Hybrid Chlorophyll-a Algorithm for Assessing Trophic States of a Tropical Brazilian Reservoir Based on MSI/Sentinel-2 Data
"> Figure 1
<p>Ibitinga reservoir and its main tributaries: Survey campaigns by Londe [<a href="#B58-remotesensing-12-00040" class="html-bibr">58</a>] carried out in 2005 (<b>A</b>) and by Cairo [<a href="#B59-remotesensing-12-00040" class="html-bibr">59</a>] carried out in November 2013; in February, March, May, July, and September 2014; and in August 2018 (<b>B</b>). The red dots in <a href="#remotesensing-12-00040-f001" class="html-fig">Figure 1</a>B are sample stations collected in 2013, 2014, and 2018.</p> "> Figure 2
<p>(<b>A</b>) Spectral Angle Mapper (SAM) reference classes; (<b>B</b>) class 1 zoom, making explicit the shape of the reference spectrum to compare the shape with other reference spectra. Classes 1, 2, and 3 refer to low, medium, and high eutrophication conditions, respectively.</p> "> Figure 3
<p>Classified in situ R<sub>rs</sub><sup>+</sup> spectra: (<b>A</b>) class 1, (<b>B</b>) class 2, and (<b>C</b>) class 3. From left to right, red arrows indicate peaks on the green, red, and infrared regions.</p> "> Figure 4
<p>(<b>A</b>) Decision tree results for OHA, where classes 1, 2, and 3 are the respective SAM’s classes; (<b>B</b>) OHA decision tree confusion matrix. Classes 1, 2, and 3 refer to low, medium, and high eutrophication conditions, respectively.</p> "> Figure 5
<p>OHA framework. Classes 1, 2, and 3 refer to low, medium, and high eutrophication conditions, respectively.</p> "> Figure 6
<p>(<b>A</b>) OHA with the class 3 algorithm up to 600 mg/m<sup>3</sup> and (<b>B</b>) OHA with the class 3 algorithm up to 1000 mg/m<sup>3</sup>. Class 3 refers to high eutrophication conditions.</p> "> Figure 7
<p>Algorithms composing the OHA-validated hybrid algorithm: (<b>A</b>) Gitelson et al. [<a href="#B70-remotesensing-12-00040" class="html-bibr">70</a>] 3-band algorithm with linear fit calibrated/validated to the “class 1” range; (<b>B</b>) Mishra and Mishra [<a href="#B69-remotesensing-12-00040" class="html-bibr">69</a>] slope algorithm using B5 and B4 bands (red–NIR slope) with exponential fit calibrated/validated to the “class 2” range; (<b>C</b>) B5/B3 band ratio with exponential fit calibrated/validated to “class 3” up to 600 mg/m<sup>3</sup>; and (<b>D</b>) B6/B3 band ratio with polynomial fit calibrated/validated to “class 3” up to 1000 mg/m<sup>3</sup>. Classes 1, 2, and 3 refer to low, medium, and high eutrophication conditions, respectively.</p> "> Figure 8
<p>Atmospheric correction validation: (<b>A</b>) without glint correction; (<b>B</b>) with glint correction using MSI/Sentinel-2 band 11 subtraction; and (<b>C</b>) with glint correction using MSI/Sentinel-2 band 12 subtraction.</p> "> Figure 9
<p>OHA validation over MSI/Sentinel-2 atmospherically corrected images: (<b>A</b>) without glint correction; (<b>B</b>) with glint correction using MSI/Sentinel-2 band 11 subtraction; and (<b>C</b>) with glint correction using MSI/Sentinel-2 band 12 subtraction. Classes 1 and 2 refer to low and medium eutrophication conditions, respectively. Blue, red, and orange circles refer to P1, P2, and P6 sampling stations, respectively.</p> "> Figure 10
<p>Spatial distribution of (<b>A</b>) chl-<span class="html-italic">a</span> range classes and of (<b>B</b>) chl-<span class="html-italic">a</span> concentration estimates based on the application of the OHA to the MSI/Sentinel-2 image concurrent to the August 13, 2018 field campaign at Ibitinga reservoir. Classes 1, 2, and 3 refer to low, medium, and high eutrophication conditions, respectively.</p> "> Figure 11
