Abstract
Satellite radar altimetry provides a unique sea level data set that extends over more than 25 years back in time and that has an almost global coverage. However, when approaching the coasts, the extraction of correct sea level estimates is challenging due to corrupted waveforms and to errors in most of the corrections and in some auxiliary information used in the data processing. The development of methods dedicated to the improvement of altimeter data in the coastal zone dates back to the 1990s, but the major progress happened during the last decade thanks to progress in radar technology [e.g., synthetic aperture radar (SAR) mode and Ka-band frequency], improved waveform retracking algorithms, the availability of new/improved corrections (e.g., wet troposphere and tidal models) and processing workflows oriented to the coastal zone. Today, a set of techniques exists for the processing of coastal altimetry data, generally called “coastal altimetry.” They have been used to generate coastal altimetry products. Altimetry is now recognized as part of the integrated observing system devoted to coastal sea level monitoring. In this article, we review the recent technical advances in processing and the new technological capabilities of satellite radar altimetry in the coastal zone. We also illustrate the fast-growing use of coastal altimetry data sets in coastal sea level research and applications, as high-frequency (tides and storm surge) and long-term sea level change studies.
Similar content being viewed by others
References
Abileah R, Gómez-Enri J, Scozzari A, Vignudelli S (2013) Coherent ranging with Envisat radar altimeter: a new perspective in analyzing altimeter data using Doppler processing. Remote Sens Environ 139:271–276. https://doi.org/10.1016/j.rse.2013.08.005
Abileah R, Scozzari A, Vignudelli S (2017) Envisat RA-2 individual echoes: a unique dataset for a better understanding of inland water altimetry potentialities. Remote Sens 9(6):605. https://doi.org/10.3390/rs9060605
Ablain M, Legeais JF, Prandi P, Marcos M, Fenoglio-Marc L, Dieng HB, Benveniste A, Cazenave A (2017) Satellite altimetry-based sea level at global and regional scales. In: Cazenave A, Champollion N, Paul F, Benveniste J (eds) Integrative study of the mean sea level and its components, vol 58. Space sciences series of ISSI. Springer, Cham, pp 9–33. https://doi.org/10.1007/978-3-319-56490-6_2
Abulaitijiang A, Andersen OB, Stenseng L (2015) Coastal sea level from inland CryoSat-2 interferometric SAR altimetry. Geophys Res Lett 42(6):1841–1847. https://doi.org/10.1002/2015GL063131
Ampou EE, Johan O, Menkes CE, Niño F, Birol F, Ouillon S, Andréfouët S (2017) Coral mortality induced by the 2015–2016 El-Niño in Indonesia: the effect of rapid sea level fall. Biogeosciences 14(4):817–826. https://doi.org/10.5194/bg-14-817-2017
Andersen OB, Scharroo R (2011) Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 103–146. https://doi.org/10.1007/978-3-642-12796-0_5
Antony C, Testut L, Unnikrishnan AS (2014) Observing storm surges in the Bay of Bengal from satellite altimetry. Estuar Coast Shelf Sci 151:131–140. https://doi.org/10.1016/j.ecss.2014.09.012
Ardhuin F, Brandt P, Gaultier L, Donlon C, Battaglia A, Boy F, Casal T, Chapron B, Collard F, Cravatte S, Delouis JM (2019) SKIM, a candidate satellite mission exploring global ocean currents and waves. Front Mar Sci 6(209):1–8. https://doi.org/10.3389/fmars.2019.00209
Bajo M, De Biasio F, Umgiesser G, Vignudelli S, Zecchetto S (2017) Impact of using scatterometer and altimeter data on storm surge forecasting. Ocean Model 113:85–94. https://doi.org/10.1016/j.ocemod.2017.03.014)
