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Abstract 

The exploitation of Satellite Altimetry for sea level, open-ocean and coastal variability 

studies depends on the ability to derive altimeter measurements accurately corrected for 

all external perturbations. Among these perturbations, those related to the troposphere 

characteristics, the wet and the dry path delays are of particular relevance. The wet 

component of the troposphere is due to the presence of water vapor and cloud liquid 

water in the atmosphere and is responsible by a delay in the propagation of the altimeter 

signals (Wet Path Delay, WPD). Due to the high variability of the water vapor distribution, 

both in space and time, the modeling of WPD is difficult and its correction is one of the 

main error sources in Satellite Altimetry. Moreover, the variability of the WPD with 

altitude is not fully understood at present and remains an interesting topic of research. 

The WPD can be obtained from measurements of the microwave radiometer (MWR) on 

board altimetric missions with centimeter-level precision in open-ocean. However, in 

sea/land transition and polar regions the WPD retrieval is hampered by the 

contamination of the radiometer measurements due to the existence of land or ice in the 

MWR footprint, leading to the loss of accuracy or rejection of the altimetric 

measurements. Recently, an innovative methodology (GNSS Path Delay Plus, GPD+) 

that combines WPD observations from different sources with WPD derived from a 

numerical weather model (NWM) has been developed at University of Porto to improve 

the MWR-derived WPD. The methodology also requires the reduction at sea level of 

WPD calculated above sea level at coastal regions (e.g., at Global Navigation Satellite 

System (GNSS) stations). Consequently, the knowledge of the WPD variability in space 

and time and with altitude is of major importance for the GPD+ advancement. 

The objectives of this work are twofold. First, the space-time variability of the WPD 

during the altimetric era is addressed using data from a NWM. Global products of TCWV 

(Total Column Water Vapor) and t2m (two-meter temperature) provided by ERA-Interim 

NWM were used to derive the WPD for the period of 25 years since January 1, 1990 until 

December 31, 2014. Results from this global analysis include a complete description of: 

the annual cycle of water vapor, as well as its long-period superimposed variability, both 

globally and hemispherically; the relation of WPD to several teleconnection patterns (e.g. 

ENSO, NAO), responsible for abnormal weather conditions; how WPD and sea level 

anomaly (SLA) are correlated. Since the oceans provide the primary reservoir for 

atmospheric water vapor and the source of precipitation is evaporation of seawater, this 
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study can contribute to a better understanding of the hydrologic cycle variability and 

climate change. 

Secondly, the variability of WPD with altitude is analyzed. To accomplish this analysis, 

WPD values derived at a set of stations selected from GNSS permanent networks were 

collocated in time with MWR-derived WPD from five main altimetric missions (ERS-2, 

ENVISAT, T/P, Jason-1 and Jason-2) and compared. Despite the scarceness of GNSS 

coastal stations at intermediate to high altitudes, which hindered the analysis, results 

from this study are in agreement with published empirical studies. A comprehensive 

analysis can be achieved using 3D data from an NWM such as ERA Interim. This 

analysis will be subject of future work. 
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Resumo 

A Altimetria por Satélite tem em vista o estudo da variabilidade do nível do mar, em 

oceano aberto e em costa. Este estudo depende da capacidade em obter medidas 

altimétricas precisas, ou seja, corrigidas de perturbações externas. Entre estas 

perturbações, têm destaque as relacionadas com características da troposfera, em 

particular, e de elevada importância, os atrasos devido às componentes húmida e seca. 

A componente húmida da troposfera, caracterizada pela presença de vapor de água e 

água na forma líquida nas nuvens na atmosfera, é responsável por um atraso na 

propagação dos sinais altimétricos (Wet path Delay, WPD). Devido à variabilidade 

elevada da distribuição do vapor de água, tanto espacial como temporal, é difícil 

modelar o WPD e a sua correção é considerada uma das principais fontes de erro em 

Altimetria por Satélite. Ainda de referir que atualmente a variabilidade do WPD com a 

altitude não é completamente conhecida, constituindo um interessante tópico de 

investigação. 

Valores de WPD podem ser obtidos através de medidas de radiómetros de microondas 

(MicroWave Radiometer, MWR) a bordo de missões altimétricas com uma precisão 

centimétrica em oceano aberto. No entanto, na transição mar/terra e nas regiões 

polares, a aquisição do WPD é dificultada pela contaminação das medidas do 

radiómetro causadas pela existência de terra ou gelo na pegada do MWR, levando a 

uma perda de precisão ou rejeição das medidas altimétricas. Recentemente, uma 

metodologia inovadora que combina observações WPD fornecidas por diferentes fontes 

e usando medidas derivadas de modelos atmosféricos (GNSS Path Delay Plus, GPD+) 

tem sido desenvolvida na Universidade do Porto com vista a melhorar os valores de 

WPD derivados de MWR. A metodologia requer, ainda, que os valores de WPD 

calculados acima do nível do mar sejam reduzidos ao nível do mar nas regiões costeiras 

(por exemplo, em estações GNSS (Global Navigation Satellite System)). Por estes 

motivos, o conhecimento da variabilidade do WPD no espaço e no tempo e com a 

altitude é de elevada relevância no que diz respeito a progressos do GPD+. 

São dois os principais objectivos deste trabalho. Primeiro, a variabilidade espácio-

temporal do WPD ao longo da Era de altimetria é abordada usando dados de um 

modelo atmosférico (Numerical Weather Model, NWM). Foram usados produtos globais 

de quantidade total de vapor de água na coluna atmosférica (Total Column Water Vapor, 

TCWV) e da temperatura a dois metros da superfície (two-meter temperature, t2m) 

fornecidos pelo ERA Interim NWM para calcular o WPD considerando um período de 25 
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anos, desde 1 de Janeiro de 1990 até 31 de Dezembro de 2014. Os resultados para 

esta análise global incluem uma descrição completa: do ciclo anual do vapor de água, 

bem como a respectiva variabilidade ao longo do tempo considerado, quer global quer 

hemisférica; da relação do WPD com “padrões de teleconexão” (por exemplo, ENSO, 

NAO), responsáveis por condições atmosféricas anormais; da correlação entre WPD e a 

anomalia do nível do mar (Sea Level Anomaly, SLA). Uma vez que os oceanos 

constituem a principal fonte de vapor de água da atmosfera e a origem da precipitação 

consiste na evaporação de água do mar, este estudo contribui para uma melhoria da 

compreensão da variabilidade do ciclo hidrológico e de alterações climáticas. 

Em segundo lugar, é analisada a variabilidade do WPD com a altitude. Com vista à 

realização desta análise, foram usados valores para a correção da componente húmida 

da troposfera WTC (Wet Tropospheric Correction), calculados num conjunto de 

estações de redes permanentes GNSS previamente selecionadas e interpoladas no 

tempo, e derivados do MWR de cinco missões altimétricas (ERS-2, ENVISAT, T/P, 

Jason-1 e Jason-2). Apesar da escassa existência de estações GNSS nas zonas 

costeiras com altitudes de intermédias a altas, o que dificultou a análise, os resultados 

estão em concordância com estudos anteriores. Uma análise mais abrangente pode ser 

alcançada usando dados 3D de um modelo atmosférico, como o ERA-Interim. Esta 

análise será um tópico a abordar num trabalho futuro. 
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1 Introduction 

Satellite Altimetry has transformed the way we view Earth and its Ocean. With the 

forthcoming of precise satellite altimetry missions, the estimation of long-term sea level 

variability with an accuracy of a few centimeters became possible. To guaranty a high 

level of accuracy, corrections to the altimeter measurements are needed, since these 

measurements are affected by external effects, such as instrumental, geophysical (e.g., 

ocean and Earth tides, ocean and atmospheric loading), and those due to atmosphere 

(troposphere and ionosphere) and ocean interaction (sea surface state). Moreover, the 

satellite height above a reference ellipsoid provided by a precise orbit solution, 

referred to an International Terrestrial Reference Frame (ITRF), is required 

(Fernandes et al., 2014).  

The effect of the atmospheric refraction is of major relevance. The atmosphere reduces 

the speed of the RADAR (Radio Detection and Ranging) pulse, bending its trajectory 

and, therefore, causing a “path delay” of the altimeter signal. This effect of the 

atmospheric refraction is due to both the dry and wet components of the troposphere and 

to the existence of free electrons in the upper atmosphere. 

The dry component represents 90% of the tropospheric delay. The wet component 

represents only 10% of this delay and is related to the water vapor content in the 

atmosphere. Corrections related to the dry and wet components of troposphere are 

named Dry Tropospheric Correction (DTC) and Wet Tropospheric Correction (WTC), 

respectively. However, the symmetric values of the dry and wet tropospheric corrections 

are usually used, the Dry Path Delay (DPD) and the Wet Path Delay (WPD), 

respectively. 

Because the tropospheric delay is the main error source of the Global Navigation 

Satellite System  (GNSS) signals, permanent networks of GNSS stations provide 

routinely the total tropospheric delay (Zenith Total Delay, ZTD) products at the station 

location and height, with an accuracy of a few millimeters (Niell et al., 2001; Pacione et 

al., 2011). For use in Satellite Altimetry, the DTC is calculated with high accuracy using a 

Numerical Weather Model (NWM) and subtracted from the precise GNSS-derived ZTD 

to accurately estimate WTC at each GNSS station (Fernandes et al., 2010, 2013a). The 

WTC is therefore estimated at the station altitude and should be reduced to sea level 

before being combined with WTC derived from satellite altimetry since these are 
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provided at sea level. The variability of the WTC with altitude is not fully understood at 

present and remains an interesting topic of research. 

The most accurate (centimeter-level precision in open-ocean) WPD are obtained from 

measurements acquired by the microwave radiometer (MWR) on board altimetric 

missions, since they are collocated in space and time with the altimeter measurements. 

However, in coastal and polar areas the WPD retrieval is hampered by the contamination 

of the radiometer measurements due to the existence of land and ice in its footprint 

(roughly a circle with a frequency-dependent radius, generally in the range of 15 to 25 

km), leading to the loss of accuracy or rejection of the altimetric measurements. 

The GNSS-Derived Path Delay Plus (GPD+) methodology was developed recently at 

University of Porto to improve the MWR correction. The methodology combines WPD 

observations from different sources (MWR on board altimetric missions, MWR on board 

Remote Sensing mission and at coastal and island GNSS stations) with WPD derived 

from Numerical Weather Model (NWM). The methodology also requires the reduction at 

sea level of WPD calculated at the GNSS stations. Consequently, the knowledge of the 

WPD variability in space and time and with altitude is of major importance for the GPD+ 

enhancement and validation and, in general, for Satellite Altimetry. 

The objectives of this work are twofold. First, the study of the space-time variability of the 

WPD during the altimetric era, in global terms, is addressed using data from an NWM. 

Although the magnitude of the WPD ranges from 0 to 50 cm, it is difficult to estimate due 

to the high variability of the water vapor and its fast change in space and time, and also 

due to the complexity of the water cycle at all spatial and time scales (Fernandes et 

al., 2013b). Studies focused on the mean and standard deviation of WTC, using 

observations of column water vapor from 6 years of Jason-1 data, report significant 

temporal and spatial variabilities (Andersen and Scharroo, 2011, Fernandes et al., 

2013a), the seasonal variability mode being the strongest. 

Since the Ocean covers 70% of the planet and plays a key role in regulating the global 

climate, it is important to investigate how WPD is related to teleconnection patterns, and 

to the sea level variability.  