<p>Analysis of water-color change and R<sub>rs</sub><sup>+</sup>(λ), <span class="html-italic">a</span><sub>phy</sub> (λ), <span class="html-italic">a</span><sub>nap</sub>(λ), and <span class="html-italic">a</span><sub>cdom</sub>(λ) variation for the three subsets generated using the optical method: (<b>A</b>) P1 station of May/2014, present in the specific chl-<span class="html-italic">a</span> range “class 1”; (<b>B</b>) P1 station of July/2014, present in the specific chl-<span class="html-italic">a</span> range “class 2”; and (<b>C</b>) P1 station of February/2014, present in the specific chl-<span class="html-italic">a</span> range “class 3”. Classes 1, 2, and 3 refer to low, medium, and high eutrophication conditions, respectively. Note 1: In the right corner of <a href="#remotesensing-12-00040-f011" class="html-fig">Figure 11</a>A is R<sub>rs</sub><sup>+</sup>(λ) with an enlarged scale to emphasize the shape of the spectrum in relation to <a href="#remotesensing-12-00040-f011" class="html-fig">Figure 11</a>B,C. Note 2: in <a href="#remotesensing-12-00040-f011" class="html-fig">Figure 11</a>C, the absorption scale is different from that of <a href="#remotesensing-12-00040-f011" class="html-fig">Figure 11</a>A,B.</p> "> Figure 12
<p>Examples of (<b>A</b>) transition spectra (in situ R<sub>rs</sub><sup>+</sup> simulated for MSI/Sentinel-2 bands) between SAM’s classes 1 (orange line) and 2 (green line), with close chl-<span class="html-italic">a</span> concentration values (mg/m<sup>3</sup>), and (<b>B</b>) in situ simulated (red line) and satellite-derived (purple line) R<sub>rs</sub> spectra of the “P6_Aug_2018” sampling station, showing in situ (red) and estimated (purple) chl-<span class="html-italic">a</span> concentration values.</p> "> Figure 13
<p>Variability of water color in Ibitinga Reservoir for (<b>A</b>) 12-Aug-2018 (OLI/Landsat-8) and (<b>B</b>) 13-Aug-2018 (MSI/Sentinel-2). The points refer to sampling stations P1, P2, and P6 collected in the Aug/2018 campaign.</p> "> Figure A1
<p>Examples of in situ R<sub>rs</sub><sup>+</sup> (λ) corrections of some Londe [<a href="#B58-remotesensing-12-00040" class="html-bibr">58</a>] sampling stations by the methodology of (<b>A</b>) normal Kutser et al. [<a href="#B63-remotesensing-12-00040" class="html-bibr">63</a>], (<b>B</b>) Kutser et al. [<a href="#B63-remotesensing-12-00040" class="html-bibr">63</a>] adaptation 1, (<b>C</b>) Kutser et al. [<a href="#B63-remotesensing-12-00040" class="html-bibr">63</a>] adaptation 2, and (<b>D</b>) Kutser et al. [<a href="#B63-remotesensing-12-00040" class="html-bibr">63</a>] adaptation 3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Dataset
2.3. Chl-a Bio-Optical Algorithms
2.4. Chl-a Concentration Ranges
2.5. Calibration/Validation of Bio-Optical Algorithms
2.6. Hybrid Algorithm Construction
2.7. Hybrid Algorithm Validation—In Situ Data
2.8. Hybrid Algorithm Application on MSI/Sentinel-2 Image
3. Results
3.1. SAM Trophic Classes
3.2. Assessment of In Situ Chl-a Bio-Optical Algorithms for Each Chl-a Concentration Range
3.3. Decision Tree for Detecting Trophic Classes
3.4. OHA Framework and In Situ Validation
3.5. Atmospheric Correction Evaluation and OHA Image Validation
4. Discussion
4.1. Trophic Class Optical Properties
4.2. Specific Chl-a Concentration-Range Assessment
4.3. Chl-a Bio-Optical Algorithm Comparisons
4.4. OHA Framework Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic press: Cambridge, MA, USA, 2001; p. 1006. [Google Scholar]
- Margalef, R. Typology of reservoirs. Verh. Int. Ver. Limnol. 1975, 19, 1841–1848. [Google Scholar] [CrossRef]
- Tundisi, J.G. Reservatórios como sistemas complexos: Teoria, aplicações e perspectivas para usos múltiplos. In Ecologia de reservatórios: Estrutura, Função e Aspectos Sociais; Henry, R., Ed.; FUNDBIO: Botucatu, Brazil, 1999. [Google Scholar]
- Branco, S.M.; Rocha, A.A. Poluição, Proteção e Usos Múltiplos de Represas; Edgard Blucher/CETESB: São Paulo, Brazil, 1977; p. 185. [Google Scholar]
- Azevedo, S.M.F.O.; Vasconcelos, V.M. Toxinas de cianobactérias: Causas e consequências para a saúde pública. In Ecotoxicologia Aquática—Princípios e Aplicações; Zagatto, P.A., Bertoletti, E., Eds.; RiMa: São Carlos, Brazil, 2006. [Google Scholar]