Benveniste J, Cazenave A, Vignudelli S, Fenoglio-Marc L, Shah R, Almar R, Andersen O, Birol F, Bonnefond P, Bouffard J, Calafat F, Cardellach E, Cipollini P, Dufau C, Fernandes J, Garrison J, Frappart F, Gommenginger C, Han G, Høyer JL, Kourafalou V, Le Cozannet G, Leuliette E, Li Z, Loisel H, Madsen KS, Marcos M, Melet A, Meyssignac B, Passaro M, Pasqual A, Passaro M, Ribo S, Scharroo R, Song T, Speich S, Wilkin J, Woodworth P, Wöppelmann G (2019) Requirements for a coastal hazard observing system, OceanObs’19 community white paper. Front Mar Sci J Spec Sect Coast Ocean Process 6:348. https://doi.org/10.3389/fmars.2019.00348
Berry PAM, Freeman JA, Smith RG (2010) An enhanced ocean and coastal zone retracking technique for gravity field computation. In: Mertikas SP (ed) Gravity, geoid and Earth observation International Association of Geodesy Symposia, vol 135. Springer, Berlin, pp 213–220. https://doi.org/10.1007/978-3-642-10634-7_28
Birgiel E, Ellmann A, Delpeche-Ellmann N (2018) Examining the performance of the Sentinel-3 coastal altimetry in the Baltic Sea using a regional high-resolution geoid model. In: Proceedings of 2018 Baltic geodetic congress (BGC Geomatics), Olsztyn, Poland, 21–23 June 2018. https://doi.org/10.1109/bgc-geomatics.2018.00043
Birol F, Roblou L, Lyard F, Llovel W, Durand F, Renault L, Dewitte R, Morrow R, Ménard Y (2006) Towards using satellite altimetry for the observation of coastal dynamics. In: Danesy D (ed) Proceedings of 15 years of progress in radar altimetry joint ESA-CNES symposium, Venice, Italy, 13–18 March 2006, ESA SP-614. ISBN: 92-9092-925-1
Birol F, Fuller N, Lyard F, Cancet M, Nino F, Delebecque C, Fleury S, Toublanc F, Melet A, Saraceno M, Léger F (2017) Coastal applications from nadir altimetry: example of the X-TRACK regional products. Adv Space Res 59(4):936–953. https://doi.org/10.1016/j.asr.2016.11.005
Bonnefond P, Verron J, Aublanc J, Babu KN, Bergé-Nguyen M, Cancet M, Chaudhary A, Crétaux JF, Frappart F, Haines BJ, Laurain O, Ollivier A, Poisson JC, Prandi P, Sharma R, Thibaut P, Watson C (2018) The benefits of the Ka-band as evidenced from the SARAL/Altika altimetric mission: quality assessment and unique characteristics of Altika data. Remote Sens 10(1):83. https://doi.org/10.3390/rs10010083
Boy F, Desjonquères J-D, Picot N, Moreau T, Raynal M (2017) CryoSat-2 SAR-mode over oceans: processing methods, global assessment, and benefits. IEEE Trans Geosci Remote Sens 55(1):148–158. https://doi.org/10.1109/TGRS.2016.2601958
Brown G (1977) The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag 25(1):67–74. https://doi.org/10.1109/TAP.1977.1141536
Brown S (2010) A novel near-land radiometer wet path-delay retrieval algorithm: application to the Jason-2/OSTM advanced microwave radiometer. IEEE Trans Geosci Remote Sens 48(4):1986–1992. https://doi.org/10.1109/TGRS.2009.2037220
Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations. Geophys Res Lett. https://doi.org/10.1029/2002gl016473
Carrere L, Faugère Y, Ablain M (2016) Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis. Ocean Sci 12:825–842. https://doi.org/10.5194/os-12-825-2016
Cazenave A, Palanisamy H, Ablain M (2018) Contemporary sea level changes from satellite altimetry: what have we learned? What are the new challenges? Adv Space Res 62(7):1639–1653. https://doi.org/10.1016/j.asr.2018.07.017
Chao Y, Farrara JD, Zhang H, Zhang YJ, Atelijevich E, Chai F, Davis CO, Dugdale R, Wilkerson F (2017) Development, implementation, and validation of a modeling system for the San Francisco Bay and Estuary. Estuar Coast Shelf Sci 194:40–56. https://doi.org/10.1016/j.ecss.2017.06.005
Cipollini P, Vignudelli S, Benveniste J (2014) The coastal zone: a mission target for satellite altimeters. EOS Trans AGU 95(8):72. https://doi.org/10.1002/2014EO080006
Cipollini P, Calafat FM, Jevrejeva S, Melet A, Prandi P (2017a) Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surv Geophys 38:33–57. https://doi.org/10.1007/s10712-016-9392-0