To accomplish these analyses, Global products of TCWV (Total Column Water Vapor) 

and t2m (two-meter temperature) provided by ERA (ECMWF ReAnalysis; ECMWF being 

the European Centre for Medium-Range Weather Forecasts) Interim NWM were used to 

derive the WPD for the period of 25 years since January 1, 1990 until December 31, 

2014. The spatial resolution of these products is 0.75º. 

Water vapor patterns reflect global-scale interactions among the oceans, atmosphere, 

and continents. Results from this global analysis are expected to contribute to the 
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knowledge of: the annual cycle of water vapor, as well as its long-period superimposed 

variability; the relation of the latter variability to several teleconnection patterns, 

responsible for abnormal weather patterns; how WPD and sea level anomaly (SLA) are 

correlated. Since the main source of atmospheric moisture is the Ocean, this study can 

contribute to a better understanding of the hydrologic cycle variability and climate 

change. 

Secondly, the variability of WPD with altitude is analyzed. Kouba (2008) based on 

punctual and scarce WTC acquired from radiosondes proposed an empirical exponential 

expression to perform WTC height reductions, however limiting the station altitude to 

1000 m. To accomplish this analysis, WPD values derived at a set of stations selected 

from the main permanent GNSS networks (International GNSS Service (IGS), EUREF 

Permanent Network (EPN) and SuomiNet) were collocated in time with MWR-derived 

WPD from five main altimetric missions (ERS-2, ENVISAT, T/P, Jason-1 and Jason-2) 

and compared. It is expected that this analysis provides an improved WTC and height 

relationship by using a larger amount of data. This analysis is of major importance, since 

the GPD+ methodology relies on WPD values derived at coastal and island GNSS 

stations which must be reduced to sea level previously to their use. 

The outline of this thesis is as follows. The Troposphere is presented in Chapter 2, which 

includes the description of the dry and wet components of troposphere.  

There are several ways to measure or compute the wet path delay (e.g., using 

radiosondes or microwave radiometers) and therefore to correct altimeter 

measurements. Those used in this study (WPD calculated from numerical weather 

models or measured by microwave radiometers on board satellite altimetry missions and 

at GNSS stations) are described in Chapter 3.  

Chapters 4 and 5 describe all the analyses performed in the scope of this thesis. In 

Chapter 4 the data used are described and the spatio-temporal analysis of WPD is 

addressed. The spatial analysis includes the study of WPD seasonal and trend 

components and their contribution of the total WPD variability. Global and hemispherical 

time-series for WPD over oceanic and continental regions were generated to analyze the 

temporal variability. Chapter 5 describes the analyses performed on the WPD and height 

dependency, combining GNSS- and MWR-derived WPD. Chapter 6 summarizes the 

results of the study and presents the conclusions and suggestions for future work. 
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2 The Troposphere 

The atmosphere is part of what makes Earth livable. It is composed of a mixture of 

invisible gases and a large number of suspended microscopic solid particles and water 

droplets (Aguado and Burt, 2001). In a simple way, it is possible to distinct the layers of 

the atmosphere mainly by how temperature changes with height within them. In the 

context of signal propagation, the atmosphere reduces the speed of the electromagnetic 

waves bending its trajectory and, therefore, causing a “path delay” of the propagated 

signal. Among these electromagnetic waves, are of major importance in the scope of this 

study those with wavelength longer than that corresponding to the infrared region of the 

electromagnetic spectrum, also called radio waves. 

This chapter starts with a brief description of the two main layers of the atmosphere 

which influence the propagation of the GNSS and altimetric radio signals: the ionosphere 

and the troposphere. The addressed sections describe the tropospheric correction, the 

wet and dry components of the troposphere and the variable gases that compose this 

layer of the atmosphere, including the water vapor and the carbon dioxide, giving 

relevance to water vapor, once the variability and distribution of this gas plays an 

important key in the variability and distribution of the correction due to the wet 

component of troposphere. 

 

 

There are two principal layers of the atmosphere that influence radio waves: the 

ionosphere and the troposphere. 

 The ionosphere is part of Earth’s upper atmosphere, stretching from a height of about 

50 km to more than 1000 km from Earth, and is ionized by solar radiation. The 

ionosphere is thus a shell of electrons and electrically charged atoms and molecules that 

surrounds the Earth (Montenbruck and Eberhard, 2000).  

 The troposphere is the lowest atmospheric layer, typically located between Earth’s 

surface and an altitude of about 8 – 15 km (Samama, 2008). The troposphere contains 

almost all of the atmosphere’s water vapor (about 99%), and small amounts of Carbon 

dioxide. The troposphere is not ionized since it is electrically neutral. Troposphere is 

where the vast majority of weather events occur and is marked by a general pattern in 

which temperature decreases with height (Aguado and Burt, 2001).  
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The ionosphere is a dispersive medium for frequencies in the radio region of the 

electromagnetic spectrum that is the refraction index depends on the transmission 

frequency. On the other hand, the troposphere is a non-dispersive medium, thus it is 

independent of the frequency used (Subirana et al., 2011). This is why all 

electromagnetic waves in the total radio-spectrum up to about 15 GHz, including the 

ones propagated by GNSS and by altimetric satellites, are affected in the same way by 

the troposphere. An immediate consequence of being a non-frequency dependent delay 

is that the tropospheric refraction cannot be removed by combinations of dual frequency 

measurements, as it is done with the ionosphere delay, (Subirana et al., 2011). 

 

2.1 Tropospheric Refraction 

The tropospheric delay is produced by the tropospheric refraction which causes an 

increase in the observed range from satellites. Usually, the tropospheric path delay is 

expressed by two components: the dry (or hydrostatic) and wet components.  Given  the  

small  difference between the hydrostatic and dry components  of  the tropospheric path 

delay, the term  “dry tropospheric delay”  is usually  used  within  the  altimetry  

community  to  refer  to  the  hydrostatic  tropospheric  path  delay (Fernandes et al., 

2014). 

The total tropospheric refractivity can be described as a function of meteorological 

parameters using an empirical formula, see equation 2.1 (Hartmann and Leitinger, 

1984): 
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(2.1) 

where 

 P’ = P – e is the pressure of the dry gas,  

 P is the air pressure, in Hectopascal [HPa], 

 e is partial pressure of the water vapor, in HPa, 

 T is the temperature, in Kelvin. 

 

Since the troposphere consists of a mixture of different gases, the refractivity index of the 

tropospheric layer is the sum of the contribution of each constituent that composes the 

troposphere multiplied by its own density, see equation 2.2 (Hall, 1979; Debye, 1929). 
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where 

 Ntrop is the Refractivity the total troposphere, 

 Ndry is the refractivity of the dry component of troposphere, 

 Nwet is the refractivity of the wet component of troposphere. 

 

 

2.2 Wet and Dry Components 

The wet and dry components are composed by a mixture of gases. The dry component 

delay, also named as Dry Path Delay (DPD), is caused by the dry gases present in the 

troposphere (78% of Nitrogen, 21% of Oxygen, 0.9% of Argon). The effect varies with 

local temperature and atmospheric pressure in a predictable way; furthermore this 

component varies in less than 1% in a few hours (Subirana et al., 2011). The error 

caused by this component is about 2.3 meters in the zenith direction and 10 meters for 

lower elevations (Subirana et al., 2013), contributing to about 90% of the total 

tropospheric delay, and it is closely correlated to the atmospheric pressure. DPD can be 

precisely modeled with an accuracy better than 1 cm from meteorological models 

(Fernandes et al., 2013a) that assimilate atmospheric temperature and pressure 

measurements. Studies performed by Fernandes et al. (2013a) on a set of GNSS 

coastal sites with heights up to 1000 m show that the DTC can be computed at a surface 

point, with an accuracy of a few mm, from Sea Level Pressure (SLP) fields from an 

atmospheric model such as ERA Interim or ECMWF operational, using the modified 

Saastamoinen model (Davis et al., 1985), further reduced to surface height using an 

adequate model for the height dependence of atmospheric pressure such as the one 

given by Hopfield (1969). 

The wet component delay, named as Wet Path Delay (WPD), is caused by the presence 

of water vapor and condensed water in the form of clouds in the troposphere and, 

consequently, depends on weather conditions. The amount of water vapor per amount of 

air, also known as humidity, is an important quantity of the atmosphere, especially of the 

lower troposphere, and is determined by evaporation, advection and precipitation (e.g. 

Bengtsson, 2010). It means that the size of the delay attributable to the wet component 

depends on the highly variable water vapor distribution in the troposphere. Therefore, 

WPD is much more difficult to estimate than DPD because of the high variability of water 

vapor (or humidity) and the complexity of the water cycle at all spatial and time scales 

(Fernandes et al., 2013a). 
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2.3 Water Vapor 

Water vapor is the most abundant of the variable gases of the atmosphere, and it is the 

principal source of the atmospheric energy that drives the development of weather 

systems on short time scales and influences the climate on longer time scales, therefore, 

water vapor is a critical component of Earth's climate systems (Aguado and Burt, 

2001). It is the Earth's primary greenhouse gas, trapping more heat than carbon dioxide 

due to the incoming solar radiation and the infrared radiation reflected by the Earth’s 

surface. Because the source of water vapor in the atmosphere is evaporation from 

Earth’s surface, its concentration normally decreases with altitude and most atmospheric 

water vapor is found in troposphere (Aguado and Burt, 2001).  

Water continuously evaporates from both open water and plants leaves into the 

atmosphere, where it eventually condenses to form liquid droplets and ice crystals. 

These liquid and solid particles are removed from the atmosphere by precipitation as 

rain, snow, sleet or hail. Because of the rapidity of global evaporation, condensation, and 

precipitation, water vapor has a very short residence time of only 10 days (Aguado and 

Burt, 2001).  

The temperature, pressure and moisture characteristics of the atmosphere arise in large 

part from the continuous exchange of energy and water vapor near the surface. When 

energy inputs exceed energy losses, the temperature of the air increases. In the same 

way, when there is more evaporation than precipitation, the moisture content of the 

atmosphere increases. But because heat and water are not uniformly distributed across 

the globe, the cooling and warming of the atmosphere vary from place to place, as does 

the net input of water vapor (Aguado and Burt, 2001).  

Most of the water vapor is in the troposphere, where water vapor acts as the main 

resource for precipitation in all weather systems, providing latent heating in the process 

and dominating the structure of diabatic heating in the troposphere (Trenberth and 

Stepaniak, 2003a). Hence, advancing the understanding of variability and change in 

water vapor is vital.  

 

State-of-the-Art (or Water Vapor Variability) 

Water vapor increases with increased temperature, and the greatest amount of water 

vapor is found near the equator (Thurman and Burton, 2001). Studies about the water 

vapor distribution in different regions around the world (e.g. Ross and Elliott, 1996; Zhai 

and Eskridge, 1997; Ross and Elliot, 2001; Seidel, 2002) including Europe, America, 

Africa, and Asia, allowed concluding that the distribution of water vapor changes with 
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seasonal changes in temperature and atmospheric circulation patterns. Seidel (2002) 

revealed that the general decrease of water vapor from equator to poles is a reflection of 

the global distribution of temperature, because warm air is capable of holding more 

moisture than cold air. However, he found exceptions in the major desert regions, where 

the air is very dry despite its high temperature.  

Ross and Elliott (2001) confirm the generally upward trends in precipitable water for 

1973–1995 over China and southern Asia, strong upward trends in the tropical Pacific, 

but they found small and insignificant trends over Europe. There is an increase in global 

water vapor amount with El Niño, although the main increase is in the equatorial region 

from 10ºN to 20ºS, often with compensating drier regions near 20ºN (Trenberth et al, 

2005). 

