[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024232033A1 - 炭素繊維束及び炭素繊維束の製造方法 - Google Patents

炭素繊維束及び炭素繊維束の製造方法 Download PDF

Info

Publication number
WO2024232033A1
WO2024232033A1 PCT/JP2023/017522 JP2023017522W WO2024232033A1 WO 2024232033 A1 WO2024232033 A1 WO 2024232033A1 JP 2023017522 W JP2023017522 W JP 2023017522W WO 2024232033 A1 WO2024232033 A1 WO 2024232033A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber bundle
less
strand
flame
Prior art date
Application number
PCT/JP2023/017522
Other languages
English (en)
French (fr)
Inventor
直正 松山
究 太田
益豊 濱田
宏子 松村
博己 濱本
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to PCT/JP2023/017522 priority Critical patent/WO2024232033A1/ja
Publication of WO2024232033A1 publication Critical patent/WO2024232033A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles

Definitions

  • the present invention relates to carbon fiber bundles and a method for producing carbon fiber bundles.
  • carbon fibers As a reinforcing material and compound them with resin.
  • carbon fiber has excellent specific strength and specific elastic modulus, and is lightweight, so it is used as a reinforcing fiber for high-performance resins in a wide range of applications, including aerospace and automotive applications, as well as traditional sports and general industrial applications.
  • advantages of carbon fiber reinforced composite materials which are obtained by integrating carbon fiber as a reinforcing fiber with a matrix resin, have been increasing, and there is a growing demand for improved performance of carbon fiber reinforced composite materials, especially in automotive and aerospace applications.
  • These carbon fiber reinforced composite materials are formed, for example, from prepregs, which are intermediate products in which carbon fibers are impregnated with a matrix resin, through molding and processing steps such as heating and pressing.
  • prepregs which are intermediate products in which carbon fibers are impregnated with a matrix resin
  • the diameter of carbon fiber single fiber has been narrowed to improve the strand strength and strand modulus of carbon fiber itself.
  • Patent Document 1 describes a carbon fiber that is produced by twisting a fiber bundle in a flame-resistant process in the course of producing the carbon fiber bundle, thereby achieving both excellent strand modulus and moldability into a composite material, and that is easy to maintain the fiber length even when used as a discontinuous fiber.
  • Patent Document 2 describes a carbon fiber bundle that achieves both a high strand modulus and a high compressive strength of the carbon fiber composite material by carbonizing the bundle under a high drawing tension in the carbonization step.
  • Patent Document 3 describes a technique for increasing the strand strength and adhesive strength of carbon fibers by subjecting the carbon fibers to an electrolytic surface treatment in an electrolyte solution having a nitrate ion concentration within a specific range.
  • Patent Documents 1 to 3 have the following problems.
  • the carbon fiber bundle described in Patent Document 1 is manufactured by adding twisting, which not only reduces productivity due to an increase in the number of steps, but also causes excessive bundling in the fiber bundle, and the carbon fibers remain in a helical shape even after untwisting after baking. Therefore, if the long fibers are used as they are, the resin impregnation may be insufficient, and when the carbon fibers are made into a composite material with a matrix resin, the carbon fibers are prone to buckling when compressed in the fiber axis direction, resulting in low compressive strength in the fiber axis direction.
  • the carbon fiber bundle described in Patent Document 2 has a relatively large single fiber diameter.
  • the carbon fiber having a smaller single fiber diameter is subjected to a strong entanglement treatment of the carbon fiber precursor fiber bundle in order to perform the carbonization treatment at a high drawing tension. Since the strong entanglement treatment improves the bundle strength of the fiber bundle, the generation of fluff is small even if the drawing tension in the carbonization treatment is increased. However, since the obtained carbon fiber bundle is strongly entangled, the resin impregnation is insufficient.