Cipollini P, Benveniste J, Birol F, Fernandes MJ, Obligis E, Passaro M, Strub PT, Valladeau G, Vignudelli S, Wilkin J (2017b) Satellite altimetry in coastal regions. In: Stammer D, Cazenave A (eds) Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, FL, pp 343–380
Clerc S, O’ Mahony C, Mangin A, Datcu M, Vignudelli S, Illuzzi D, Craciunescu V, Leone R, Campbell G (2016) New perspectives for the observation of coastal zones with the Coastal Thematic Exploitation Platform. In: Proceedings of European Space Agency living planet symposium, 9–13 May 2016, Prague, Czech Republic, ESA SP 740, August 2016
Cotton PD, Garcia PN, Cancet M, Andersen O, Stenseng L, Martin F, Cipollini P, Calafat FM, Passaro M, Ambrózio A, Benveniste J (2016) Improved oceanographic measurements with cryosat sar altimetry: application to the coastal zone and arctic. In: Proceedings of European Space Agency living planet symposium, 9–13 May 2016, Prague, Czech Republic, ESA SP 740, August 2016
Deng X, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res Oceans. https://doi.org/10.1029/2005jc003039
Desai S (2018) Surface water and ocean topography mission (SWOT) project. Science requirements doc., revision B. California Institute of Technology Jet Propulsion Laboratory Publ. JPL D-61923
Desjonquères J, Carayon G, Steunou N, Lambin J (2010) Poseidon-3 radar altimeter: new modes and in-flight performances. Mar Geod 33(Suppl.):57–79. https://doi.org/10.1080/01490419.2010.488970
Desportes C, Obligis E, Eymard L (2007) On the wet tropospheric correction for altimetry in coastal regions. IEEE Trans Geosci Remote Sens 45(7):2139–2149. https://doi.org/10.1109/TGRS.2006.888967
Dinardo S, Fenoglio-Marc L, Buchhaupt C, Becker M, Scharroo R, Fernandes MJ, Benveniste J (2018) Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Adv Space Res 62(6):1371–1404. https://doi.org/10.1016/j.asr.2017.12.018
Dong C, Xu G, Han G, Chen N, He Y, Chen D (2018) Identification of tidal mixing fronts from high-resolution along-track altimetry data. Remote Sens Environ 209:489–496. https://doi.org/10.1016/j.rse.2018.02.047
Durand F, Piecuch CG, Becker M, Papa F, Raju SV, Khan JU, Ponte RM (2019) Impact of continental freshwater runoff on coastal sea level. Surv Geophys. https://doi.org/10.1007/s10712-019-09536-w
Egido A, Smith WH (2017) Fully focused SAR altimetry: theory and applications. IEEE Trans Geosci Remote Sens 55(1):392–406. https://doi.org/10.1109/TGRS.2016.2607122
Emery KO, Aubrey DG (eds) (1991) Sea levels, land levels, and tide gauges. Springer, Berlin. https://doi.org/10.1007/978-1-4613-9101-2
Fenoglio-Marc L, Dinardo S, Scharroo R, Roland A, Sikiric MD, Lucas B, Becker M, Benveniste J, Weiss R (2015) The German bight: a validation of CryoSat-2 altimeter data in SAR mode. Adv Space Res 55(11):2641–2656. https://doi.org/10.1016/j.asr.2015.02.014
Fenoglio-Marc L, Dinardo S, Buchhaupt C, Scharroo R, Becker M, Benveniste J (2019) Calibrating the SAR sea surface heights of CryoSat-2 and Sentinel-3 along the German coasts. In: Proceedings of international association of geodesy symposia. Springer, Berlin. https://doi.org/10.1007/1345_2019_73
Fernandes MJ, Lázaro C (2016) GPD+ wet tropospheric corrections for CryoSat-2 and GFO altimetry missions. Remote Sens 8(10):851. https://doi.org/10.3390/rs8100851
Fernandes MJ, Pires N, Lázaro C, Nunes AL (2013) Tropospheric delays from GNSS for application in coastal altimetry. Adv Space Res 51(8):1352–1368. https://doi.org/10.1016/j.asr.2012.04.025
Fernandes MJ, Lázaro C, Nunes AL, Scharroo R (2014) Atmospheric corrections for altimetry studies over inland water. Remote Sens 6(6):4952–4997. https://doi.org/10.3390/rs6064952