El Niño is a climate cycle that occurs irregularly at about 3-6 year intervals in the Pacific 

Ocean with a global impact on weather patterns (Enfield, 2003). The cycle begins when 

warm water in the western tropical Pacific Ocean shifts eastward along the equator 

toward the coast of South America. Normally, this warm water pools near Indonesia and 

the Philippines. During an El Niño, the Pacific's warmest surface waters sit offshore of 

northwestern South America. Scientists do not yet understand in detail what triggers an 

El Niño cycle. Not all El Niños are the same, nor do the atmosphere and ocean always 

follow the same patterns from one El Niño to another. There is also an opposite of an El 

Niño, called La Niña. This refers to times when waters of the tropical eastern Pacific are 

colder than normal and trade winds blow more strongly than usual (El Niño, 2015). 

Water Vapor Measurement  

Total Column Water Vapor (TCWV) is a measure of the total water vapor in the form of 

gas contained in a vertical column of atmosphere. It is quite different from the more 

familiar relative humidity, which is the amount of water vapor in air relative to the amount 

of water vapor the air is capable of holding (Atmospheric Water Vapor, 2015). 

Atmospheric water vapor (or Total Precipitable Water) is the absolute amount of water 

dissolved in air.  When measured in linear units (millimeters, mm) it is the height (or 

depth) the water would occupy if the vapor were condensed into liquid and spread evenly 

across the column. Using the density of water, we can also report water vapor in kg/m2 = 

1 mm or g/cm2 = 10 mm holding (Atmospheric Water Vapor, 2015). 

Because of the strong water vapor absorption line near 22 GHz, within the microwave 

range, we can use microwave radiometers to measure columnar (atmospheric total) 

water vapor. This is a very accurate measurement due to the high signal-to-noise ratio 

for this measurement.  With little diurnal variation, the measurements from different 
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satellites at the same location often agree to within a few tenths of a millimeter 

(Atmospheric Water Vapor, 2015). 
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3 Wet Tropospheric Correction 

There are primarily three methods to correct the delay caused by the wet component of 

the troposphere: using on-board microwave radiometers, numerical weather models, or 

GNSS ground-based stations. 

In this work, the approach adopted and described in Chapter 4, consists on using WPD 

values computed from meteorological parameters from an atmospheric model, ERA-

Interim. In Chapter 5, a combination of WPD values from GNSS stations and from MWR 

aboard altimetric missions was used. 

This chapter gives an overview of the three complementary methodologies. An 

introduction to WTC is addressed in section 3.1; microwave radiometers aboard 

satellites is addressed in section 3.2, numerical weather models are presented in section 

3.3, Permanent GNSS Networks are presented in section 3.4, and the U. Porto GPD 

methodology is addressed in section 3.5. 

 

3.1 Introduction to WTC 

As addressed in Chapter 2, the wet component of the delay of the altimeter and GNSS 

signals is caused by the presence of water vapor and cloud liquid water in the 

atmosphere, and is a relatively small, but difficult to estimate, error source, due to the 

variability of the water vapor and to its fast change in space and time.  

Corrections for this component can be determined using passive measurements from 

on-board microwave radiometers (MWR) or by using meteorological parameters from 

numerical weather models, or using estimated values from GNSS stations from several 

permanent networks. The wet tropospheric path delay can also be measured on the 

ground (using GNSS or upward looking radiometers) and then compared to the one 

derived from the on-board microwave radiometers (Fernandes et al., 2014). 

The WTC determination from on-board microwave radiometers is hampered by the 

contamination of the radiometer measurements closed to ice and land areas, therefore 

making these measurements usable only in open ocean. This sensitivity of the correction 

to land and ice contamination as well as to instrument malfunction in certain epochs has 

been the aim of recent studies, (see e.g. Desportes et al., 2007; Fernandes et al., 2013; 

Fernandes et al., 2014).   

A methodology for the computation of improved wet delay values for all contaminated, 

and therefore prone to be rejected, values was created by the University of Porto 
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(U. Porto) in the aim of ESA financed projects (GNSS-Path Delay, GPD). Based on this 

methodology, enhanced products were generated globally for the eight main altimetric 

missions:  ERS-1/2, Envisat, T/P, Jason-1/2, CryoSat-2 e SARAL (Fernandes et al., 

2010; Fernandes et al., 2015).  

It is well-known that most of the wet tropospheric models are not suitable for processing 

long time series of satellite altimetry since they possess long-term errors and 

discontinuities (Scharroo et al. 2004). A comparison between the various methodologies 

to generate the wet delay can be found in Obligis et al. (2011). 

For studies over inland water, Fernandes et al. (2014) recommended that the MWR-

derived WTC should be adopted whenever available, otherwise the GNSS-derived WTC 

in regions possessing GNSS permanent stations should be used. In the absence of the 

previous data types, the adoption of a model-derived correction from ERA-Interim, 

computed at surface height, provide the highest accuracy (1-3 cm). Over ocean, the 

most suitable correction is the GNSS Path Delay Plus (GPD+) WTC (Fernandes et al., 

2015).  

As more accurate the estimated WTC is, more accurate the inferred parameters in 

Satellite Altimetry will be. 

The various approaches to correct the wet tropospheric error are described below. 

 

3.2 WPD from Microwave Radiometers 

On-board Satellite Altimetry Missions 

Satellite Altimetry starts with the launch of the first altimetric satellites: GEOS3 and 

Seasat. Since 1986, with Geosat, these missions have been providing vital information 

for an international user community (Missions – Aviso, 2015). In July 1991 ESA launched 

ERS-1. The ERS (European Remote Sensing) satellites main mission is to observe 

Earth, in particular its atmosphere and ocean (ERS-1 – Aviso, 2015). The following 

missions were Topex/Poseidon (TP), ERS-2, Jason-1, Envisat, Jason-2. The currently 

operational missions are SARAL, HY-2, CryoSat-2 and Jason-2 (Missions – Aviso, 

2015). 

Every satellite has an on-board radar altimeter which emits a radar pulse (microwave 

pulse) with a frequency of 13.5 GHz. The radar pulse interacts with the sea surface and 

part of the incident radiation reflects back to the altimeter. The basic concept of Satellite 

Altimetry consists on determining the distance from the radar altimeter to a target surface 

(sea, land, ice) by measuring the satellite-to-surface round-trip time of the radar pulse 
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using precise clock on-board satellites (more precisely, the distance between the radar 

altimeter and the reference frame, the reference ellipsoid (see Figure 3.1), is measured. 

A satellite radar altimeter measures three fundamental parameters, inferred from the 

returned radar pulse: the instantaneous range, the wave height and the wind speed. 

Instantaneous Sea Surface Height (SSH), the height of the sea surface relative to a 

known reference ellipsoid, is obtained by subtracting the instantaneous range (R), 

determined from the pulse travelling time between the satellite and the sea surface, from 

the satellite orbit height (H).  

The observed measurements collected from the altimetric missions allowed to define a 

Mean Sea Surface (MSS). Sea Level Anomaly (SLA) is derived from the SSH by 

removing the MSS. SLA can also be estimated using the MSS, the Absolute Dynamic 

Topography (ADT), the height of sea level above geoid, and the Geoidal Undulation (N), 

the distance from the geoid to the reference ellipsoid. The last variable, N, is not known 

accurately for the wavelengths corresponding to the mesoscale (1 – 100 km) or smaller, 

therefore SLA is usually determined using the first combination of variables. The Mean 

Dynamic Topography (MDT) is obtained by subtracting the N from the MSS. In summary: 

 SSH = H-R  

  SSH = MSS + SLA 

  SSH = ADT + N 

therefore, MSS + SLA = ADT + N  ADT = (MSS-N) + SLA, being MDT=MSS-N. 

 

 

Figure 3.1 - Principle of radar altimetry. 
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Interpretation of the measured radar pulse can be performed with more or less accuracy 

according to the surface characteristics, and the best results are obtained over the 

ocean, which is spatially homogeneous. In addition, radar signal interferences also need 

to be taken into account. Atmospheric effects, sea state and a range of other parameters 

affect the signal round-trip time, thus distorting range measurements. These 

interferences can be corrected by measuring them with supporting instruments, or at 

several different frequencies, or by modelling them.  

All satellite altimetry missions, with the exception of CryoSat-2 mission, have a passive 

microwave radiometer (MWR) on board. The MWR is a nadir-looking, with two or three 

operating frequencies allowing receiving and measuring microwave radiations generated 

and reflected by the Earth. The received signals can be related to surface temperature 

but, most importantly, when combined together they provide an estimate of the total 

water content in the atmosphere. MWR complements the radar altimeter instrument 

allowing to correct the error introduced by the Earth’s troposphere, such as the wet 

component (Guijarro et al., 2000). 

Two main types of nadir-looking radiometers have been deployed in the altimetric 

satellites: 2-band in ERS-1, ERS-2, Envisat, GFO, SARAL and upcoming Sentinel-3; 3-

band on TOPEX/Poseidon, Jason-1 and Jason-2. All of them have one band in the water 

vapor absorption line between 21 and 23.8 GHz plus one or two in “atmospheric window” 

channels. The “window” channels are required to account for the effect of surface 

emissivity and for the cloud scattering (Fernandes et al., 2015). 

Corrections for the wet component of the troposphere provided by MWR on board 

satellite altimetry missions were compared in this study to the ones derived from GNSS 

stations to analyze the dependence of WTC with height, described in detail in Chapter 5. 

A summary of the altimetric missions used in this work is shown in Table 3.1. 

 

Table 3.1 - Summary of satellite altimeter missions and orbital parameters (Rosmorduc et 
al., 2011). 

Mission Launch Altitude (km) Repetitivity (days) Inclination (º) 

T/P 1992 1336  10  66 

ERS-2 1995 785  35  98.5 

Jason-1 2001 1336  10  66 

Envisat 2002 800  35  98.5 

Jason-2 2008 1336  10  66 
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On-board Remote Sensing Missions 

In addition to the dedicated MWR aboard altimetric missions, scanning imaging MWR 

instruments, also retrieving water vapor data from measurements in several bands of the 

microwave spectrum, have been flown in various Remote Sensing missions. These 

passive microwave radiometers have been at the forefront of the emerging field of 

climate applications of satellite data. Even though the pool of researchers is considerably 

smaller in passive microwave remote sensing than it is in visible and infrared remote 

sensing, the characteristics of microwave radiometers in some ways lend themselves 

more readily to climate applications (Spencer, 2001). 

Comparing the types of MWR, the main difference between them is that, at each epoch, 

the MWR on-board satellite altimetry missions can only make a single measurement in 

the nadir direction while the scanning image MWR on-board Remote Sensing Missions 

performs a scan of the sea surface over the instrument swath. While the final product of 

the first is an along track profile, the second is an along-track image.  

Water vapor measurements datasets, given as Total Column Water Vapor (TCWV), from 

all available scanning imaging MWR (SI-MWR) must be calibrated with respect to a 

common reference in order to use them in the WTC computation. For this purpose, WTC 

retrieved by the Advanced Microwave Radiometer (AMR) on board J2 can be used, 

since this radiometer has been well monitored and the subject of successive calibrations. 

The main SI-MWR sensors and a description of the calibration of each scanning image 

MWR derived WTC can be consulted in Fernandes et al. (2013b). 

 

3.3 Numerical Weather Models 

The two most widely used numerical weather models (NWM) are the European Centre 

for Medium-Range Weather Forecasts (ECMWF) and the U.S. National Centers for 

Environmental Prediction (NCEP). Both are delivered on regular grids at regular 6-hour 

intervals. 

