- Steefel, C.I.; Lichtner, P.C. Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry. J. Hydrol. 1998, 209, 186–199. [Google Scholar] [CrossRef]
- Wunderly, D.M.; Blowes, D.W.; Frind, O.E.; Ptacek, C. Sulfide mineral oxidation and subsequent reactive transport of oxidation products in mine tailings impoundments: A numerical model. Water Resour. Res. 1996, 32, 3173–3187. [Google Scholar] [CrossRef]
- Maest, A.S.; Kuipers, J.R.; Travers, C.L.; Atkins, D.A. Predicting Water Quality at Hardrock Mines; 90 pages, Kuipers & Associates and Buka Environmental. Available online: http://pebblescience.org/Pebble-Mine/acid-drainage-pdfs/PredictionsReportFinal.pdf (accessed on 1 July 2020).
- Box, G.E.P. Science and statistics. J. Am. Stat. Assoc. 1976, 71, 791–799. [Google Scholar] [CrossRef]
- Muniruzzaman, M.; Kauppila, P.M.; Karlsson, T. Water Quality Prediction of Mining Waste Facilities Based on Predictive Models; GTK Open File Research Report 16/2018; GTK: Espoo, Finland, 2018; Available online: http://tupa.gtk.fi/raportti/arkisto/16_2018.pdf (accessed on 1 August 2020).
- Beckie, R. Analysis of Scale Effects in Large-Scale Solute-Transport Models. In Scale Dependence and Scale Invariance in Hydrology; Sposito, G., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 314–334. ISBN 9780521571258. [Google Scholar]
- Malmström, M.E.; Destouni, G.; Banwart, S.A.; Strömberg, B.H.E. Resolving the scale-dependence of mineral weathering rates. Environ. Sci. Technol. 2000, 34, 1375–1378. [Google Scholar] [CrossRef]
- Morin, K.A.; Hutt, N.M. Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies, Digital Edition; MDAG Publishing: Surrey, BC, Canada, 2001. [Google Scholar]
- Molins, S.; Knabner, P. Multiscale approaches in reactive transport modeling. Rev. Mineral. Geochem. 2019, 85, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Molson, J.; Aubertin, M.; Bussière, B. Reactive transport modelling of acid mine drainage within discretely fractured porous media: Plume evolution from a surface source zone. Environ. Model. Softw. 2012, 38, 259–270. [Google Scholar] [CrossRef]
- Pabst, T.; Molson, J.; Aubertin, M.; Bussière, B. Reactive transport modelling of the hydro-geochemical behaviour of partially oxidized acid-generating mine tailings with a monolayer cover. Appl. Geochem. 2017, 78, 219–233. [Google Scholar] [CrossRef]
- Tomiyama, S.; Igarashi, T.; Tabelin, C.B.; Tangviroon, P.; Hiroyuki, I. Modeling of the groundwater flow system in excavated areas of an abandoned mine. J. Cont. Hydr. 2020, 230, 103617. [Google Scholar] [CrossRef]
- Mayer, K.U.; Frind, E.O.; Blowes, D.W. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 2002, 38, 13–21. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water Resources Investigations Report 99-4259. Available online: https://pubs.er.usgs.gov/publication/wri994259 (accessed on 1 July 2020).