- Randolf, K.; Wilson, J.; Tedesco, L.; Li, L.; Pascual, D.L.; Soyeux, E. Hyperspectral remote sensing of cyanobasteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens. Environ. 2008, 112, 4009–4019. [Google Scholar] [CrossRef]
- Rigosi, A.; Carey, C.C.; Ibelings, B.W.; Brookes, J.D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 2014, 59, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Onda, K.; LoBuglio, J.; Bartram, J. Global access to safe water: Accounting for water quality and the resulting impact on MDG progress. Int. J. Environ. Res. Public Health 2012, 9, 880–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011; p. 528. [Google Scholar]
- Brivio, P.A.; Giardino, C.; Zilioli, E. Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. Int. J. Remote Sens. 2001, 22, 487–502. [Google Scholar] [CrossRef]
- Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band NIR-red model? Remote Sens. Environ. 2011, 115, 3479–3490. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Reynolds, C.S. Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006; p. 535. [Google Scholar]
- Ansper, A.; Alikas, K. Retrieval of chlorophyll a from Sentinel-2 MSI data for European Union Water Framework Directive Reporting Purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Gons, H.J. Optical Teledetection of Chlorophyllain Turbid Inland Waters. Environ. Sci. Technol. 1999, 33, 1127–1132. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Nerdnikov, S.; Povazhnyy, V. Satellite estimation of chlorophyll-a concentration using the Red and NIR bands of MERIS—The Azov Sea case study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845–849. [Google Scholar] [CrossRef]
- Novo, E.M.L.M.; Londe, L.R.; Barbosa, C.; Araujo, C.A.S.; Rennó, C.D. Proposal for a remote sensing trophic state index based upon Thematic Mapper/Lansat images. Rev. Ambiente Água 2013, 8, 65–81. [Google Scholar] [CrossRef]
- Thiemann, S.; Kaufmann, H. Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake District, Germany. Remote Sens. Environ. 2000, 73, 227–235. [Google Scholar] [CrossRef]
- Wezernak, C.T.; Tanis, F.J.; Bajza, C.A. Trophic State Analysis of inland waters. Remote Sens. Environ. 1976, 5, 147–165. [Google Scholar] [CrossRef]
- Matthews, M.W. Bio-optical modeling of phytoplankton chlorophyll-a. In Bio-Optical Modeling and Remote Sensing of Inland Waters Mishra, 1st ed.; Mishra, D.R., Ogashawara, I., Gitelson, A.A., Eds.; Elsevier: Cambridge, MA, USA, 2017; pp. 157–188. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P.; Cota, G.F.; et al. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. In NASA Technical Memorandum 2000-206892; Hooker, S.B., Firestone, E.R., Eds.; NASA Goddard Space Flight Centre: Greenbelt, MD, USA, 2000; Volume 11, pp. 9–23. [Google Scholar]
- Matsushita, B.M.; Yang, W.; Yu, G.; Oyama, Y.; Yoshimura, K.; Fukushima, T. A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS J. Photogramm. Remote Sens. 2015, 102, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.E.; Robertson Lain, L.; Bernard, S. An optimized Chlorophyll-a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters. Remote Sens. Environ. 2018, 215, 217–227. [Google Scholar] [CrossRef]
- Augusto-Silva, P.B.; Ogashawara, I.; Barbosa, C.C.; de Carvalho, L.A.S.; Jorge, D.S.F.; Fornari, C.I.; Stech, J. Analysis of MERIS refkectance algorithms for estimating chlorophyll-a concentration in a Brazilian reservoir. Remote Sens. 2014, 6, 11689–11707. [Google Scholar] [CrossRef] [Green Version]