Fernandes MJ, Lázaro C, Ablain M, Pires N (2015) Improved wet path delays for all ESA and reference altimetric missions. Remote Sens Environ 169:50–74. https://doi.org/10.1016/j.rse.2015.07.023
Fu LL, Cazenave A (eds) (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Academic Press, London
Fu L-L, Ubelmann C (2014) On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J Ocean Atmos Technol 31(2):560–568. https://doi.org/10.1175/JTECH-D-13-00109.1
García P, Martin-Puig C, Roca M (2018) SARin mode, and a window delay approach, for coastal altimetry. Adv Space Res 62(6):1358–1370. https://doi.org/10.1016/j.asr.2018.03.015
Gharineiat Z, Deng X (2018) Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast. Adv Space Res 61(10):2540–2554. https://doi.org/10.1016/j.asr.2018.02.038
Gómez-Enri J, Vignudelli S, Quartly G, Gommenginger C, Benveniste J (2009) Bringing satellite radar altimetry closer to shore. In: SPIE (Society of Photo-Optical Instrumentation Engineers) Newsroom, pp 1–3. https://doi.org/10.1117/2.1200908.1797
Gómez-Enri J, Vignudelli S, Quartly GD, Gommenginger CP, Cipollini P, Challenor PG, Benveniste J (2010) Modeling ENVISAT RA-2 waveforms in the coastal zone: case study of calm water contamination. IEEE Geosci Remote Sens Lett 7(3):474–478. https://doi.org/10.1109/LGRS.2009.2039193
Gómez-Enri J, Cipollini P, Passaro M, Vignudelli S, Tejedor B, Coca J (2016) Coastal altimetry products in the strait of Gibraltar. IEEE Trans Geosci Remote Sens 54(9):5455–5466. https://doi.org/10.1109/tgrs.2016.2565472
Gómez-Enri J, Vignudelli S, Cipollini P, Coca J, González CJ (2018) Validation of CryoSat-2 SIRAL sea level data in the eastern continental shelf of the Gulf of Cadiz (Spain). Adv Space Res 62(6):1405–1420. https://doi.org/10.1016/j.asr.2017.10.042
Gómez-Enri J, González CJ, Passaro M, Vignudelli S, Álvarez O, Cipollini P, Mañanes R, Bruno M, Lopez-Carmona P, Izquierdo A (2019a) Wind-induced cross-strait sea level variability in the Strait of Gibraltar using coastal altimetry and in-situ measurements. Remote Sens Environ 221:596–608. https://doi.org/10.1016/j.rse.2018.11.042
Gómez-Enri J, Vignudelli S, Izquierdo A, Passaro M, González C J, Cipollini P, Bruno M, Álvarez O, Mañanes R (2019b) Sea level variability in the Strait of Gibraltar from along-track high spatial resolution altimeter products. In: Proceedings of international association of geodesy symposia—international review workshop on satellite altimetry Cal/Val activities and applications, 23–26 April 2018, Crete, Greece. Springer, Berlin, pp 1–10. https://doi.org/10.1007/1345_2019_54
Guo J, Gao Y, Hwang C, Sun J (2010) A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans. Sci China Earth Sci 53(4):610–616. https://doi.org/10.1007/s11430-009-0171-3
Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C et al (2015) Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun 6:7615. https://doi.org/10.1038/ncomms8615
Hauser D, Tison C, Amiot T, Delaye L, Corcoral N, Castillan P (2017) SWIM: the first spaceborne wave scatterometer. IEEE Trans Geosci Remote Sens 55(5):3000–3014. https://doi.org/10.1109/TGRS.2017.2658672
He L, Li G, Li K, Shu Y (2014) Estimation of regional sea level change in the Pearl River Delta from tide gauge and satellite altimetry data. Estuar Coast Shelf Sci 141:69–77. https://doi.org/10.1016/j.ecss.2014.02.005
Heslop EE, Sánchez-Román A, Pascual A, Rodríguez D, Reeve KA, Faugère Y, Raynal M (2017) Sentinel-3A views ocean variability more accurately at finer resolution. Geophys Res Lett. https://doi.org/10.1002/2017GL076244
Hwang C, Hsu HY, Jang RJ (2002) Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formulae. J Geod 76(8):407–418. https://doi.org/10.1007/s00190-002-0265-6