 

ERA-Interim model 

ERA-Interim is a global atmospheric reanalysis project produced by ECMWF. It covers 

the period since January 1, 1979 to date and provides gridded data products that include 

a large variety of 3-hourly surface parameters, describing weather as well as ocean-

wave and land-surface conditions, and 6-hourly upper-air parameters covering the 
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troposphere and stratosphere. The data provided by the ECMWF server allows 

computing WPD all over the world (Dee et al., 2011). 

ERA-Interim uses satellite radiances from TIROS (Television Infrared Observation 

Satellite) Operational Vertical Sounder (TOVS) and Advanced TIROS Operational 

Vertical Sounder (ATOVS suites of instruments (HIRS (High-Resolution Infrared 

Sounder), SSU (Stratospheric Sounding Unit), MSU (Microwave Sounding Unit), AMSU-

A/B (Advanced Microwave Sounding Unit-A/B), MHS (Microwave Humidity Sounder)), 

from Clear-sky radiances from geostationary satellites (CSRs), from geostationary 

infrared imagers, and from passive microwave imagers (SSM/I (Special Sensor 

Microwave Imager), SSMI/S (Special Sensor Microwave Sounder), AMSRE (Advanced 

Microwave Scanning Radiometer for EOS (Earth Observing System))) (Dee et al., 2011). 

 

Computation of WTC (or WPD) 

For  use  in  satellite  altimetry,  the  WTC  can  be  calculated  from  global  grids  of  two  

single-level parameters provided by global atmospheric models, such as the ERA-Interim 

model, the total column water vapor  (TCWV, expressed in kg/m2 or millimeters (mm), as 

the length of an equivalent column of liquid water) and  near-surface air temperature 

(two-meter temperature t2m, here represented as T0), from the following expression 

(Bevis et al., 1994): 
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where Tm is the mean temperature of the troposphere, which can be modelled from T0, 

according to, e.g., Mendes et al. (2000):  

 
0789,0440,50 TTm 
 

(3.2) 

Equations  (3.1)  and  (3.2)  provide  the  WTC  at  the  level  of  the  atmospheric  model  

orography. 

Since the WTC has always negative values, the symmetric value of WTC, the WPD (Wet 

Path Delay), will be assumed and analyzed.  

 

3.4 WPD from Permanent GNSS Networks 

A large number of Continuously Operating GNSS Reference Stations (CORS) are 

operating today for multi-disciplinary applications ranging from surveying to numerical 

weather prediction. These stations belong to three Permanent Networks: 
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 The International GNSS Service (IGS) is a voluntary federation of over 200 self-

funding agencies, universities, and research institutions in more than 100 countries 

working together to provide the highest precision GPS satellite orbits in the world (IGS – 

About, 2015); 

 The EUREF Permanent Network (EPN) is also a voluntary federation of over 100 

self-funding agencies, universities, and research institutions in more than 30 European 

countries. EPN data are used for a wide range of scientific applications such as the 

monitoring of ground deformations, sea level, space weather and numerical weather 

prediction (EPN – About, 2015); 

 The SuomiNet is a network of GPS receivers located at universities and other 

locations to provide real-time atmospheric Precipitable Water Vapor (PWV) 

measurements and other geodetic and meteorological information. SuomiNet stations 

are located mainly in the United States. SuomiNet online site provides map plots of PWV 

based on processing results for the US (SuomiNet – About, 2015). 

 

All stations from the different Permanent Networks (IGS, EPN, SuomiNet) comply with a 

common set of standards for receiver and antenna equipment, data exchange format 

maintaining up to date, and available online auxiliary data. GNSS measurements have 

been successfully used in precise positioning, tectonic plate monitoring, ionosphere 

studies and troposphere monitoring. However all GNSS signals recorded on the ground 

by CORS (Continuously Operating Reference Stations) are subject to ionosphere delay, 

troposphere delay, multipath and signal strength loss (Rohm et al., 2013). Nowadays, 

the GNSS signal delays are gradually incorporated into the Numerical Weather 

Prediction (NWP) models. Usually at GNSS Stations are used well-established 

methodologies for the determination of the Zenith Total Delay (ZTD) at the station 

location, with an accuracy of a few millimeters (Fernandes et al., 2013a). ZTD data have 

been considered as an important source of water vapor content and assimilated into the 

NWP models. The ZTD can be separated into the sum of the hydrostatic component, the 

Zenith Hydrostatic Delay (ZHD), and the wet component, the Zenith Wet Delay (ZWD). 

GNSS-derived ZWD is also known as WTC, and therefore, WPD is the symmetric 

variable. 

Successful assimilation of these products requires strict accuracy assessment, 

especially in challenging severe weather conditions. In addition, these GNSS data 

products are freely available through the internet.  
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WTC data estimated at each GNSS station from all Permanent Networks here referred 

are used in chapter 5, in order to study the dependency of the wet component with 

height. 

 

3.5 U. Porto GPD+ 

A methodology for the computation of improved WPD values for all contaminated, and 

therefore prone to be rejected, values were created in U. Porto in the aim of ESA 

financed projects. The GNSS Path Delay Plus (GPD+) methodology is based on the 

combination of wet path delays derived from ZTD calculated at a network of coastal and 

inland GNSS stations and valid microwave radiometer (MWR) measurements at 

altimeter nearby points. At each altimeter point with an invalid MWR value, the WTC is 

estimated from a set of observations, along with the associated mapping error, using a 

linear space-time objective analysis technique that takes into account the spatial and 

temporal variability of the WTC field and the accuracy of each data set used (Fernandes 

et al., 2010, 2015). In the absence of observations, tropospheric delays from the 

European Centre for Medium-range Weather Forecasts (ECMWF) ReAnalysis (ERA) 

Interim model are adopted (Fernandes et al., 2015). 

Originally designed to improve the WTC in the coastal zone, the GPD+ evolved to 

include the global ocean, correcting for land and ice contamination in the MWR footprint, 

or spurious measurements due to e.g. instrument malfunction. Based on this 

methodology, enhanced products were generated globally for the eight main altimetric 

missions: ERS-1/2, Envisat, T/P, Jason-1/2, CryoSat-2 e SARAL. Details about the 

method can be found in Fernandes et al. (2015). 

Corrections provided by the GPD+ methodology were used to generate Sea Level 

Anomaly (SLA) measurements in the scope of the Climate Change Initiative Sea Level 

(SL_cci) project, funded by the European Space Agency (ESA). The SLA SL/cci 

products were used in this study to analyze the WPD and SLA correlation. 
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4 Spatio-Temporal Analysis of WPD 

A time-series is a sequence of measurements of the same variable collected over 

time.  Usually, the measurements are made at regular time intervals.  

Throughout this study, the analysis of time-series is of major relevance. Time-series 

analysis is used to forecast future patterns of events or to compare series of different 

kinds of events. 

When the time-series is long, there are also tendencies for measures to vary periodically, 

called seasonality or periodicity.  

When comparing time-series the frequent ask questions are: Are the patterns over time 

similar for different variables? That is, what are the relationships among two or more time 

series? In this case, the cross-correlation functions can be used to show how related two 

time-series are. 

The study of the spatio-temporal variability of WPD is addressed in this chapter. It is a 

fact that WPD is a delay and not an event of climate change, however, the WPD 

variability is strictly influenced by the variability of the climate variables, such as air and 

surface temperature, pressure, wind, water vapor and solar radiation, and therefore this 

work will explore the “whys” of high and low variability in certain regions which can be 

explained by climate events and then the hydrological cycle. 

A description of the data used in this chapter and the processing is addressed in Section 

4.1. The WPD and the influence of the Intertropical Convergence Zone is described in 

Section 4.2. The analysis of the spatial distribution of WPD and its respective 

components (seasonal, trend and remainder) is addressed in Section 4.3, and the 

analysis of the temporal distribution is addressed in Section 4.4. The correlation between 

WPD and several Climate indices is described in Section 4.5, and in Section 4.6 the 

correlation between WPD and SLA is addressed. 

 

4.1 Data used and processing 

Generation of WPD products 

In spite of the continuous progress in modeling WPD by means of numerical weather 

models (NWM), namely the ECMWF (Dee et al., 2011), accuracy of present NWM-

derived WTC is still not good enough for most altimetry applications such as sea level 

variation. Indeed, an accurate enough modeling of this effect can only be achieved 
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through actual measurements of the atmospheric water vapor content from MWR on-

board satellite altimetry missions. However, the ERA-Interim wet tropospheric correction 

allows us to better characterize the uncertainty of wet troposphere content over the long 

term (Thao et al., 2014; Legeais et al., 2014), and for the aim of this study the accuracy 

given by WPD from ERA-Interim is good enough.  

Remembering that WPD is the symmetric of WTC, the latter can be obtained from 

equations 3.1 and 3.2 which use two products of ERA-Interim reanalysis from ECMWF, 

the NWM described in Section 3. These products, or meteorological parameters, 

extracted from the ECMWF server 

(http://apps.ecmwf.int/datasets/data/interim_full_daily/) were the TCWV (Total Column 

Water Vapor) and the t2m (Two-meter temperature). Both products are time-series of 

monthly grids with a spatial resolution of 0.75º (longitude between 0º and 360º), since 

January 1, 1990 until December 31, 2014, covering a 25-year period, and given in 

NetCDF format. Although the equations return the WPD in meters, the conversion to 

centimeters was essential for a better interpretation of the results, since WPD values 

range, in mean, from 0 to 35 centimeters. After this step, data were manipulated in order 

to change the longitude range from 0º to 360º to -180º to 180º. 

A Matlab routine was created to generate a gridded product of WPD. With the objective 

of preparing data for the analysis, each instant of time, given as seconds since 1900, 

was converted to decimal year, and an ASCII file containing the WPD time-series was 

generated for each grid point, totaling 115921 WPD time-series (or files). These time-

series allow analyzing the spatial distribution of WPD over the entire world. The set of all 

grid points is referred as global-grid in this work. 

To conduct this study, the variance and RMS (Root Mean Square) statistical measures 

were chosen. While the first is related to the standard-deviation, the second is related to 

the square root of the mean of the squares of WPD values. Therefore, the variance and 

RMS of WPD were calculated for each grid point, along the period of study.  

 

Generation of averaged WPD time-series 

A WPD time-series for each 0.75º grid point has been generated as mentioned before. 

For each grid point, a weighted average of WPD time-series has also been computed. A 

Matlab routine was created to compute time-series with the averaged WPD values 

(monthly time-series).  

The weight given to each WPD value at each grid point was computed according to its 

associated latitude using Equation (4.1).  

http://apps.ecmwf.int/datasets/data/interim_full_daily/
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)),(cos(),( yxyxw   (4.1) 

where 𝜑(𝑥, 𝑦) is the latitude of grid point (x,y), and 𝑤(𝑥, 𝑦) is the weighting function 

applied to point  (𝑥, 𝑦). 

These averaged time-series were generated for: Global, North Hemisphere, South 

Hemisphere, and considering only land or only sea surface for each time-series. 

The time-series of both hemispheres were created by limiting the latitude, this is, in the 

case of the North hemisphere, all points with latitude less than 0º were not considered, 

and the opposite was made for the South Hemisphere.  

An orography model was used to make the distinction between land and sea surfaces, 

with the same resolution of WPD data, 0.75º. In this case a Matlab routine was created in 

order to match each pair of latitude-longitude of WPD data with the ones belonging to the 

orography model.   