- Lins, R.C.; Martinez, J.-M.; Marques, D.M.; Cirilo, J.A.; Fragoso, R., Jr. Assessment od chlorophyll-a remote sensing algorithms in a productive tropical estuarine-lagoon system. Remote Sens. 2017, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- Watabane, F.; Alcantara, E.; Imai, N.; Rodrigues, T.; Bernardo, N. Estimaton of chlorophyll-a concentration from optimizing a semi-analytical algorithm in productive inland waters. Remote Sens. 2018, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Flores, R., Jr.; Maciel, D.A.; Cairo, C.T.; Carlos, F.M.; Lobo, F.L.; Sander de Carvalho, L.; Novo, E.M.L.M.; Barbosa, C.C.F. Assessment of satellite algorithms for deriving chlorophyll-a from turbid waters of amazon floodplain lakes. In Proceedings of the XIX Brazilian Symposium on Remote Sensing, Santos/SP, Brazil, 14–17 April 2019; pp. 1938–1941. [Google Scholar]
- Sander de Carvalho, L.A.; Barbosa, C.C.F.; Lobo, F.L.; Novo, E.M.L.M. Comparison for chlorophyll-a remote sensing retrieval algorithms based on standard laboratory procedures and on in-situ absorption measurements. In Proceedings of the XIX Brazilian Symposium on Remote Sensing, Santos/SP, Brazil, 14–17 April 2019; pp. 1722–1725. [Google Scholar]
- Andrade, C.; Bernardo, N.; Carmo, A.; Alcânara, E.; Kampel, M. Assessment of quasi-analytical algorithm for estimating the inherent optical properties in a complex cascade system. J. Appl. Remote Sens. 2018, 12, 036014. [Google Scholar] [CrossRef]
- Giardino, C.; Brando, V.E.; Gege, P.; Pinnel, N.; Hochberg, E.; Knaeps, E.; Reusen, I.; Doerffer, R.; Bresciani, M.; Braga, F.; et al. Imaging spectrometry of inland and coastal waters: State of the art, achievements and persperctives. Surv. Geophys. 2019, 40, 401–429. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Campbell, J.W.; Dowell, M.D.; Moore, T.S. Modeling spectral reflectance of optically complex waters using bio-optical measurements from Tokyo Bay. Remote Sens. Environ. 2005, 99, 232–243. [Google Scholar] [CrossRef]
- Moore, T.S.; Dowell, M.D.; Bradt, S.; Verdu, A.R. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 2014, 143, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Zhang, H. Remote estimation os chlorophyll a in optically complex waters based on optical classification. Remote Sens. Environ. 2011, 115, 725–737. [Google Scholar] [CrossRef]
- Lubac, B.; Loisel, H. Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea. Remote Sens. Environ. 2007, 110, 45–58. [Google Scholar] [CrossRef]
- Shi, K.; Li, Y.; Li, L.; Lu, H.; Song, K.; Liu, Z.; Xu, Y.; Li, Z. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Sci. Total Environ. 2013, 444, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tilstone, G.H.; Peters, S.W.M.; van der Woerd, H.J.; Eleveld, M.A.; Ruddick, K.; Schonfeld, W.; Krasemann, H.; Martinez-Vicente, V.; Blondeau-Patissier, D.; Röttgers, R.; et al. Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters. Remote Sens. Environ. 2012, 118, 320–338. [Google Scholar] [CrossRef] [Green Version]
- Gilerson, A.; Gitelson, A.; Zhou, J.; Gulrin, D.; Moses, W.; Ioannou, I.; Ahmed, S. Algorithms for remote sensing of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Matsushita, B.; Chen, J.; Fukushima, T. Estimating constituent concentrations in case II waters from MERIS satellite data by semi-analytical model optimizing and look-up tables. Remote Sens. Environ. 2011, 115, 1247–1259. [Google Scholar] [CrossRef] [Green Version]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean. 2012, 117, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.A.D.; Alonso, C.A.; García, A.A. Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive (WFD) and as a system of surveillance of cyanobacterial harmful algae blooms (SCyanoHABs). Environ. Monit. Assess. 2011, 181, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to datamining, 1st ed.; Pearson Addison Wesley: Boston, MA, USA, 2006; p. 900. [Google Scholar]
- Rudorff, B.F.T.; Aguiar, D.A.; Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. Remote Sens. 2010, 4, 1057–1076. [Google Scholar] [CrossRef] [Green Version]
- CANASAT. Dados da Área Cultivada com Cana-De-Açúcar no Estado de São Paulo. Available online: http://www.dsr.inpe.br/laf/canasat/tabelas.html (accessed on 22 November 2017).
