Modelling the Altitude Dependence of the Wet Path Delay for Coastal Altimetry Using 3-D Fields from ERA5
"> Figure 1
<p>Atmospheric variables provided by ERA5 on 1 January 2010, at 00:00 UTC on model levels (blue) and on pressure levels (orange): (<b>a</b>) temperature (T) in Kelvin and (<b>b</b>) specific humidity (q) in kg/kg at location 00°, 120°E.</p> "> Figure 2
<p>Wet path delay (WPD) vertical profiles at (<b>a</b>) 10°N, 90°W; (<b>b</b>) 00°, 100°E; (<b>c</b>) 25°S, 65°E. Grey profiles represent those every 3h over the year 2010, solid line represents the annual mean profile, squares with dashed line and circles with dotted line represent the mean profiles for January and July, respectively.</p> "> Figure 3
<p>Spatial representation of the radiosondes (RS) network from Integrated Global Radiosonde Data (IGRA). Blue points represent all RS since 1905, green squares represent the RS with valid measurements of temperature and humidity over the year 2014, and red triangles represent those selected for the validation.</p> "> Figure 4
<p>Time evolution of the α coefficients at locations: (<b>a</b>) 10°N, 90°W; (<b>b</b>) 00°, 100°E; (<b>c</b>) 25°S, 65°E. Grey points represent the α coefficients every 3h, orange line represents the overall mean (UP-01) and purple squares and green points represent the seasonally averaged (UP-04) and monthly averaged coefficients (UP-12), respectively.</p> "> Figure 4 Cont.
<p>Time evolution of the α coefficients at locations: (<b>a</b>) 10°N, 90°W; (<b>b</b>) 00°, 100°E; (<b>c</b>) 25°S, 65°E. Grey points represent the α coefficients every 3h, orange line represents the overall mean (UP-01) and purple squares and green points represent the seasonally averaged (UP-04) and monthly averaged coefficients (UP-12), respectively.</p> "> Figure 5
<p>Spatial representation of the α coefficient, computed as the mean for each point (UP-01) in a 5° × 5° grid.</p> "> Figure 6
<p>Root Mean Square (RMS) (cm) of the WPD differences between 3-D (WPD retrieved from the original ERA5 PL fields) and 2-D with Kouba reduction, using profiles every 3h in a 5° × 5° grid over the year 2014.</p> "> Figure 7
<p>RMS (cm) of the WPD differences between 3-D and 2-D with UP-01 reduction, using profiles every 3h in a 5° × 5°grid over the year 2014.</p> "> Figure 8
<p>RMS (cm) of the differences between WPD computed with 3-D approach and that computed at surface level and then reduced with UP-04 (<b>left</b>) and UP-12 (<b>right</b>) coefficients.</p> "> Figure 9
<p>RMS (cm) of the differences between WPD computed with 3-D approach using atmospheric variables from IGRA and those computed at lowest level and then reduced with Kouba (blue bars), UP-01 (orange bars), UP-04 (purple bars), and UP-12 (green bars) coefficients.</p> "> Figure 10
<p>RMS (cm) of the differences at Global Navigation Satellite Systems (GNSS) station height between WPD derived from GNSS and those computed at ERA5 orography level using single level atmospheric variables and then reduced with Kouba (blue bars), UP-01 (orange bars), UP-04 (purple bars), and UP-12 (green bars) coefficients to the height of each GNSS station (identified by its four characters).</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources for WPD Estimation
2.1.1. Numerical Weather Models (NWM)
2.1.2. Radiosondes (RS)
2.1.3. GNSS Stations
2.2. Modelling the Altitude Dependence of the WPD
2.2.1. The Kouba Formulation
2.2.2. Modelling Using ERA5 Data on Pressure Levels
- UP-01: a single coefficient for each location (non-time-dependent), computed as the mean at each point;
- UP-04: four seasonally averaged coefficients for each location;
- UP-12: 12 monthly averaged coefficients for each location.