 

Time-series decomposition 

Decomposition methods play a fundamental role in time-series analysis. Traditional 

decomposition methods are mainly concerned with decomposing the variation in a series 

into components representing trend and periodic variations, with any remaining variation 

attributed to non-systematic fluctuations. In this work, the decomposing method was the 

STL procedure. The STL (Seasonal-trend decomposition procedure based on Loess) is 

a filtering procedure used for simultaneous decomposition of a time series into seasonal, 

trend and irregular components (Cleveland et al., 1990). STL is an iterative algorithm 

based on the lowess smoother yielding a decomposition that is highly resistant to 

extreme observations, i.e., outliers. The STL procedure consists of two nested and 

recursive smoothing procedures. At each iteration, trend and seasonal components are 

progressively refined and improved. 

Applying the STL filtering procedure, already implemented in Fortran, to all time-series, 

those for each 0.75º grid point and the averaged time-series, led to their decomposition 

into a seasonal component, a trend component and a remainder (irregular) component. 

The STL method requires the specification of two parameters, corresponding to the span 

for each of the lowess smoothers used to estimate the seasonal and the trend 

component (Cleveland et al. 1990). The seasonal parameter determines the amount of 

change in the seasonal indices from year to year, and the trend parameter affects the 

smoothness of the resulting trend component. Therefore, the parameters used to apply 

the STL decomposition were the same for all of the time-series presented in this study. 
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The seasonal component has a period of 12 observations, one per month, and 

represents the annual pattern of the time-series; the trend is the component that 

describes data variations with a period longer than 1½ year, representing the interannual 

patterns verified along the time-series when the annual pattern is removed; therefore, the 

seasonal parameter was set for a smoothing window spanning 13 observations and the 

trend parameter was set for a window covering 21 observations. The remainder 

component contains the signals that are not detected as annual or trend components by 

the STL procedure.  

An important parameter can be calculated to quantify how much the variance of each 

component contributes to the variance of the variable in study. The determination 

coefficient (DC) compares the variance of the original time series and of each modeled 

component, showing the percentage of the variance explained by each of them. 

For a given time-series, the respective total variance and the variance of the extracted 

seasonal and trend components are estimated, allowing the calculation of the relative 

contribution of each component to the variance of the original time-series. The 

determination coefficient is given by Equation (4.2) (Volkov and Van Aken, 2003): 

 

%100
2

2


WPD

component

componentDC



 (4.2) 

Therefore, after decompose each time-series grid point of WPD into three time-series of 

the same grid point corresponding to the seasonal, trend and remainder components, 

the variance of each time-series is calculated. In summary, for each grid point, there will 

be a variance value for the WPD time-series and a variance value for each component 

time-series. Applying equation 4.2 for each grid point, the result will be a global-grid with 

percentage values. Each value, as described above, represents the relative contribution 

of each component to the variance of the WPD time-series. 

 

Climate Indices 

The global atmospheric circulation has a number of preferred patterns of variability, all of 

which have expressions in surface climate (Christensen et al., 2013). 

Water vapor, and hence the WPD, are influenced by sea surface temperature, since the 

evaporation from the oceans is the primary source of water vapor in the atmosphere 

(SST and water vapor, 2015). Therefore, it is expected that climate phenomena also 

cause significant changes in WPD patterns.  

A global temporal correlation of WPD and monthly time-series of the main phenomena 

related with the atmosphere and ocean, also known and referred in this work as climate 
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indices, could indicate a description of these relationships. First of all, time-series were 

standardized because they have different units and magnitude. Therefore, each grid 

point of WPD data corresponding to a distinct time-series was detrended by applying a 

linear adjustment (the Least Square Method described in Annex A was applied), then the 

Matlab’s corrcoef function was used to obtain the Pearson correlation coefficient (also 

described in Annex A) and the p_value associated to it, for each combination of WPD 

time-series and climate index, since it is an easy way to standardize data in Matlab. The 

obtained correlation coefficient map is called as teleconnection map (Christensen et al., 

2013). To use in the study of these teleconnections, Climate Indices were taken from 

http://www.esrl.noaa.gov/psd/data/climateindices/list/. A description of them is addressed 

below. 

The atmospheric component tied to El Niño is termed the “Southern Oscillation”. 

Scientists often call the phenomenon where the atmosphere and ocean collaborate 

together ENSO (El Niño–Southern Oscillation). ENSO is one of the most important 

phenomena affecting global climatic variability on interannual time scales. ENSO is a 

coupled ocean-atmosphere phenomenon resulting from the interaction between the 

surface layers of the ocean and the overlying atmosphere in the tropical Pacific 

(Trenberth, 1997). The El Niño represents the oceanographic component and the 

Southern Oscillation the atmospheric component of the same phenomenon. Therefore, 

the two principal indices used to characterize ENSO are the Southern Oscillation Index 

(SOI) and the Nino 3.4 index. The Nino 3.4 index gives the departure in monthly sea 

surface temperature from its long-term mean averaged over the region 5ºN-5ºS and 

170ºW-120ºW (Trenberth, 1997). The one used in this work correspond to anomalies 

derived by the NOAA (National Oceanic and Atmospheric Administration) Optimum 

Interpolation (OI) Sea Surface Temperature (SST) V2 monthly fields (Reynolds et al., 

2001). The SOI is defined as the normalized difference in sea level pressure between 

Tahiti and Darwin, Australia, and it gives a measure of the large-scale fluctuations in air 

pressure occurring between the western and eastern tropical Pacific (i.e., the state of the 

Southern Oscillation) during El Niño and La Niña episodes (Zebiak, 1999). Negative 

values of the SOI correspond to El Niño conditions (weakening of trade winds) while 

large positive values of the SOI are related with stronger than average trade winds and 

La Niña conditions. 

The Pacific Decadal Oscillation (PDO) is a long-term ocean fluctuation of the Pacific 

Ocean. The PDO waxes and wanes approximately every 20 to 30 years. The PDO is 

often described as a long-lived El Niño-like pattern of Pacific climate variability (Zhang et 

al., 1997). In parallel with the ENSO phenomenon, the extreme phases of the PDO have 

been classified as being either warm or cool, as defined by ocean temperature 

http://www.esrl.noaa.gov/psd/data/climateindices/list/
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anomalies in the northeast and tropical Pacific Ocean. The PDO index is defined as the 

leading principal component of North Pacific monthly sea surface temperature variability 

(poleward of 20ºN). 

A major source of interannual variability in the atmospheric circulation is the North 

Atlantic Oscillation (NAO), which is associated to changes in the surface westerlies 

across the North Atlantic onto Europe. The NAO index used in this work is based on sea 

level pressure (SLP) anomalies over the Atlantic sector, 20°N-80°N, 90°W-40°E (Hurrell, 

1995).  

The Tropical Northern Atlantic (TNA) SST anomaly index is an indicator of the surface 

temperatures in the eastern tropical North Atlantic Ocean. The TNA index is the anomaly 

of the average of the monthly SST from 5.5ºN to 23.5ºN and 15ºW to 57.5ºW (Climate 

Indices, 2015).  

The Tropical Southern Atlantic (TSA) SST anomaly index is an indicator of the surface 

temperatures in the Gulf of Guinea, the eastern tropical South Atlantic Ocean. The TSA 

index is the anomaly of the average of the monthly SST from 0º-20ºS and 10ºE-30ºW 

(Climate Indices, 2015).  

The Atlantic Multi-decadal Oscillation (AMO) has been identified as a coherent mode of 

natural variability occurring in the North Atlantic Ocean with an estimated period of 60-80 

years. The AMO index used in this work is the unsmoothed version of time-series 

calculated from the Kaplan SST dataset which is updated monthly over 0º-80ºN 

(Trenberth and National Center for Atmospheric Research Staff, 2015). 

The Western Pacific (WP) pattern is a primary mode of low-frequency variability over the 

North Pacific in all months, and has been previously described by both Barnston and 

Livezey (1987) and Wallace and Gutzler (1981). The WP index is derived from a rotated 

principal component analysis (RPCA) of normalized 500-hPa height anomalies. 

Therefore, in this work SOI, Niño 3.4, NAO, TNA, TSA, WP, PDO and AMO monthly 

time-series since 1990 until 2014 from NOAA Climate Prediction Center (CPC) were 

used. 

 

Sea Level Anomalies 

In the last two decades, sea level has been routinely measured from space using 

satellite altimetry techniques. The accuracy of altimetry-based sea level records at global 

and regional scales implies improvements that include: reduction of orbit errors and 

wet/dry atmospheric correction errors, reduction of instrumental drifts and bias, inter-

calibration biases, inter-calibration between missions and combination of the different 

sea level data sets, and an improvement of the reference mean sea surface. When 
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studying the WPD variability, we can ask “How WPD is related with Sea Level?”. The 

relation between WPD and SLA can be analyzed following the same procedure that was 

developed to relate WPD and Climate Indices. A description of the SLA data used is 

addressed below. 

In the scope of the CCI sea level project (SL_cci), which aimed to produce a consistent 

and precise sea level record covering the last two decades, an SLA product was 

generated for each of 6 missions (TOPEX/Poseidon, Jason-1, Jason-2, ERS-1, ERS-2, 

Envisat) over the period since 1993 until 2013. The SL_cci products are time-series of 

monthly grids with a spatial resolution of 0.25º. For use in this work, and before applying 

the procedure of standardize and correlate data, SLA time-series grids were manipulated 

in order to obtain time-series grids with a spatial resolution of 0.75º degrees, having 

correspondence to the time-series latitude-longitude grids of generated WPD products.  

 

4.2 WPD and the influence of the Intertropical Convergence Zone 

An important and well-publicized component of the general circulation of the atmosphere 

has come to be termed the “Intertropical Convergence Zone” (ITCZ). 

ITCZ appears as a band of clouds consisting of showers, with occasional thunderstorms, 

that encircles the globe near the equator (JetStream, 2015), see Figure 4.1. A brief 

description of what happens in this region and the relation with WPD is given below. 

A permanent low-pressure feature that marks the meteorological equator where surface 

trade winds, laden with heat and moisture from surface evaporation and sensible 

heating, converge to form a zone of increased mean convection, cloudiness, and 

precipitation. The latent heat released in the convective cloud systems of the ITCZ is a 

critical component of the atmospheric energy balance, and the enhanced cloudiness 

associated with these cloud systems provides an important contribution to the planetary 

albedo (Waliser and Jiang, 2014). The fluxes of heat, moisture, momentum, and 

radiation between the atmosphere and the surface differ dramatically between the ITCZ 

region and the regions to the north and south of the ITCZ. Thus, the position, structure, 

and migration of the ITCZ play an important role in determining the characteristics of 

ocean–atmosphere and land–atmosphere interactions on a local scale, the circulation of 

the tropical oceans on a basin scale, and a number of features of the Earth’s climate on 

a global scale (Hastenrath and Lamb, 1978). The upward motions that dominate the 

region favor the formation of heavy rainfalls, known as tropical rainfalls, and hence, the 

ITCZ is the rainiest latitude zone in the entire world, with many locations accumulating 

more than 200 days of rain each year. This zone is usually called the doldrums (weather 

situation in which winds are calm). Many areas along the equator are dominated by ITCZ 
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year round and experience no dry season. Areas located near the poleward margins of 

the ITCZ, however, are subject to brief dry seasons as the zone shifts equatorward. 

Similarly, some areas located on the equatorward edge of the subtropical highs are dry 

for most of the year, except briefly when the system shifts poleward during the summer. 