Idris NH, Deng X (2012) The retracking technique on multi-peak and quasi-specular waveforms for Jason-1 and Jason-2 missions near the coast. Mar Geod 35(sup1):217–237. https://doi.org/10.1080/01490419.2012.718679
Idžanović M, Ophaug V, Andersen OB (2018) Coastal sea level from CryoSat-2 SARIn altimetry in Norway. Adv Space Res 62(6):1344–1357. https://doi.org/10.1016/j.asr.2017.07.043
Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375. https://doi.org/10.1146/annurev.marine.010908.163704
Kummu M, De Moel H, Salvucci G, Viviroli D, Ward PJ, Varis O (2016) Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th–21st centuries. Environ Res Lett 11(3):034010. https://doi.org/10.1088/1748-9326/11/3/034010
Labroue S, Gaspar P, Dorandeu J, Ogor F, Zanife OZ (2006) Overview of the improvements made on the empirical determination of the sea state bias correction. In: Proceedings of 15 years of progress in radar altimetry symposium, Venice, 13–18 March, 2006, ESA SP614
Le Bars Y, Lyard F, Jeandel C, Dardengo L (2010) The AMANDES tidal model for the Amazon estuary and shelf. Ocean Model 31(3):132–149. https://doi.org/10.1016/j.ocemod.2009.11.001
Legeais JF, Ablain M, Zawadzki L, Zuo H, Johannessen JA, Scharffenberg MG, Fenoglio-Marc L, Fernandes J, Andersen OB, Rudenko S, Cipollini P, Quartly GD, Passaro M, Cazenave A, Cipollini P (2018) An improved and homogeneous altimeter sea level record from the ESA climate change initiative. Earth Syst Sci Data 10:281–301. https://doi.org/10.5194/essd-10-281-2018
Lillibridge J, Lin M, Shum CK (2013) Hurricane Sandy storm surge measured by satellite altimetry. Oceanography 26(2):8–9. https://doi.org/10.5670/oceanog.2013.18
Madsen KS, Hoyer JL, Fu W, Donlon C (2015) Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea. J Geophys Res Oceans 120(9):6405–6418. https://doi.org/10.1002/2015JC011070
Maraldi C, Galton-Fenzi B, Lyard F, Testut L, Coleman R (2007) Barotropic tides of the southern Indian Ocean and the Amery Ice Shelf cavity. Geophys Res Lett. https://doi.org/10.1029/2007gl030900
Marcos M, Wöppelmann G, Matthews A, Ponte RM, Birol F, Ardhuin F, Coco G, Santamaría-Gómez A, Ballu V, Testut L, Chambers D, Stopa JE (2019) Coastal sea level and related fields from existing observing systems. Surv Geophys. https://doi.org/10.1007/s10712-019-09513-3
Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding: a global assessment. PLoS ONE 10:e0118571. https://doi.org/10.1371/journal.pone.0118571
Obligis E, Desportes C, Eymard L, Fernandes ML, Lázaro C, Nunes AL (2011) Tropospheric corrections for coastal altimetry. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 147–176. https://doi.org/10.1007/978-3-642-12796-0_6
Pairaud IL, Lyard F, Auclair F, Letellier T, Marsaleix P (2008) Dynamics of the semi-diurnal and quarter-diurnal internal tides in the Bay of Biscay. Part 1: barotropic tides. Cont Shelf Res 28(10):1294–1315. https://doi.org/10.1016/j.csr.2008.03.004
Passaro M, Cipollini P, Vignudelli S, Quartly GD, Snaith HM (2014) ALES: a multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens Environ 145:173–189. https://doi.org/10.1016/j.rse.2014.02.008
Passaro M, Cipollini P, Benveniste J (2015) Annual sea level variability of the coastal ocean: the Baltic Sea-North Sea transition zone. J Geophys Res Oceans 120(4):3061–3078. https://doi.org/10.1002/2014JC010510
Passaro M, Dinardo S, Quartly GD, Snaith HM, Benveniste J, Cipollini P, Lucas B (2016). Cross-calibrating ALES Envisat and CryoSat-2 Delay–Doppler: a coastal altimetry study in the Indonesian Seas. Adv Space Res 58(3):289–303
Passaro M, Nadzir ZA, Quartly GD (2018) Improving the precision of sea level data from satellite altimetry with high-frequency and regional sea state bias corrections. Remote Sens Environ 18:245–254. https://doi.org/10.1016/j.rse.2018.09.007