2.2.3. Assessment and Validation
3. Results and Discussion
3.1. Comparison between WPD Computed Using Different ERA5 Data
3.2. Modelling
3.3. Assessment with ERA5 Data
3.4. Validation with RS and GNSS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaboureau, J.P.; Chédin, A.; Scott, N.A. Remote sensing of the vertical distribution of atmospheric water vapor from the TOVS observations: Method and validation. J. Geophys. Res. Atmos. 1998, 103, 8743–8752. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Ries, J.C.; Haines, B.J.; Fu, L.-L.; Callahan, P.S. Satellite Altimetry. In Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications; Fu, L.L., Cazenave, A., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 1–131. ISBN 9780080516585. [Google Scholar]
- Ablain, M.; Cazenave, A.; Larnicol, G.; Balmaseda, M.; Cipollini, P.; Faugère, Y.; Fernandes, M.J.; Henry, O.; Johannessen, J.A.; Knudsen, P.; et al. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci. 2015, 11, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Legeais, J.-F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.J.; Lázaro, C.; Nunes, A.L.; Scharroo, R. Atmospheric corrections for altimetry studies over inland water. Remote Sens. 2014, 6, 4952–4997. [Google Scholar] [CrossRef] [Green Version]
- Vieira, E.; Lázaro, C.; Fernandes, M.J. Spatio-temporal variability of the wet component of the troposphere—Application to satellite altimetry. Adv. Space Res. 2019, 63, 1737–1753. [Google Scholar] [CrossRef] [Green Version]
- Brown, S. A novel near-land radiometer wet path-delay retrieval algorithm: Application to the Jason-2/OSTM Advanced Microwave Radiometer. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1986–1992. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Lázaro, C. Independent assessment of Sentinel-3A wet tropospheric correction over the open and coastal ocean. Remote Sens. 2018, 10, 484. [Google Scholar] [CrossRef] [Green Version]
- Cipollini, P.; Benveniste, J.; Birol, F.; Joana Fernandes, M.; Obligis, E.; Passaro, M.; Ted Strub, P.; Valladeau, G.; Vignudelli, S.; Wilkin, J. Satellite altimetry in coastal regions. In Satellite Altimetry over Oceans and Land Surfaces; CRC Press: Boca Raton, FL, USA, 2017; pp. 343–380. [Google Scholar]
- Handoko, E.Y.; Fernandes, M.J.; Lázaro, C. Assessment of altimetric range and geophysical corrections and mean sea surface models-Impacts on sea level variability around the Indonesian seas. Remote Sens. 2017, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Vieira, T.; Fernandes, M.J.; Lázaro, C. Analysis and retrieval of tropospheric corrections for CryoSat-2 over inland waters. Adv. Space Res. 2018, 62, 1479–1496. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lazaro, C. Independent Assessment of On-Board Microwave Radiometer Measurements in Coastal Zones Using Tropospheric Delays from GNSS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1804–1816. [Google Scholar] [CrossRef]
- Thao, S.; Eymard, L.; Obligis, E.; Picard, B. Comparison of Regression Algorithms for the Retrieval of the Wet Tropospheric Path. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4302–4314. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Pires, N.; Lázaro, C.; Nunes, A.L. Tropospheric delays from GNSS for application in coastal altimetry. Adv. Space Res. 2013, 51, 1352–1368. [Google Scholar] [CrossRef]
- Legeais, J.F.; Ablain, M.; Thao, S. Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level. Ocean Sci. 2014, 10, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.J.; Lázaro, C.; Nunes, A.L.; Pires, N.; Bastos, L.; Mendes, V.B. GNSS-derived path delay: An approach to compute the wet tropospheric correction for coastal altimetry. IEEE Geosci. Remote Sens. Lett. 2010, 7, 596–600. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Lázaro, C.; Ablain, M.; Pires, N. Improved wet path delays for all ESA and reference altimetric missions. Remote Sens. Environ. 2015, 169, 50–74. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.J.; Lázaro, C. GPD+wet tropospheric corrections for CryoSat-2 and GFO altimetry missions. Remote Sens. 2016, 8, 851. [Google Scholar] [CrossRef] [Green Version]
- Stum, J.; Sicard, P.; Carrère, L.; Lambin, J. Using objective analysis of scanning radiometer measurements to compute the water vapor path delay for altimetry. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3211–3224. [Google Scholar] [CrossRef]
- Kouba, J. Implementation and testing of the gridded Vienna mapping function 1 (VMF1). J. Geod. 2008, 82, 193–205. [Google Scholar] [CrossRef]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.B.; Hu, Y.F. An empirical zenith wet delay correction model using piecewise height functions. Ann. Geophys. 2018, 36, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yuan, Y.; Ou, J.; He, Y. IGGtrop-SH and IGGtrop-rH: Two improved empirical tropospheric delay models based on vertical reduction functions. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5276–5288. [Google Scholar] [CrossRef]