This condition exists in Sahel of Africa, the region bordering the southern margin of 

Sahara Desert. Unlike the Sahara, which is dry all year, the Sahel normally experiences 

a brief rainy period each summer as the ITCZ enters the region, and during the rest of 

the year, prevail dry conditions (Aguado and Burt, 2001). 

At the longitudes of the major continents, the low-level tropical wind field exhibits a 

strong seasonal dependence, with a tendency toward onshore (sea to land) flow during 

summer and offshore flow during winter. The seasonal reversal is particularly 

pronounced over Southeast Asia and adjacent regions of the Indian Ocean where the 

prevailing winds blow from the southwest during summer and northeast during winter. 

These seasonal wind regimes are known as monsoons (from the Arabic word mausin - a 

season). Over most of India, the summer (southwest) monsoon is characterized by 

heavy rainfall while the winter (northeast) monsoon is extremely dry (Wallace et al., 

1977). 

In summary, we can say that the ITCZ region coincides with the confluence between 

Northern and Southern hemisphere trades, the zone of maximum sea temperature 

(SST), the surface pressure trough, and bands of maximum cloudiness and rainfall 

(Ramage, 1974). The ITCZ follows the sun in its apparent path, so it varies seasonally, 

and moves north in the northern summer and south in the northern winter, Figure 4.1.  

The ITCZ is what is responsible for the wet and dry seasons in the tropics (JetStream, 

2015). Therefore, the ITZC plays an important influence on the movement of WPD at 

each season, along the tropics, as can be observed when comparing WPD (mean values 

for each grid point) with ITCZ in January, corresponding to the northern winter season, 

and in July, corresponding to the northern summer season (Figures 4.1, 4.2 and 4.3).  
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Figure 4.1 – Movement of the Intertropical Convergence Zone (ITCZ). Source: 
https://courseware.e-education.psu.edu/courses/earth105new/content/lesson07/03.html  

 

 

Figure 4.2 – Spatial Distribution of WPD in 
January – Winter season. 

 

Figure 4.3 – Spatial Distribution of WPD in 
July – Summer season. 

 

4.3 Spatial Analysis 

As mentioned in Chapter 3, the WPD computation depends mainly on the amount of 

water vapor in the troposphere and on the temperature near the surface (see equations 

3.1 and 3.2). Therefore, the study of the spatial variability of WPD is important, given the 

high variability of water vapor.  

To perform this study, variance and RMS (Root Mean Square) global-grids of WPD 

generated in this study, as described in Section 4.1, were used.  

According to Figure 4.4, the variance of WPD ranges from 1–25 cm2 near the poles to 

100–135 cm2 in the tropics and has a strong dependency on latitude, as Andersen and 

Scharoo (2011) demonstrated from Jason-1 data, studying the mean and standard 

deviation of the wet tropospheric correction.  

The highest values of WPD variance are found in areas close to the tropics of Cancer 

and Capricorn (~23º 30’ N and ~23º 30’ S respectively). Maximum variance values of 

WPD are found over the tropics over southern and eastern Asia, northern Australia and 

parts of western and central Africa. Other regions namely Mexico and the southwest 

https://courseware.e-education.psu.edu/courses/earth105new/content/lesson07/03.html
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USA, and parts of South America and South Africa also reveal high values of WPD 

variance. These are the regions where the increasing of precipitation is related to the 

regional monsoon domains, which is linked to the ITZC influence, as seen in the 

previous section. The monsoon circulation is driven by the difference in temperature 

between land and sea, which varies seasonally with the distribution of solar heating 

(Christensen et al., 2013). The duration and amount of rainfall depends on the moisture 

content of the air, and on the configuration and strength of the atmospheric circulation. 

The regional distribution of land and ocean also plays a role, as does topography. In fact, 

looking at the variance of WPD (Figure 4.4), it is noticeable the influence of the Indian 

and East Asian Monsoon, the Australian Monsoon, South America Monsoons, and West 

Africa Monsoon (covering the Sahel region). It happens because a longer duration of a 

precipitation event adds more available moisture to be evaporated into the air (Haby J., 

2015), which will contribute to increase the water vapor content in the troposphere, due 

to the hydrological cycle, and thus will increase the WPD.  

The minimum variability of WPD coincides with the minimum quantity of water vapor in 

the atmosphere and can be found over deserts and polar regions, where values between 

0 and 5 cm2 for the variance of WPD can be found.  

The RMS values of WPD (Figure 4.2) show a near-zonal dependency, with absolute 

values ranging from less than 5 cm at high latitudes to ~35 cm near the equator and the 

tropics. Therefore, WPD values are higher near to equator and decreases from equator 

to polar regions. These results match with WPD measurements and water vapor 

distributions (Fernandes et al., 2013b).   
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Figure 4.4 - Spatial distribution of the variance of WPD (in cm
2
). 

 

 

Figure 4.5 – Spatial distribution of the RMS of WPD (in cm). 

 

Extracting selected time-series of grid points corresponding to different regions of the 

globe (notice the three green points in Figure 4.4), we can see that every WPD time-

series has different patterns. Figure 4.6 represents a time-series near the equator line in 

Africa, Figure 4.7 represents a time-series in the tropics in the South Eastern Asia 
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region, and Figure 4.8 represents a time-series in the South Pole. Despite the first two 

time-series are located at different latitudes, the time-series have identical patterns, 

having WPD values ranging between 5 and 32 cm, with a mean amplitude of 25 cm. 

Considering the last figure, we can see that the time-series presents WPD values 

ranging between 4 and 9 cm, with a mean amplitude of 5 cm, and presents an irregular 

pattern which hinders the identification of the annual and semi-annual patterns.  

 

 

Figure 4.6 – Time-series of WPD at 10.5ºN, 10.5ºE. 

 

 

Figure 4.7 – Time-series of WPD at 30ºN, 120ºE. 

 

 

Figure 4.8 – Time-series of WPD at 60ºS, 120ºW. 

 

The Annual and Interannual patterns 

As we have seen in Section 4.1, the annual and interannual patterns are described by 

the seasonal and trend components respectively. 
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The variance values of the seasonal component were estimated at each grid point, 

allowing the calculation of the relative contribution of this component to the total variance 

of WPD (shown in Figure 4.4), given by the determination coefficient (DC) expressed by 

Equation (4.1). 

The spatial distribution of the determination coefficient of the seasonal component, 

Figure 4.9, shows that the seasonal component is the principal contribution for the 

variance of WPD in the Northern Hemisphere.  

It is clear that in the equator line this contribution varies between 15% and 50%, 

increasing towards polar regions. However, the contribution of the trend component has 

the opposite behavior (Figure 4.10).  

Comparing the contributions of the seasonal and trend components for the total variance 

of WPD, it is possible to conclude, as expected, that in the areas of the largest variability 

of WPD, the seasonal component contributes almost 100%, due to the annual patterns 

of the monsoon events in those regions, whereas the trend component has almost 0% of 

contribution. Indeed, the highest interannual values are observed over ocean, and are 

related to the ENSO phenomenon.  

 

Figure 4.9 – Spatial distribution of the Determination Coefficient (%) of the seasonal 
component (DC Seasonal) of WPD variability. 
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Figure 4.10 – Spatial distribution of the Determination Coefficient (%) of the trend 
component (DC Trend) of WPD. 

 

 

 

 

 

 

 

Although almost the total WPD variability can be explained by the seasonal and trend 

components, yet the remainder component presents about 50% of contribution relatively 

to the variance of WPD in some regions (Figure 4.11). It happens because there are air-

sea interactions that are not constant in time, and those situations are not considered in 

the seasonal or trend components. 
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Figure 4.11 – Spatial distribution of the Determination Coefficient (%) of the remainder 
component (DC Remainder) of WPD. 

 

 

 

 

 

 

The mean peak-to-peak amplitude of the seasonal cycle was computed for each grid 

point, and the resultant global-grid is shown in Figure 4.12. In this case, and because 

only the seasonal component is considered, this statistic measure allows to understand 

the annual variation of WPD. 

The mean amplitude of the seasonal component of WPD has values between 0 and 34 

centimeters. The maximum amplitudes are located in the regions of highest variability, as 

it is possible to conclude when comparing this result with the global variance of WPD 

shown in Figure 4.4. Besides, it is noticeable that the mean amplitude of the seasonal 

component explains almost every contribution of this component relatively to the 

variance of WPD.  

However, there are some regions of interest with high variance and with maximum 

contribution of the seasonal component that present minimum values for the mean 

amplitude of the seasonal component. Among those regions we present in Figure 4.13 

the example for the India case. 
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Figure 4.12 - Spatial distribution of the Amplitude (cm) of the seasonal component of WPD 
variability.  

 

 

 

  

 
 

Figure 4.13 – Region of South of Asia, near the India.  
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In the same way, the trend (interannual) component time-series for each grid point was 

adjusted using a linear fit, by applying the Least-Squares method, to obtain a value for 

the slope and the corresponding value for the R-squared (R2, or coefficient of 

determination as described in Annex A) of the linear regression fit. The R2 values are 

smaller than 0.3, and thus the linear fit only explains the values observed in 30%, 

meaning that the linear fit is not the most adequate model to adjust these time-series. 

The slope is an important measure because it gives how much the fitted linear 

regression is growing in time. As WPD was generated in centimeters the global-grid of 

slope values is presented in Figure 4.14 in units of cm/year. However, the slope values 

are given in mm/year in the text, as is usually the case. 

Comparing the spatial distribution of slopes and the spatial distribution of WPD variance, 

it is possible to observe that the variance of WPD is not related with the slope of the 

trend component. It means that, despite some regions are prone to have high variability 

of WPD, this does not imply rising or declining of WPD. 

The minimum value for the slope of the trend component is -0.16 mm/year and the 

maximum value is 0.18 mm/year. The range is so small that even if we adjust a better fit, 

with a high R-squared value, the measured slopes will not be so different than the ones 

described here. 

The minimum values for the slope appear in the Pacific Ocean, and they are related to 

the El Niño and La Niña phenomena.  

 

 

Figure 4.14 - Spatial distribution of the slope (cm/year) of the WPD trend component. 
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4.4 Temporal Analysis 

The temporal analysis consists on studying the global and hemispherical time-series, as 

well as the correspondent land and sea surface time-series, using the generated 

averaged WPD time-series described in Section 4.1, that is, time-series of monthly 

means of WPD values, weighted according to their associated latitude. The same 

statistical methods used in the spatial analysis were also applied in this analysis. 

 

4.4.1 Global Time-series 

The global time-series of WPD and the corresponding seasonal and trend time-series, 

from STL decomposition, are shown in Figure 4.15. The global time-series of WPD 

clearly shows the effect of the seasonal component. The seasonal component has 

averaged peak-to-peak amplitude of 1.98 cm. The trend component of the time-series 

explains how the WPD varies with time, ignoring the seasonal periodicity. Adjusting a 

linear fit to the trend component, the observed slope has a value of 0.09 mm/year, and 

the R-squared has a value of 0.18. 

Considering the global time-series of WPD and the correspondent time-series only in 

land and only in sea surface, Figure 4.16, we can see that the time-series for oceanic 

region presents low variability and the annual pattern is affected because we are 

considering both hemispheres simultaneously.  

 

  

Figure 4.15 – STL decomposition of the Global Time-series. Top panel represents the WPD 
time-series, middle panel represents the seasonal component and bottom panel 
represents the trend component and the correspondent linear fit (in red). 
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Figure 4.16 – Comparison between global time-series for continental and oceanic regions 
separately. 

 

4.4.2 North vs South Hemisphere 

A previous study concerning the Northern Hemisphere reveals slopes for the annual and 

interannual components of water vapor in the troposphere at different regions. The 

Pacific Ocean is the region with the highest slopes, with values greater than 1.14 

mm/decade (Ross and Elliott, 2000). 