- van der Lee, J.; De Windt, L.; Lagneau, V.; Goblet, P. Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 2003, 29, 265–275. [Google Scholar] [CrossRef]
- Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K. TOUGHREACT User’s Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variable Saturated Geologic Media; University of California: Berkeley, CA, USA, 2004. [Google Scholar] [CrossRef] [Green Version]
- Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; et al. Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 2015, 19, 445–478. [Google Scholar] [CrossRef] [Green Version]
- Raymond, K.; Seigneur, N.; Su, D.; Plante, B.; Poaty, B.; Bussiere, B.; Mayer, K. Numerical modeling of a laboratory-scale waste rock pile featuring an engineered cover system. Minerals 2020, 10, 652. [Google Scholar] [CrossRef]
- Li, L.; Maher, K.; Navarre-Sitchler, A.; Druhan, J.; Meile, C.; Lawrence, C.; Moore, J.; Perdrial, J.; Sullivan, P.; Thompson, A.; et al. Expanding the role of reactive transport models in critical zone processes. Earth-Sci. Rev. 2017, 165, 280–301. [Google Scholar] [CrossRef] [Green Version]
- Wösten, J.H.M.; van Genuchten, M.T. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci. Soc. Am. J. 1988, 52, 1762–1770. [Google Scholar] [CrossRef]
- Arya, L.M.; Leij, F.J.; Shouse, P.J.; van Genuchten, M.T. Relationship between the Hydraulic Conductivity Function and the Particle-Size Distribution. Soil Sci. Soc. Am. J. 1999, 63, 1063–1070. [Google Scholar] [CrossRef]
- Mishra, S.; Parker, J.C.; Singhal, N. Estimation of soil hydraulic properties and their uncertainty from particle size distribution data. J. Hydrol. 1989, 108, 1–18. [Google Scholar] [CrossRef]
Title: | Year | Reference |
---|---|---|
Molecular (bio-)oxidation mechanisms | ||
A review: Pyrite oxidation mechanisms and acid mine drainage prevention | 1995 | [24] |
Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review | 2008 | [25] |
The mechanisms of pyrite oxidation and leaching: A fundamental perspective | 2010 | [26] |
A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite | 2013 | [27] |
Principles of sulfide oxidation and acid rock drainage | 2016 | [28] |
Bioleaching: metal solubilization by microorganisms | 1997 | [29] |
Geomicrobiology of sulfide mineral oxidation | 1997 | [30] |
Heavy metal mining using microbes | 2002 | [31] |
Microbial communities in acid mine drainage | 2003 | [32] |
The microbiology of acidic mine waters | 2003 | [33] |
The bioleaching of sulphide minerals with emphasis on copper sulphides—A review | 2006 | [34] |
The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia | 2007 | [35] |
Heap bioleaching of chalcopyrite: a review | 2008 | [20] |
Biomining-biotechnologies for extracting and recovering metals from ores and waste materials | 2014 | [36] |
Microbial ecology and evolution in the acid mine drainage model system | 2016 | [37] |
Recent progress in biohydrometallurgy and microbial characterization | 2018 | [38] |
Mine waste characterization and treatment techniques | ||
The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes | 1996 | [39] |
Acid mine drainage remediation options: a review | 2005 | [22] |
Acid mine drainage (AMD): causes, treatment, and case studies | 2006 | [40] |
Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs | 2007 | [41] |
Geochemistry and mineralogy of solid mine waste: essential knowledge for predicting environmental impact | 2011 | [15] |
Remediation of acid mine drainage-impacted water | 2015 | [42] |
Mineralogical characterization of mine wastes | 2015 | [43] |
Characteristics and environmental aspects of slag: a review | 2015 | [44] |
A critical review of acid rock drainage prediction methods and practices | 2015 | [45] |
Acid rock drainage prediction: a critical review | 2017 | [46] |
Acid mine drainage: prevention, treatment options, and resource recovery: A review | 2017 | [47] |
Environmental indicators in metal mining | 2017 | [48] |
Environmentally sustainable acid mine drainage remediation: research developments with a focus on waste/by-products | 2018 | [49] |
A review of recent strategies for acid mine drainage prevention and mine tailings recycling | 2019 | [23] |
Waste rock management | ||
The geochemistry of acid mine drainage | 2003 | [2] |
Sustainable mining practices | 2005 | [50] |
Mine wastes: past, present, future | 2011 | [1] |