- CETESB—Companhia Ambiental do Estado de São Paulo. Resumo Executivo—Relatório de Qualidade das Águas Interiores no Estado de São Paulo. 2018. Available online: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2019/07/Resumo-Executivo-Relat%C3%B3rio-de-Qualidade-das-%C3%81guas-Interiores-no-Estado-de-S%C3%A3o-Paulo-2018.pdf (accessed on 30 July 2019).
- Filoso, S.; Martinelli, L.A.; Williams, M.R.; Lara, L.B.; Krusche, A.; Ballester, M.V.; de Camargo, P.B. Land use and nitrogen export in the Piracicaba River Basin, Southeast Brazil. Biogeochemistry 2003, 65, 275–294. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Filoso, S. Expansion of sugarcane ethanol production in Brazil: Environmental and social challenges. Ecol. Appl. 2008, 18, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Budds, J.; Teixeira, P.; SEHAB. Ensuring the right to the city: Pro-poor housing, urban development and tenure legalization in Sao Paulo, Brazil. Environ. Urban. 2005, 89–113. [Google Scholar] [CrossRef]
- Campanha, M.B.; Awan, A.T.; de Sousa, D.N.; Grosseli, G.M.; Mozeto, A.A.; Fadini, P.S. A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil. Environ. Sci. Pollut. Res. 2015, 22, 7936–7947. [Google Scholar] [CrossRef] [PubMed]
- Empinotti, V.L.; Budds, J.; Aversa, M. Governance and water security: The role of the water institutional framework in the 2013–15 water crisis in São Paulo, Brazil. Geoforum 2019, 98, 46–54. [Google Scholar] [CrossRef] [Green Version]
- SIGRH—Sistema Iintegrado de Gerenciamento de Recursos Hídricos do Estado de São Paulo. Comitê da bacia hidrográfica Tietê-Jacaré—apresentação. Available online: http://www.sigrh.sp.gov.br/cbhtj/apresentacao (accessed on 24 December 2014).
- COMITETJ—Comitê da Bacia Hidrográfica do Tietê-Jacaré. Relatório de situação dos rescursos hídricos 2016. UGRHI 13—Bacia Hidrográfica Tietê-Jacaré. Ano base 2015. São Paulo, 2016. Available online: http://www.sigrh.sp.gov.br/public/uploads/documents//CBH-TJ/11832/2016-12-12-relatorio-situacao-ugrhi13.pdf (accessed on 20 January 2017).
- Vieira, M.S.; Ferreira, J.R.P.; Castro, M.G.; Rocha, A.A. Aspectos da química da água e do sedimento do reservatório de Ibitinga (São Paulo-Brasil—21° 45′ S e 48° 50′ W). Bol. Inst. Pesca 2002, 28, 77–91. [Google Scholar]
- Guimarães, C., Jr.; Leopoldo, P.R.; Cruz, J.A.; Fontana, S.C. Aspectos limnológicos do reservatório de Ibitinga—SP. Rev. Bras. Recur. Hídricos 1998, 13, 89–103. [Google Scholar] [CrossRef]
- Tundisi, J.G.; Matsumura-Tunidsi, T.; Pareschi, D.C.; Luzia, A.P.; Von Haeling, P.H.; Frollini, E.H. A bacia hidrográfica do Tietê/Jacaré: Estudo de caso em pesquisa e gerenciamento. Estud. Avançados 2008, 22, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Luzia, A.P. Estrutura Organizacional do Fitoplâncton nos Sistemas Lóticos e Lênticos da Bacia do Tietê/Jacaré (UGRHI-Tietê-Jacaré) em Relação à Qualidade da Água e Estado Trófico. Ph.D. Thesis, São Paulo University, São Carlos/SP, Brazil, 2009. [Google Scholar]
- Londe, L.R. Comportamento Espectral do Fitoplâncton de um Reservatório Brasileiro Eutrofizado—Ibitinga/SP. Ph.D. Thesis, National Institute For Spatial Research (INPE), São José dos Campos/SP, Brazil, 2008. [Google Scholar]
- Cairo, C.T. Caracterização Temporal das Propriedades Bio-Óticas do Reservatório de Ibitinga/SP. Master’s Thesis, National Institute For Space Research (INPE), São José dos Campos/SP, Brazil, 2015. [Google Scholar]