In this work, the same analyses were performed for the North and South hemispheres, 

which allowed concluding that the global time-series is influenced by the difference in 

phase between both hemispheres, as can be observed in Figure 4.17, which presents 

the seasonal components of both global and hemispherical WPD time-series. 

Comparing the trend components of the global and hemispherical time-series, Figure 

4.18, it is clear that the analyzed time-series have patterns in common, happening at the 

same time, that are not explained by the annual cycle (annual component). Therefore, 

these patterns are expected to be explained from a comparison of the time-series with 

some Climate Indices, and with Sea Level Anomaly (SLA). 

 
 

 

Figure 4.17 – Comparison between the seasonal components of the WPD time-series for 
Global, North hemisphere and South hemisphere. 
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Figure 4.18 – Comparison between the trend components of time-series for Global, North 
hemisphere and South hemisphere. 

 

 

 

 

 

4.5 WPD and Climate Indices 

Correlation exists when two variables have a linear relationship beyond what is expected 

by chance alone.  

We have seen that WPD is related with temperature and water vapor. Throughout this 

work it was possible to explain some of the “WHYS” that previously arose. Like “Why is 

the WPD higher along the equator?” Or “Why has the WPD more variability in some 

distinct regions over the tropics?”. These and more questions were answered using 

climate events that occur in our planet. So, it is important to know how WPD is related 

with some of these phenomena.  

A Climate Index is a time-series that explains the variability of a certain climate 

phenomenon. In this work SOI, Niño 3.4, NAO, TNA, TSA, WP, PDO and AMO monthly 

time-series since 1990 to 2014, from NOAA Climate Prediction Center (CPC), as 

described before in Section 4.1 were used. The WPD time-series for each grid point was 

correlated with the time-series of each Climate Index. Each correlation coefficient map is 

known as teleconnection (Christensen t al., 2013), and grid points with an associated 

correlation coefficient that is not statistically significant, with a confidence level of 95%, is 

represented in white.  

Teleconnection maps for the various Climate Indices are presented in Figures 4.19 and 

4.20. The analysis of these maps allowed concluding if and how WPD is related with the 

phenomena associated to each climate index. 
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Figure 4.19 – Teleconnections of WPD and Climate Indices: (top) Niño 3.4 and SOI; 
(middle) PDO and NAO; (bottom) TNA and TSA. 
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Figure 4.20 - Teleconnections of WPD and Climate Indices AMO and WP. 

 

However, a more detailed analysis can be done if we correlate WPD with Climate Indices 

for each season. In this way, a Matlab routine was implemented to generate those 

teleconnections. Defining each season according to the North Hemisphere, different 

teleconnection maps were created for: the winter season which is composed by 

December, January and February months (DJF), the spring season which is composed 

by March, April and May (MAM), the summer season which is composed by June, July 

and August months (JJA), and finally, autumn which is composed by September, 

October and November (SON) months. 

Starting with the ENSO phenomenon, we can see that the SOI, defined by the out-of-

phase relationship between sea level pressure (SLP's) in the western tropical Pacific and 

the southeastern tropical Pacific, is highly negative correlated with WPD mostly over 

western tropical Pacific over open ocean in northern winter season, and in the northern 

autumn season SOI is highly positive correlated with WPD over the north of Australia as 

shown in Figure 4.21. The out-of-phase pattern is associated with different rainfall and 

wind field patterns over the Pacific and other parts of the globe (The Southern 

Oscillation, 2015). 

As expected, once WPD values are influenced by precipitation and temperature, these 

results match with teleconnections of SOI and precipitation and of SOI and surface air 

temperature already publicized (Christensen et al., 2013). 

The teleconnection map of Niño 3.4 and WPD complements these results.  
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Figure 4.21 – Teleconnection map of WPD and SOI.  

 

 

 

 

 

 

 

 

 

 

Figure 4.22 shows that Niño 3.4 is highly positively correlated with WPD over western 

tropical Pacific in the northern winter season, and in the northern autumn season, which 

coincides with high negative correlation between SOI and WPD, as described above. It is 

important to refer that El Niño is usually associated with drier than average conditions 

over certain regions, e.g. in the north of Australia, and La Niña is associated with wetter 

than average conditions over certain regions, e.g. the Maritime Continent (ENSO 

impacts, 2015). The Maritime Continent includes the archipelagos of Indonesia, New 

Guinea, and Malaysia, and the surrounding shallow seas (Maritime Continent, 2015). 
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Figure 4.22 – Teleconnection map of WPD and Niño 3.4.  

 

 

 

 

Because NAO influences the North Atlantic jet stream, storm tracks and blocking 

(Christensen et al., 2013), it is related with precipitation and air temperature thereby 

affecting winter climate over the North Atlantic and surrounding landmasses, as the 

Western Europe and Mediterranean basin climates (Christensen et al., 2013). Therefore, 

the teleconnection between NAO and WPD presents high correlation values over the 

Northern Hemisphere mostly in winter, as expected, with high significant and negative 

correlation (with values ranging -0.3 and -0.7) over Greenland, the Canadian Artic and 

presents high significant positive correlation (with values ranging 0.3 and 0.5) over the 

Eastern United States and Northern Europe (Figure 4.23). These results also match with 

the teleconnections of NAO and temperature and of NAO and precipitation already 

shown by Christensen et al. (2013). 
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Figure 4.23 – Teleconnection map of WPD and NAO.  

 

 

 

 In parallel with the ENSO phenomenon, the extreme phases of the PDO are classified 

as either warm or cool, as defined by ocean temperature anomalies in the northeast and 

tropical Pacific Ocean (Mantua, 1999). When SST is anomalously cool in the interior 

North Pacific and warm along the Pacific Coast, and when sea level pressures are below 

average over the North Pacific, the PDO has a positive value (Mantua, 1999). When the 

climate anomaly patterns are reversed, with warm SST anomalies in the interior and cool 

SST anomalies along the North American coast, or above average sea level pressure 

over the North Pacific, the PDO has a negative value. As is the case with ENSO, 

characteristic pressure, wind, temperature, and precipitation patterns have been 

connected with the PDO (Latif and Barnett, 1996, Zhang et al., 1997, Mantua et al.. 

1997), therefore it is expected that PDO is connected with WPD. The teleconnection 

between PDO and WPD (Figure 4.24) shows high significant correlations in the Western 

Pacific in winter, with positive values ranging between 0.3 and 0.5, and with negative 

values ranging -0.2 and -0.5, and in autumn coinciding with the high positive correlation 

(~0.5) found in the teleconnection between Niño 3.4 and WPD, which also means that El 

Niño and PDO are in phase. 
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Figure 4.24 – Teleconnection map of WPD and PDO.  

 

 

 

The teleconnection between TNA and WPD in winter season shows that the high 

positive correlations correspond to high negative correlations found in the winter 

teleconnection between NAO and WPD (Figure 4.25). In spite of that, is in the summer 

season that the teleconnection between TNA and WPD presents the highest positive 

correlation which are located over the Tropical North Atlantic (between 10ºN and 20ºN). 

Since TNA is related to sea surface temperature, because how much warmer the sea 

surface is, more evaporation will exist, so WPD will increase. Philander (2001) has 

shown that in summer the surface currents are particularly strong, and the North Brazil 

Current, which carries very warm water from 5ºN across the equator, after crossing the 

equator, veers sharply eastward to feed the North Equatorial Countercurrent.  

Like TNA, TSA index is connected with sea surface temperature-. The teleconnection 

between TSA and WPD shown in Figure 4.26 presents high significant and positive 

correlation during winter (0.3 to 0.5) located in southern hemisphere and in tropical south 

Atlantic, and is noticeable the relation between this result and the high values of WPD 

mean values in winter season (Figure 4.3), previously related with the ITCZ impact. 
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Figure 4.25 – Teleconnection map of WPD and TNA.  

 

 

 

Figure 4.26 – Teleconnection map of WPD and TSA. 
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The AMO is characterized by the sea surface warming (cooling) of the entire North 

Atlantic during its warm (cold) phase. The research of Wang et al. (2013) shows that the 

warm (cold) phase of the AMO is associated with a surface warming (cooling) and a 

subsurface cooling (warming) in the tropical North Atlantic (TNA). According to the 

teleconnection generated in this work (Figure 4.27), we can see this relationship in 

summer. However, is during the autumn that the teleconnection between AMO and WPD 

presents high correlation, with positive correlation in the Northern Hemisphere, and 

negative correlation in the South Hemisphere. Generally, is over the North Hemisphere 

that AMO have more impact.  

 

 

Figure 4.27 – Teleconnection map of WPD and AMO. 

 

The WP pattern has received little research attention in comparison with other patterns, 

e.g. NAO. This is not surprising given the larger influence of these patterns on winter 

continental precipitation (Nigam, 2003). The WP pattern is however more dominant in 

the Northwest Pacific, especially in coastal regions, in the south-central Great Plains 

(semi-arid prairie ecoregion of the central United States), and, of course, on marginal 

sea ice zones in the Arctic (Linkin and Nigam, 2008). The teleconnection between WP 

and WPD (Figure 4.28) shows this influence in the Northwest Pacific during the winter 

season, but with negative correlation. The high positive correlations coincide with high 

positive correlations between Niño 3.4 and WPD, which means that WPD is related with 

the ENSO phenomenon. 
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Figure 4.28 – Teleconnection map of WPD and WP. 

 

In summary, in general the boreal winter is the season where WPD is more related with 

Climate Indices and, so, with the respective phenomena. This result is expected since, 

first, the WPD has more variability over the North Hemisphere, and second, most of the 

climate phenomena occur in the North Hemisphere, and at last, the winter season is the 

rainiest season, and, due to the hydrological cycle, there will be more water vapor in the 

troposphere, which causes more concentration of WPD. 

 

4.6 WPD and SLA 

Since the study of Sea Level is very important in Satellite Altimetry, the knowledge of 

how the WPD is related to Sea Level Anomaly (SLA) is also important. In order to relate 

WPD and SLA the same methodology used to correlate Climate Indices and WPD was 

followed, however in this case, since we have SLA gridded data, each grid point of WPD 

was correlated with the respective grid point of SLA.  

The generated map of the spatial distribution of significant Pearson correlation 

coefficients, with a level of confidence of 95%, is presented in Figure 4.29. 

Analyzing this figure that shows the spatial distribution of the correlation coefficient 

between WPD and SLA, it is clear that the variables are much related globally. 
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The fact that the correlation between the variables under study is higher over the Atlantic 

than over the Pacific can be explained since there is a northward transport of heat 

across the equator in the Atlantic but not in the Pacific. The reason is that the northern 

Pacific is less saline than the northern Atlantic which causes an absence in the formation 

of deep water in the Northern Pacific (Philander, 2001).  

The high negative correlation between SLA and WPD can be explained by a delay in the 

response of one of the variables. This delay is linked to the duration of a season since 

there is a delay of the incoming of the northern winter over the north-western Africa due 

to the upwelling along the West African coast (Philander, 2001).. 

Changes in the depth of the thermocline (which separates warm surface waters from the 

cold water at depth) depend on winds everywhere in the equatorial Atlantic, even the 

winds off Brazil which are most intense and warm during the northern summer when they 

cause a shoaling of the thermocline throughout the Gulf of Guinea (Philander, 2001). 

These seasonal variations of the winds and currents can explain the difference in phase 

between SLA and WPD over the Atlantic. 