Peng F, Deng X (2018) Validation of improved significant wave heights from the Brown-Peaky (BP) retracker along the east coast of Australia. Remote Sens 10(7):1072. https://doi.org/10.3390/rs10071072
Piccioni G, Dettmering D, Passaro M, Schwatke C, Bosch W, Seitz F (2018) Coastal improvements for tide models: the impact of ALES retracker. Remote Sens 10(5):700
Piecuch CG, Bittermann K, Kemp AC, Ponte RM, Little CM, Engelhart SE, Lentz SJ (2018) River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1805428115
Pires N, Fernandes MJ, Gommenginger C, Scharroo R (2016) A conceptually simple modeling approach for Jason-1 sea state bias correction based on 3 parameters exclusively derived from altimetric information. Remote Sens 8(7):576. https://doi.org/10.3390/rs8070576
Pires N, Fernandes MJ, Gommenginger C, Scharroo R (2018) Improved sea state bias estimation for altimeter reference missions with altimeter-only three-parameter models. IEEE Trans Geosci Remote Sens 99:1–15. https://doi.org/10.1109/TGRS.2018.2866773
Ponte R, Carson M, Cirano M, Domingues C, Jevrejeva S, Marcos M, Mitchum G, Van de Wal RSW, Woodworth PL, Ablain M, Ardhuin F, Ballu V, Becker M, Benveniste J, Birol F, Bradshaw E, Cazenave A, Demey-Fremaux P, Durand F, Ezer T, Fu LL, Fukumori I, Gordon K, Gravelle M, Griffies SM, Han W, Hibbert A, Hughes CW, Idier D, Kourafalou VH, Little CM, Matthews A, Melet A, Merrifield M, Meyssignac B, Minobe S, Penduff T, Picot N, Piecuch C, Ray RD, Richards L, Santamaria- Gómez A, Stammer D, Staneva J, Testut L, Thompson K, Thompson P, Vignudelli S, Williams J, Williams SDP, Wöppelmann G, Zanna L, Zhang X (2019) Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level, OceanObs’19 community white paper. Front Mar Sci J Spec Sect Coast Ocean Process. https://doi.org/10.3389/fmars.2019.00437
Pujol MI, Schaeffer P, Faugère Y, Raynal M, Dibarboure G, Picot N (2018) Gauging the improvement of recent mean sea surface models: a new approach for identifying and quantifying their errors. J Geophys Res Oceans 123(8):5889–5911. https://doi.org/10.1029/2017JC013503
Qiu B, Chen S, Klein P, Wang J, Fu L-L, Menemenlis D (2018) Seasonality in transition scale from balanced to unbalanced motions in the world ocean. J Phys Oceanogr 48:591–605. https://doi.org/10.1175/JPO-D-17-0169.1
Quartly GD (2010) Hyperbolic retracker: removing bright target artefacts from altimetric waveform data. In: Proceedings of living planet symposium 2010, Bergen, Norway, 28 June–2 July 2007, ESA SP-686, ESA Publication, SP-686
Ray RD, Egbert GD (2017) Tides and satellite altimetry. In situ observations needed to complement, validate, and interpret satellite altimetry. In: Stammer D, Cazenave A (eds) Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, FL, pp 427–458
Ray RD, Egbert GD, Erofeeva SY (2011) Tide predictions in shelf and coastal waters: status and prospects. In: Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 191–216. https://doi.org/10.1007/978-3-642-12796-0_8
Raynal M, Labroue S, Moreau T, Boy F, Picot N (2018) From conventional to Delay Doppler altimetry: a demonstration of continuity and improvements with the Cryosat-2 mission. Adv Space Res 62(6):1564–1575. https://doi.org/10.1016/j.asr.2018.01.006
Restano M, Passaro M, Benveniste J (2018) New achievements in coastal altimetry. Eos. https://doi.org/10.1029/2018EO106087
Roblou L, Lamouroux J, Bouffard J, Lyard F, Le Hénaff M, Lombard A, Marsaleix P, De Mey P, Birol F (2011) Post-processing altimeter data towards coastal applications and integration into coastal models. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 217–246. https://doi.org/10.1007/978-3-642-12796-0_9
Roca M, Laxon S, Zeli C (2009) The EnviSat-RA2 instrument design and tracking performance. IEEE Trans Geosci Remote Sens 47:3489–3506. https://doi.org/10.1109/TGRS.2009.2020793