- Londe, L.R.; Novo, E.M.L.M.; Barbosa, C.; Araujo, C.A.S. Water residence time affecting phytoplankton blooms: Study case in Ibitinga Reservoir (São Paulo, Brazil) using Landsat/TM images. Braz. J. Biol. 2016, 76, 664–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nush, E.A. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. 1980, 14, 14–36. [Google Scholar]
- Cairo, C.T.; Barbosa, C.C.F.; de Moraes Novo, E.M.L.; Calijuri, M.C. Spatial and seasonal variation in diffuse attenuation coefficients of downward irradiance at Ibitinga Reservoir, São Paulo, Brazil. Hydrobiologia 2017, 784, 265–282. [Google Scholar] [CrossRef]
- Kutser, T.; Vahtmäe, E.; Paavel, B.; Kauer, T. Removing glint effects from field radiometry data measured in optically complex coastal and inland Waters. Remote Sens. Environ. 2013, 133, 85–89. [Google Scholar] [CrossRef]
- Mobley, C.D. Polarized reflectance and transmittance properties of windblown sea surfaces. Appl. Opt. 2015, 54, 4828–4849. [Google Scholar] [CrossRef]
- Gitelson, A. The peak near 700 nm on reflectance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 Spectral Response Funtions (S2-SRF). Available online: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses (accessed on 13 October 2018).
- ESA. Resolutions. Available online: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions (accessed on 20 August 2019).
- Mishra, S.; Mishra, D.R. Normalized Difference Chlorophyll Index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Mishra, D.R.; Mishra, S. Plume and bloom: Effect of the Mississippi River diversion on the water quality of Lake Pontchartrain. Geocarto Int. 2010, 25, 555–568. [Google Scholar] [CrossRef]
- Gitelson, A.; Gao, B.C.; Li, R.R.; Berdnikov, S.; Saprygin, V. Estimation of chlorophyll-a concentration in productive turbid waters using a Hyperspectral Imager for the Coastal Ocean: The Azov Sea case study. Environ. Res. Lett. 2011, 6, 1–6. [Google Scholar] [CrossRef]
- Watanabe, F.S.Y.; Alcântara, E.; Rodrigues, T.; Rotta, L.; Bernardo, N.; Imai, N. Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir—Brazil). An. Acad. Bras. Ciências 2017, 90, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, N.T.T.; Thao, N.T.P.; Koike, K.; Nhuan, M.T. Selecting the best band ration to estimate chlorophyll-a concentration in a tropical freshwater lake using Sentinel 2A images from a case study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Dietz, J.B. Expert System-Based Mineral Mapping in Northern Death Valley, California/Nevada, Using the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1993, 44, 309–336. [Google Scholar] [CrossRef]
- Makridakis, S. Accuracy concerns measures: Theoretical and practical concerns. Int. J. Forecast. 1993, 9, 527–529. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J.J.J. Second Simulation of the Satellite Signal in the Solar Spectrum (6S). 6S User Guide Version 2. Appendix III: Description of the subroutines. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.S.; Barbosa, C.C.F.; de Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.; de Moraes Novo, E.M.L. Assessment of atmospheric correction methods for sentinel-2 MSI images applied to Amazon floodplain lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.T. Py6S: A Python interface to the 6S radiative transfer model. Comput. Geosci. 2013, 51, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Carlos, F.M.; Martins, V.S.; Barbosa, C.C.F. Sistema semi-automático de correção atmosférica para multi-sensores orbitais. In Proceedings of the XIX Brazilian Symposium on Remote Sensing, Santos/SP, Brazil, 14–17 April 2019; pp. 1508–1511. [Google Scholar]