Over the Indian Ocean, there are also some regions that present negative correlation 

between SLA and WPD, but the situation is somewhat different. Here, in the western 

Indian Ocean, because of the dominant influence of the cold Somali current during 

northern summer, a zonal anomaly of surface temperature is maintained between the 

western and the eastern parts of the equatorial ocean almost throughout the year.  

There is also the Indonesian warm pool where high positive correlation between WPD 

and SLA can be found.  

A more complete analysis of the correlation between SLA and WPD could be achieved 

using decomposition into seasons, as has been done in the study of the correlation 

between Climate Indices and WPD, or using a lagged correlation. 

 



 49 

 

 

Figure 4.29 – Correlation Coefficient of WPD and SLA.  
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5 Variability of WTC with altitude 

The variability of the wet component of troposphere with the altitude above sea level is of 

major importance, since the GPD+ methodology relies on ZWD (Zenith Wet Delay) 

values reduced to sea level. 

Since the height dependence of water vapor is not easy to model, due to its large 

variability, Kouba (2008) proposed the following empirical expression: 

 
2000

0

0

)()(
Shh

GNSSSrad ehZWDhZWD



  (5.1) 

where hS and h0 are  the  ellipsoidal  heights  of  the  model  orography  and  surface,  

respectively, or, alternatively the corresponding heights above sea level.  

 

The study performed by Kouba (2008) was based on punctual and scarce ZWD data 

acquired from radiosondes and, according to the author, equation (4) should only be 

used with height reductions up to 1000 m.  

In this chapter, the study of the ZWD variability (also named WTC), with altitude, using 

WTC data, derived from GNSS stations from IGS, EPN and SuomiNet permanent 

networks, and WTC data from MWR on-board several satellite altimetry missions, as 

described in Section 3, is addressed for the period of January, 1995 to September, 2014.   

A description of the data processing methodology is addressed in Section 5.1. The 

results and the corresponding analysis are presented in Section 5.2. 

 

5.1 Processing data 

In the ZWD reduction to sea level, the procedure developed by Kouba (2008) has been 

adopted and the results obtained so far indicate that it is suitable for coastal stations 

(distances from the coast up to 20–30 km) and heights below 1000 m (Fernandes et al., 

2012). 

 

In the case of this study, hS = 0 because it is the height at sea level, and h0 is the altitude 

above sea level of the GNSS station. So manipulating Equation (5.1), it is possible to 

obtain the following expression: 
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where the coefficient of 2000 was substituted for an unknown variable named k. 

 

Equation (5.2) allows the determination of k values checking if Equation (5.1) can be 

reasonably applied at any altitude.  

The WTC was estimated at GNSS stations from several networks (IGS, EPN, SuomiNet) 

and the corresponding WTC derived from MWR on-board five altimetric missions were 

used (ENVISAT, ERS-2, Jason-1, Jason-2 and TOPEX). 

The first step consists on interpolating the GNSS-derived ZWD for the instants of the 

MWR measurements, and therefore selecting the altimeter points without invalid 

parameters located at a distance less than 100 km from any GNSS station, i.e., points 

near the coast. 

The adjustment of an exponential fit, according to Equation (5.2) was performed taking 

into account two main approaches: 

 

1. Considering data grouped by year; for each year, a file containing all interpolated 

values for all MWR and all GNSS values for the correspondent year was 

generated. 

 

2. The same previous approach, but considering a restriction of the distance to 

coast between 30 and 50 km. 

 

3. Considering data grouped by permanent network and altimetric mission, 

restricting the distance to coast between 30 and 50 km. 

 

Applying the approach 1, k values ranging from 1486 to 2323 were obtained. An example 

of the adjustment is presented in Figure 5.1 for the year 1999. 

According to Sibthorpe et al. (2011), the variance of the WTC differences (GNSS-MWR) 

due to land contamination decreases significantly when distances to coast between 30 

and 50 km are considered. 

Applying approach 2 k values less than 2095 were determined. Figure 5.2 shows the 

adjustment of this approach for the 1999 year. 

Applying approach 3, k values ranging from 1007 to 1724, with a maximum of 2530 

found for the combination SuomiNet+Envisat were found.  

These results reveal that the value of k is similar to the value found by Kouba (2008). 

Further analysis is required using, for example, data from an atmospheric model such as 

ERA Interim. 
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Figure 5.1– Adjustment of ZWD to altitude 
for the year 1999 considering distances 
from GNSS stations less than 100 km. 

 

Figure 5.2 – Adjustment of ZWD to altitude 
for the year 1999 considering distances 
from GNSS stations less than 100 km and 
distance to coast between 30-50 km. 
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6 Conclusions and future work 

Looking further beyond Geographic Engineering, this thesis explored the “whys” behind 

the variability of one of the most difficult source of errors in satellite altimetry, the wet 

path delay (WPD).  

This study allowed understanding the variability of the distribution of the WPD and the 

causes of the observed variability both in space and time. Considering the period since 

January 1, 1990 to December 31, 2014, it can be concluded that the WPD variability has 

a strong dependency on latitude, and that the maximum values of WPD variance are 

found in the Northern Hemisphere. Climate Phenomena are the cause for this high 

variability, since they affect the water vapor and temperature. Maximum values of WPD 

variance are found over the tropics of southern and eastern Asia and northern Australia 

and parts of western and central Africa. Other regions, namely Mexico, the southwest 

USA, and parts of South America and South Africa, which coincides with the ITCZ 

(“Intertropical Convergence Zone”), and thus are under the monsoon domain, also reveal 

high WPD variability.  

The seasonal component of WPD is related to the annual patterns presented in those 

regions, and contributes almost 100% to the variance of WPD. The trend component has 

a maximum contribution of 55% in the equatorial region, where the contribution of the 

seasonal component decreases, and is related to the ENSO (El Niño Southern 

Oscillation) phenomenon. 

The analysis of the global and hemispherical time-series of WPD allows concluding that 

WPD is increasing with time by approximately 0.1 mm per year. The maximum and 

minimum values for the trend component occur in the aforementioned regions. The 

global time-series is influenced by the difference in phase between both hemispheres.  

Since WPD variability can be related to atmospheric and ocean events, the correlation 

with Climate Indices and with SLA was analyzed. The temporal correlation of WPD with 

various Climate Indices (SOI, Niño 3.4, NAO, TNA, TSA, WP, PDO and AMO) shows 

that WPD is highly related with El Niño phenomenon, and with the others phenomena. 

Results from this study show high correlation principally in the northern winter. The 

analysis of the correlation between WPD and SLA allowed to conclude that WPD is 

highly related with SLA, however, areas where SLA and WPD are or not in phase were 

identified, meaning that future work can be done using lagged correlations and/or using a 

decomposition into seasons similar to that used in the WPD and Climate Indices 

correlation. 
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The second part of the work consisted on the study of the WTC variability with altitude, 

by adjusting an exponential expression with a variable coefficient, with the objective of 

improving the original expression published by Kouba (2008). However, the obtained 

results do not allowed its improvement due to the scarceness of coastal GNSS stations 

at high altitudes. Therefore, the study reveal that further analysis is required using, for 

example, data from a numerical weather model (NWM).  
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Annex A 

Linear Regression 

Linear regression attempts to model the relationship between two variables by fitting a 

linear equation to observed data. The equation is in the form Y = a + bX, where X is the 

explanatory variable and Y is the dependent variable (Linear Regression, 2015).  

The slope of the line is b, and a is the intercept (the value of y when x = 0). The slope is 

an important measure because it gives how much the fitted linear regression is growing 

in time. According to this description, this measure is often applied to the extracted trend 

component of a time-series, allowing estimating the averaged rise or decreasing rate of 

the variable in study. 

The Least-Squares Method is a common method for fitting the regression line. A 

description of this method is presented below. 

 

Least-Squares Method  

The Least-Squares method calculates the best-fitting line for the observed data by 

minimizing the sum of the squares of the vertical deviations from each data point to the 

line (if a point lies on the fitted line exactly, then its vertical deviation is 0). Because the 

deviations are first squared, then summed, there are no cancellations between positive 

and negative values (Linear Regression, 2015) . 

 

Coefficient of Determination 

The coefficient of determination (R2), also known as R-squared, is a statistical measure 

that gives information about how close the data are to the fitted regression line 

(Regression Analysis, 2015). The definition of the coefficient of determination is fairly 

straight-forward; it is the percentage of the response variable variation that is explained 

by a linear model. The value of R2 is always between 0 and 1. A value of 0 indicates that 

the linear model explains none of the variability of the response data around its mean; 

and a value of 1 indicates that the linear model explains all the variability of the response 

data around its mean. In general, the higher the R2 is, the better the linear model fits the 

data in study. This measure have some limitations, such as the fact that R2 value does 

not indicate whether a regression model is adequate. Therefore, a low R2 value can be a 

result for a good model, or a high R2 value can be a result for a model that does not fit 

the data. The further the fitted line is away from the points, the less it is able to explain 
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(Regression Analysis, 2015). In summary, the R2 denotes the strength of the linear 

association between x and y, it is the ratio of the explained variation to the total variation. 

 

Peak-to-peak amplitude 

The averaged peak-to-peak amplitude is a measure applied to a time-series or to a 

function, and is defined as the difference between the maximum and minimum values of 

each cycle of the waveform (Peak-to-peak amplitude, 2015), averaged over the entire 

period of study (see Figure A.0.1). 

High values for the averaged peak-to-peak amplitude implies that time-series have a 

high variability along time. And small values have the inverse meaning.  

 

 

Figure A.0.1 – Illustration of the peak-to-peak amplitude measurement. Source: 
https://www.chegg.com/homework-help/definitions/amplitude-expressions-4. 

 

Pearson Correlation Coefficient 

The cross-correlation function is a quantitative operation in the time domain used to 

describe the relationship between data measured at a point and data obtained at another 

observation point (Broch, 1981). The result of applying the cross-correlation function can 

be interpreted as an estimate of the correlation between two data samples. This 

correlation, also known as Pearson’s correlation, exists when both data in study have a 

linear relationship beyond what is expected by chance alone.  

The correlation coefficient, r, is a statistic measure that quantify the strength of an 

association between two continuous variables. The correlation coefficient can range from 

-1 to 1. A value of -1 represents “perfect negative correlation”, while a value of 1 

represents “perfect positive correlation”. The closer a correlation is to these extremes, 

the “stronger” the correlation between the two variables (Stockwell, 2008). When the 

correlation coefficient is close to 0 (zero), it does not imply that there is no relationship 

https://www.chegg.com/homework-help/definitions/amplitude-expressions-4
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between the variables, it only implies that there is no linear correlation between them. 

Looking to the sign of the correlation coefficient, a positive value means that as variable 

1 increases, variable 2 increases, and conversely, as variable 1 decreases, variable 2 

decreases. 

Besides the information given by the numerical value and by the sign of the correlation 

coefficient, it is important to take in account the statistical significance of the correlation 

given by the probability level (p-value). The smaller the p-level is, the more significant the 

relationship is.  

The p-value is the probability to have found the current result if the correlation coefficient 

were in fact zero (null hypothesis) (Correlation Coefficient, 2015). If this probability is 

lower than the conventional 5% (p-value<0.05) the correlation coefficient is called 

statistically significant. In other words, small p-values (e.g. p<0.05) mean that the null 

hypothesis can be rejected (the null hypothesis for these analyses is that r = 0). 

If two variables are correlated, there may or may not be a causative connection, 

furthermore this connection can be indirect. Correlation can only be interpreted in terms 

of causation if the variables under investigation provide a logical basis for such 

interpretation. 

 

 