- Niell, A.E.; Coster, A.J.; Solheim, F.S.; Mendes, V.B.; Toor, P.C.; Langley, R.B.; Upham, C.A. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Ocean. Technol. 2001, 18, 830–850. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Muller, J.P.; Cross, P. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223–234. [Google Scholar] [CrossRef]
- Benevides, P.; Nico, G.; Catalao, J.; Miranda, P.M.A. Analysis of Galileo and GPS Integration for GNSS Tomography. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1936–1943. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 20 August 2018).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lazaro, C. Impact of the new ERA5 Reanalysis in the Computation of Radar Altimeter Wet Path Delays. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9849–9857. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H.; Bevis, M.; Businger, S.; Chiswell, S.; et al. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Mendes, V.B. Modeling the Neutral-Atmosphere Propagation Delay in Radiometric Space Techniques; University of New Brunswick: Fredericton, NB, Canada, 1999. [Google Scholar]
- Boehm, J.; Heinkelmann, R.; Schuh, H. Short note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collecte Localisation Satellites (CLS). Surface Topography Mission (STM) SRAL/MWR L2 Algorithms Definition, Accuracy and Specification; CLS: Ramonville St-Agne, France, 2011. [Google Scholar]
- Kalakoski, N.; Kujanpää, J.; Sofieva, V.; Tamminen, J.; Grossi, M.; Valks, P. Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements. Atmos. Meas. Tech. 2016, 9, 1533–1544. [Google Scholar] [CrossRef] [Green Version]
- Anthes, R.A. Regional models of the atmosphere in middle latitudes. Mon. Weather Rev. 1983, 111, 1306–1335. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Durre, I. Integrated Global Radiosonde Archive v2; Dataset Descr. Version 1.0; NOAA: Silver Spring, MD, USA, 2016; p. 15. [Google Scholar]
- Durre, I.; Yin, X.; Vose, R.S.; Applequist, S.; Arnfield, J. Enhancing the data coverage in the integrated Global Radiosonde Archive. J. Atmos. Ocean. Technol. 2018, 35, 1753–1770. [Google Scholar] [CrossRef]
- Nievinski, F.G.; Santos, M.C. Ray-tracing options to mitigate the neutral atmosphere delay in GPS. Geomatica 2010, 64, 191–207. [Google Scholar]
- Haines, B.J.; Bar-Sever, Y.E. Monitoring the TOPEX microwave radiometer with GPS: Stability of columnar water vapor measurements. Geophys. Res. Lett. 1998, 25, 3563–3566. [Google Scholar] [CrossRef]
- Desai, S.D.; Haines, B.J. Monitoring measurements from the Jason-1 microwave radiometer and independent validation with GPS. Mar. Geod. 2004, 27, 221–240. [Google Scholar] [CrossRef]
- Sibthorpe, A.; Brown, S.; Desai, S.D.; Haines, B.J. Calibration and validation of the Jason-2/OSTM advanced microwave radiometer using terrestrial GPS stations. Mar. Geod. 2011, 34, 420–430. [Google Scholar] [CrossRef]
- Roblou, L.; Lamouroux, J.; Bouffard, J.; Lyard, F.; Le Hénaff, M.; Lombard, A.; Marsaleix, P.; De Mey, P.; Birol, F. Post-processing altimeter data towards coastal applications and integration into coastal models. In Coastal Altimetry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 217–246. [Google Scholar]
- Liu, Y.; Weisberg, R.H.; Vignudelli, S.; Roblou, L.; Merz, C.R. Comparison of the X-TRACK altimetry estimated currents with moored ADCP and HF radar observations on the West Florida Shelf. Adv. Space Res. 2012, 50, 1085–1098. [Google Scholar] [CrossRef]
- Vignudelli, S.; Birol, F.; Benveniste, J.; Fu, L.-L.; Picot, N.; Raynal, M.; Roinard, H. Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Surv. Geophys. 2019, 40, 1319–1349. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, T.; Fernandes, M.J.; Lázaro, C. Modelling the Altitude Dependence of the Wet Path Delay for Coastal Altimetry Using 3-D Fields from ERA5. Remote Sens. 2019, 11, 2973. https://doi.org/10.3390/rs11242973
Vieira T, Fernandes MJ, Lázaro C. Modelling the Altitude Dependence of the Wet Path Delay for Coastal Altimetry Using 3-D Fields from ERA5. Remote Sensing. 2019; 11(24):2973. https://doi.org/10.3390/rs11242973
Chicago/Turabian StyleVieira, Telmo, M. Joana Fernandes, and Clara Lázaro. 2019. "Modelling the Altitude Dependence of the Wet Path Delay for Coastal Altimetry Using 3-D Fields from ERA5" Remote Sensing 11, no. 24: 2973. https://doi.org/10.3390/rs11242973
APA StyleVieira, T., Fernandes, M. J., & Lázaro, C. (2019). Modelling the Altitude Dependence of the Wet Path Delay for Coastal Altimetry Using 3-D Fields from ERA5. Remote Sensing, 11(24), 2973. https://doi.org/10.3390/rs11242973