- Maciel, D.; Novo, E.; Sander de Carvalho, L.; Babosa, C.; Flores Júnior, R.; Lobo, F.L. Retrieving total and inorganic suspended sediments in Amazon floodplain lakes: A multisensory approach. Remote Sens. 2019, 11, 1744. [Google Scholar] [CrossRef] [Green Version]
- Jorge, D.S.F.; Barbosa, C.C.F.; de Carvalho, L.A.S.; Affonso, A.G.; Lobo, F.; de Moraes Novo, E.M.L. SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes. Remote Sens. 2017, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, N.; Watanabe, F.; Rodrigues, T.; Alcantara, E. Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Adv. Space Res. 2017, 59, 2335–2348. [Google Scholar] [CrossRef] [Green Version]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.M.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Gitelson, A.; Gurlin, D.; Moses, W.J.; Barrow, T. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters. Environ. Res. Lett. 2009, 4, 1–5. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gurlin, D.; Moses, W.J.; Yacobi, Y.Z. Remote Estimation of chlorophyll-a concentration in inland, estuarine and coastal waters. In Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications, 1st ed.; Weng, Q., Ed.; CRC Press: New York, NY, USA, 2011; pp. 439–468. [Google Scholar]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S. The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.S.; Walsby, A.E. Water-blooms. Biol. Rev. 1975, 50, 437–481. [Google Scholar] [CrossRef]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management, 1st ed.; CRC Press: London, UK, 1999; p. 416. [Google Scholar]
Field Campaigns | Date | Total Sampling Stations | Chl-a Concentration Variation (mg/m3) |
---|---|---|---|
Londe [58] | October 24–28, 2005 | 51 | 6.14–76,804.84 |
Cairo [59] | November 1–2, 2013 | 10 | 3.01–258.83 |
February 6, 2014 | 4 | ||
March 26, 2014 | 4 | ||
May 13, 2014 | 4 | ||
July 16, 2014 | 4 | ||
September 18, 2014 | 4 | ||
Aug/2018 | August 12–13, 2018 | 8 | 14.96–59.19 |
Algorithm Types | Equations |
---|---|
Simple band ratios | |
Gilerson et al. [38] | |
Gitelson et al. [70] | |
Mishra and Mishra [69] | |
Mishra and Mishra [68] | |
Gower et al. [40] |
Optical Method: SAM | |
---|---|
Description | Chl-a Range (mg/m3) |
Class 1 | 2.89 ≤ chl-a ≤ 22.83 |
Class 2 | 19.51 ≤ chl-a ≤ 87.63 |
Class 3 | 75.89 ≤ chl-a ≤ 938.97 |
Optical Method: Optical Hybrid Algorithm (OHA) | ||||||||
---|---|---|---|---|---|---|---|---|
Ranges | Algorithm | Fit | N | MAPE | R2 | RMSE | NRMSE | Coefficients |
Class 1 (2.89 ≤ chl-a ≤ 22.83) | Gitelson et al. [70] | Lin | 8 | 34.36 | 0.78 | 5.34 | 26.78 | (74.35 13.31) |
Class 2 (19.51 ≤ chl-a ≤ 87.63) | Mishra and Mishra [69], B5 and B4 bands | Exp | 7 | 23.35 | 0.93 | 12.09 | 19.05 | (30.67 5682.47) |
Class 3_600 (75.89 ≤ chl-a ≤ 600) | B5/B3 | Exp | 6 | 21.40 | 0.82 | 47.22 | 14.40 | (4.66 3.53) |