Rodríguez E (2016) Surface water and ocean topography mission project. Science requirements doc., revision A. California Institute of Technology Jet Propulsion Laboratory Publ. JPL D-61923
Roemmich D, Woodworth P, Jevrejeva S, Purkey S, Lankhorst M, Send U, Nikolai Maximenko N (2017) In situ observations needed to complement, validate, and interpret satellite altimetry. In: Stammer D, Cazenave A (eds) Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, FL, pp 113–147
Roscher R, Uebbing B, Kusche J (2017) STAR: spatio-temporal altimeter waveform retracking using sparse representation and conditional random fields. Remote Sens Environ 201:148–164. https://doi.org/10.1016/j.rse.2017.07.024
Scharroo R, Leuliette EW, Lillibridge JL, Byrne D, Naeije MC, Mitchum GT (2013) RADS: consistent multi-mission products. In: Proceedings of 20 years of progress in radar altimetry symposium, Venice, Italy, 24–29 September 2012, ESA SP-710. https://doi.org/10.5270/esa.sp-710.altimetry2012
Stammer D, Cazenave A (2017) Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, FL, p 670
Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrère L, Cheng Y, Chinn DS, Dushaw BD, Egbert GD, Erofeeva SY, Fok HS, Green JAM, Griffiths S, King MA, Lapin V, Lemoine FG, Luthcke SB, Lyard F, Morison J, Müller M, Padman L, Richman JG, Shriver JF, Shum CK, Taguchi E, Yi Y (2014) Accuracy assessment of global barotropic ocean tide models. Rev Geophys 52(3):243–282. https://doi.org/10.1002/2014RG000450
Toublanc F, Ayoub NK, Lyard F, Marsaleix P, Allain DJ (2018) Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay. Ocean Model 124:16–32. https://doi.org/10.1016/j.ocemod.2018.02.001
Tran N, Vandemark D, Chapron B, Labroue S, Feng H, Beckley B, Vincent P (2006) New models for satellite altimeter sea state bias correction developed using global wave model data. J Geophys Res 111:C09009. https://doi.org/10.1029/2005JC003406
Tran N, Labroue S, Philipps S, Bronner E, Picot N (2010) Overview and update of the sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Mar Geod 33:348. https://doi.org/10.1080/01490419.2010.487788
Troupin C, Pascual A, Valladeau G, Pujol I, Lana A, Heslop E, Ruiz S, Torner M, Picot N, Tintoré J (2015) Illustration of the emerging capabilities of SARAL/AltiKa in the coastal zone using a multi-platform approach. Adv Space Res 55(1):51–59. https://doi.org/10.1016/j.asr.2014.09.011
Valladeau G, Thibaut P, Picard B, Poisson JC, Tran N, Picot N, Guillot A (2015) Using SARAL/AltiKa to improve Ka-band altimeter measurements for coastal zones, hydrology and ice: the PEACHI prototype. Mar Geod 38(sup1):124–142. https://doi.org/10.1080/01490419.2015.1020176
Verron J, Bonnefond P, Aouf L, Birol F, Bhowmick SA, Calmant S, Conchy T, Crétaux J-F, Dibarboure G, Dubey AK, Faugère Y, Guerreiro K, Gupta PK, Hamon M, Jebri F, Kumar R, Morrow R, Pascual A, Pujol M-I, Rémy E, Rémy F, Smith WHF, Tournadre J, Vergara O (2018) The benefits of the Ka-band as evidenced from the SARAL/AltiKa altimetric mission: scientific applications. Remote Sens 10:163. https://doi.org/10.3390/rs10020163
Vieira T, Fernandes MJ, Lázaro C (2018) Independent assessment of on-board microwave radiometer measurements in coastal zones using tropospheric delays from GNSS. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2018.2869258
Vignudelli S, Cipollini P, Roblou L, Lyard F, Gasparini GP, Manzella G, Astraldi M (2005) Improved satellite altimetry in coastal systems: case study of the Corsica Channel (Mediterranean Sea). Geophys Res Lett 32:L07608. https://doi.org/10.1029/2005GL022602
Vignudelli S, Snaith HM, Lyard F, Cipollini P, Birol F, Bouffard J, Roblou L (2006) Satellite radar altimetry from open ocean to coasts: challenges and perspectives. In: Proceedings of 5th Society of Photo-Optical Instrumentation Engineers (SPIE) Asia-Pacific remote sensing symposium, Panaji, Goa, India, 13–17 November 2006, 6406, 64060L, pp 1–12. https://doi.org/10.1117/12.694024