Hydrogeochemical processes governing the origin, transport, and fate of major and trace elements from mine wastes and mineralized rock to surface waters | 2011 | [51] |
Management of sulfide-bearing waste, a challenge for the mining industry | 2012 | [52] |
Acid mine drainage: challenges and opportunities | 2014 | [53] |
Waste-rock hydrogeology and geochemistry | 2015 | [16] |
Hydrogeochemistry and microbiology of mine drainage: an update | 2015 | [54] |
Geochemical and mineralogical aspects of sulfide mine tailings | 2015 | [17] |
Mine waste characterization, management, and remediation | 2015 | [14] |
The mine of the future—even more sustainable | 2017 | [55] |
Mining waste and its sustainable management: advances in worldwide research | 2018 | [56] |
Guidance for the integrated use of hydrological, geochemical, and isotopic tools in mining operations | 2020 | [13] |
Reported Rate [Varying Units] | Waste-Rock Type | Mine [Main Ore Product] | Method of Estimation | Rate in g S per kg Waste Rock (Bulk) per Year * | Reference |
---|---|---|---|---|---|
Laboratory studies | |||||
5 ± 1 × 10−7 [mol O2 m−3 s−1] | up to 1.5% sulfides | Aitik, Sweden [Cu] | Oxygen consumption | 0.3 | [195,196] |
up to 7 × 10−8 [mol O2 kg−1 s−1] | up to 6 wt% py | Doyon, Canada [Au] | Oxygen consumption | up to 40 | [192] |
6 to 60 [mg SO4 kg−1 wk−1] | <0.5 wt% S | Cluff Lake, Canada [U] | Sulfate mass-loading | 0.3 to 3 | [183] |
1 × 10−12 to 4 × 10−11 [kg O2 kg−1 s−1] | 0.6 – 1.4% S | Duluth Complex, USA [Cu, Ni] | Drainage loading | 1.8 to 52 | [197] |
Field experiments | |||||
3 × 10−9 to 1 × 10−7 [kg O2 m−3 s−1] | Reactive (>3% S) | Antamina, Peru [Cu, Zn] | Oxygen consumption | 0.1 to 3.4 | [198] |
6 × 10−11 to 4 × 10−10 [kg O2 m−3 s−1] | Unreactive (<0.5% S) | Antamina, Peru [Cu, Zn] | Oxygen consumption | 0.002 to 0.01 | [198] |
up to 3 × 10−3 (±87%) [kg S kg−1 yr−1] | Reactive (1.6% S) | Antamina, Peru [Cu, Zn] | Sulfate mass-loading | 3 | [115] |
up to 4 × 10−4 (±20%) [kg S kg−1 yr−1] | Unreactive (0.5% S) | Antamina, Peru [Cu, Zn] | Sulfate mass-loading | 0.4 | [115] |
1 × 10−7 [kg S m−3 s−1] | Reactive (>10% S) | Antamina, Peru [Cu, Zn] | Heat production | 1.8 | [194] |
2 × 10−7 [kg O2 m−3 s−1] | Reactive (>10% S) | Antamina, Peru [Cu, Zn] | Oxygen consumption | 6.7 | [194] |
0.05 to 0.3 [g S kg−1 yr−1] | Mixed (0.5–1.6%S) | Antamina, Peru [Cu, Zn] | Heat production | 0.05 to 0.3 | [199] |
1 × 10−8 to 1 × 10−10 [kg O2 m−3 s−1] | 0.6 vol% Sulfides | Aitik, Sweden [Cu] | Oxygen consumption | 0.002 to 0.2 | [200,201] |
1 × 10−9 to 1 × 10−10 [mol O2 kg−1 s−1] | Up to 6 wt% py | Doyon, Canada [Au] | Heat and oxygen profiles | 0.58 to 5.8 | [192] |
3 to 100 [mg SO4 kg−1 wk−1] | <0.5 wt% S | Cluff Lake, Canada [U] | Sulfate mass-loading | 0.05 to 1.7 | [193] |
7 to 70 [mg SO4 kg−1 wk−1] | <0.5 wt% S | Cluff Lake, Canada [U] | Oxygen consumption | 0.12 to 1.2 | [193] |
8 × 10−8 to 2 × 10−7 [kg Py m−2 s−1] | Mixed (~3 wt% S) | Rum Jungle, Australia [U] | Thermal profiles | 0.15 to 0.36 | [202] |
Numerical modelling | |||||
0.004–0.4 [kg O2 m−3 yr−1] | Mixed (6–0.1% S) | Doyon, Canada [Au] | Simulated | 0.004 to 0.4 | [203] |
0.02 [kg Py m−3 yr−1] | Mixed (0.1% Py) | Doyon, Canada [Au] | Simulated | 0.006 | [204,205] |
0.15 [kg Py m−3 yr−1] | Mixed (0.05% Py) | Nordhalde, Germany [U] | Simulated | 0.04 | [204,205] |
5 ± 1 × 10−7 [mol O2 m−3 s−1] | up to 1.5% sulfides | Aitik, Sweden [Cu] | Calibrated to measurements | 0.3 | [195] |
1 × 10−7 to 5 × 10−10 [kg O2 m−3 s−1] | 0.1 to 1 wt% | - | Adopted | 0.005 to 0.9 | [206] |
up to 292 [kg O2 m−3 day−1] | 3.5% | Questa, USA [Mo] | Simulated | up to 0.08 | [207] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vriens, B.; Plante, B.; Seigneur, N.; Jamieson, H. Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management. Minerals 2020, 10, 728. https://doi.org/10.3390/min10090728
Vriens B, Plante B, Seigneur N, Jamieson H. Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management. Minerals. 2020; 10(9):728. https://doi.org/10.3390/min10090728
Chicago/Turabian StyleVriens, Bas, Benoît Plante, Nicolas Seigneur, and Heather Jamieson. 2020. "Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management" Minerals 10, no. 9: 728. https://doi.org/10.3390/min10090728
APA StyleVriens, B., Plante, B., Seigneur, N., & Jamieson, H. (2020). Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management. Minerals, 10(9), 728. https://doi.org/10.3390/min10090728