Classe 3_1000 (75.89 ≤ Chl-a ≤ 1000) | B6/B3 | Pol | 7 | 20.12 | 0.98 | 58.90 | 7.92 | (−157.72 810.11 −199.10) |
Chl-a concentration up to 600 mg/m3—Ntotal = 65 | ||||||
Algorithm | Fit | MAPE | R2 | RMSE | NRMSE | Coefficients |
Mishra and Mishra [69], B5 and B4 bands | Exp | 230.01 | 0.90 | 49.57 | 12.98 | (52.13 2678.99) |
B5/B3 | Exp | 80.26 | 0.92 | 45.02 | 12.05 | (2.06 4.26) |
B6/B3 | Pol | 247.10 | 0.79 | 49.22 | 11.14 | (76.25 351.08 −50.63) |
Gitelson et al. [70] | Lin | 77.52 | 0.67 | 56.94 | 12.86 | (236.84 13.58) |
Chl-a concentration up to 1000 mg/m3—Ntotal = 69 | ||||||
Algorithm | Fit | MAPE | R2 | RMSE | NRMSE | Coefficients |
Mishra and Mishra [69], B5 and B4 bands | Exp | 279.21 | 0.74 | 249.41 | 26.65 | (52.90 3000.10) |
B5/B3 | Exp | 177.14 | 0.95 | 104.95 | 11.21 | (11.94 2.64) |
B6/B3 | Pol | 328.37 | 0.93 | 55.39 | 6.58 | (−93.72 608.72 −99.11) |
Gitelson et al. [70] | Lin | 68.27 | 0.97 | 27.43 | 4.89 | (220.70 23.62) |
Performance Metrics | ||
---|---|---|
Classes | Precision | Recall |
Class 1 | 0.833 | 1 |
Class 2 | 1 | 0.889 |
Class 3 | 1 | 1 |
Without Glint Correction | Glint Correction (B11) | Glint Correction (B12) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Band | MAPE (%) | NRMSE (%) | R2 | RMSE (sr−1) | MAPE (%) | NRMSE (%) | R2 | RMSE (sr−1) | MAPE (%) | NRMSE (%) | R2 | RMSE (sr−1) |
B02 | 21.92 | 45.68 | 0.37 | 0.0013 | 13.50 | 38.69 | 0.03 | 0.0011 | 15.18 | 36.60 | 0.09 | 0.0010 |
B03 | 13.90 | 31.34 | 0.45 | 0.0020 | 18.44 | 44.24 | 0.27 | 0.0028 | 16.87 | 39.84 | 0.33 | 0.0025 |
B04 | 11.16 | 28.69 | 0.45 | 0.0007 | 24.24 | 63.54 | 0.13 | 0.0017 | 19.29 | 51.41 | 0.22 | 0.0013 |
B05 | 19.13 | 24.00 | 0.60 | 0.0015 | 25.12 | 36.29 | 0.43 | 0.0022 | 22.55 | 31.78 | 0.51 | 0.0019 |
B06 | 51.99 | 41.52 | 0.59 | 0.0011 | 25.56 | 24.47 | 0.55 | 0.0006 | 26.78 | 24.11 | 0.55 | 0.0006 |
B07 | 65.66 | 51.33 | 0.45 | 0.0013 | 28.70 | 26.76 | 0.41 | 0.0007 | 38.41 | 30.61 | 0.37 | 0.0007 |
B08 | 89.09 | 63.75 | 0.51 | 0.0012 | 33.14 | 28.17 | 0.38 | 0.0005 | 48.88 | 34.78 | 0.34 | 0.0007 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cairo, C.; Barbosa, C.; Lobo, F.; Novo, E.; Carlos, F.; Maciel, D.; Flores Júnior, R.; Silva, E.; Curtarelli, V. Hybrid Chlorophyll-a Algorithm for Assessing Trophic States of a Tropical Brazilian Reservoir Based on MSI/Sentinel-2 Data. Remote Sens. 2020, 12, 40. https://doi.org/10.3390/rs12010040
Cairo C, Barbosa C, Lobo F, Novo E, Carlos F, Maciel D, Flores Júnior R, Silva E, Curtarelli V. Hybrid Chlorophyll-a Algorithm for Assessing Trophic States of a Tropical Brazilian Reservoir Based on MSI/Sentinel-2 Data. Remote Sensing. 2020; 12(1):40. https://doi.org/10.3390/rs12010040
Chicago/Turabian StyleCairo, Carolline, Claudio Barbosa, Felipe Lobo, Evlyn Novo, Felipe Carlos, Daniel Maciel, Rogério Flores Júnior, Edson Silva, and Victor Curtarelli. 2020. "Hybrid Chlorophyll-a Algorithm for Assessing Trophic States of a Tropical Brazilian Reservoir Based on MSI/Sentinel-2 Data" Remote Sensing 12, no. 1: 40. https://doi.org/10.3390/rs12010040
APA StyleCairo, C., Barbosa, C., Lobo, F., Novo, E., Carlos, F., Maciel, D., Flores Júnior, R., Silva, E., & Curtarelli, V. (2020). Hybrid Chlorophyll-a Algorithm for Assessing Trophic States of a Tropical Brazilian Reservoir Based on MSI/Sentinel-2 Data. Remote Sensing, 12(1), 40. https://doi.org/10.3390/rs12010040