Vignudelli S, Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) (2011a) Coastal altimetry. Springer, Berlin. https://doi.org/10.1007/978-3-642-12796-0
Vignudelli S, Cipollini P, Gommenginger C, Snaith H, Coelho H, Fernandes J, Lazaro C, Nunes A, Gómez-Enri J, Martin-Puig C, Woodworth P, Dinardo S, Benveniste J (2011b) Satellite altimetry: sailing closer to the coast. In: Gower J, Levy G, Heron M, Tang D, Katsaros K, Singh R (eds) Remote sensing of the changing oceans. Springer, Berlin, pp 217–238. https://doi.org/10.1007/978-3-642-16541-2_11
Vignudelli S, De Basio F, Scozzari A, Zecchetto S, Papa A (2019) Sea level trends and variability in the Adriatic Sea and around Venice. In: Proceedings of international association of geodesy symposia—international review workshop on satellite altimetry Cal/Val activities and applications, 23–26 April 2018, Crete, Greece, 1–10, Springer, Berlin. https://doi.org/10.1007/1345_2018_51
Vu PL, Frappart F, Darrozes J, Marieu V, Blarel F, Ramillien G, Bonnefond P, Birol F (2018) Multi-satellite altimeter validation along the French Atlantic Coast in the Southern Bay of Biscay from ERS-2 to SARAL. Remote Sens 10(1):93. https://doi.org/10.3390/rs10010093
Wang J, Fu LL, Torres HG, Chen S, Qiu B, Menemenlis D (2019) On the spatial scale to be resolved by the surface water and ocean topography Ka-band fadar interferometer. J Atmos Ocean Technol 36(1):87–99. https://doi.org/10.1175/JTECH-D-18-0119.1
Woodworth PL, Hunter JR, Marcos M, Caldwell P, Menéndez M, Haigh I (2016) Towards a global higher-frequency sea level dataset. Geosci Data J 3(2):50–59. https://doi.org/10.5285/3b602f74-8374-1e90-e053-6c86abc08d39
Woodworth PL, Wöppelmann G, Marcos M, Gravelle M, Bingley RM (2017) Why we must tie satellite positioning to tide gauge data. Eos 98(4):13–15. https://doi.org/10.1029/2017EO064037
Wright LD, Nichols CR (2018) Tomorrow’s coasts: complex and impermanent, vol 27. Coastal research library. Springer, Berlin. https://doi.org/10.1007/978-3-319-75453-6
Wright LD, Syvitski JPM, Nichols CR (2018) Sea level rise: recent trends and future projections. In: Wright LD, Nichols CR (eds) Tomorrow’s coasts: complex and impermanent. Springer, Berlin. https://doi.org/10.1007/978-3-319-75453-6
Xu XY, Birol F, Cazenave A (2018) Evaluation of coastal sea level offshore Hong Kong from Jason-2 altimetry. Remote Sens 10(2):282. https://doi.org/10.3390/rs10020282
Yang Y, Hwang C, Hsu HJ, Dongchen E, Wang H (2011) A subwaveform threshold retracker for ERS-1 altimetry: a case study in the Antarctic Ocean. Comput Geosci 41:88–98. https://doi.org/10.1016/j.cageo.2011.08.017
Yang L, Lin M, Liu Q, Pan D (2012) A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction. Int J Remote Sens 33(24):7806–7819. https://doi.org/10.1080/01431161.2012.701350
Acknowledgements
Thanks go to the European Space Agency that supported the development and exploitation of coastal altimetry with various scientific projects (COASTALT, Contract No. 21201/08/I-LG; eSurge Venice, Contract No. 4000104485/11/I-LG; C-TEP, Contract No. C_TEP.1313.ACR-CNR.i1r0; CCI+ Bridging phase, Contract No. 4000109872/13/I-NB; SCOOP, Contract No. 4000115385/15/I-BG and that has organized and financially supported the gathering of the Coastal Altimetry Community with regular Coastal Altimetry Workshops in the past 10 years.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Vignudelli, S., Birol, F., Benveniste, J. et al. Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Surv Geophys 40, 1319–1349 (2019). https://doi.org/10.1007/s10712-019-09569-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10712-019-09569-1