  • carbon fibers having a larger single fiber diameter are twisted into a fiber bundle so that they can be carbonized under a high drawing tension, resulting in carbon fibers with high strand strength and strand modulus.
  • the carbon fiber described in Patent Document 3 includes the results of measurements of strand strength and strand elastic modulus, but because these measurements were made using the old JIS method (JIS R-7601), the values are higher than those of the current JIS method (JIS R-7608:2007). Furthermore, there is no mention of a material with a good balance between strand strength and strand elastic modulus, as in the present invention.
  • the present invention was made to solve these problems, and aims to provide a carbon fiber bundle and a manufacturing method thereof that has well-balanced physical properties, including high strand modulus and strand strength, even when the average diameter of the carbon fiber single fibers is large.
  • the present invention has the following aspects.
  • [5] The carbon fiber bundle according to any one of [1] to [4], wherein the product of strand strength (unit: GPa) and strand modulus (unit: GPa) is 1650 or more.
  • [6] The carbon fiber bundle according to any one of [1] to [5], having a strand strength of 4.9 GPa or more and a strand modulus of 385 GPa or more.
  • [7] The carbon fiber bundle according to any one of [1] to [6], wherein the strand elastic modulus is 390 GPa or more and 420 GPa or less.
  • [8] The carbon fiber bundle according to any one of [1] to [7], having a strand strength of 5.4 GPa or more.
  • a method for producing a carbon fiber bundle comprising heating a carbon fiber precursor acrylic fiber bundle in an oxidizing atmosphere to form a flame-resistant fiber bundle, and heating the flame-resistant fiber bundle in a non-oxidizing atmosphere to form a carbon fiber bundle, In the heating in the non-oxidizing atmosphere, the temperature increase rate when increasing the temperature from 1800° C. to 2200° C. is 200 to 500° C./min; A method for producing a carbon fiber bundle, wherein the average diameter of single carbon fibers contained in the obtained carbon fiber bundle is 6.5 ⁇ m or more and 8.5 ⁇ m or less. [15] The method for producing a carbon fiber bundle according to [14], wherein the carbon fiber precursor acrylic fiber bundle and the flame-resistant fiber bundle are heated in an unentangled state.
  • [16] The method for producing a carbon fiber bundle according to [14] or [15], wherein the carbon fiber precursor acrylic fiber bundle and the flame-resistant fiber bundle are heated in a substantially untwisted state.
  • a second drawing step in which the coagulated yarn bundle obtained in the coagulation step is drawn at a draw ratio of 2.0 to 3.2 times in a warm aqueous solution having an organic solvent concentration of 40 to 65 mass % at a temperature of 75° C. or higher to obtain the carbon fiber precursor acrylic fiber bundle.
  • the flame-retardant step is a step of heating the carbon fiber precursor acrylic fiber bundle or the carbon fiber precursor acrylic fiber bundle obtained in the second drawing step in an oxidizing atmosphere having a temperature gradient in an atmospheric temperature range of 220° C. or more and 280° C. or less, at an elongation rate of 3.0% or more and 8.0% or less, to obtain a flame-retardant fiber bundle having a density of 1.33 g/cm3 or more and 1.36 g/cm3 or less.
  • the present invention it is possible to provide a carbon fiber bundle having well-balanced physical properties, including high strand modulus and strand strength, even when the average diameter of the carbon fiber single fibers is large, and a production method thereof. According to the present invention, it is possible to obtain a carbon fiber bundle suitable for a thin carbon fiber reinforced composite material having excellent bending strength.
  • FIG. 2 is an explanatory diagram illustrating a method for measuring the ultrasonic elastic modulus of a carbon fiber bundle.
  • the carbon fiber bundle of the present invention has an average diameter of the carbon fiber single fibers of 5.7 ⁇ m or more and 6.5 ⁇ m or less, is substantially untwisted, has a strand strength of 4.7 GPa or more, and has a strand modulus of elasticity of 320 GPa or more.
  • the term "carbon fiber bundle” refers to a bundle of multiple carbon fiber filaments.
  • the average diameter of the carbon fiber single fibers is 5.7 ⁇ m or more and 6.5 ⁇ m or less.
  • the fiber diameter 5.7 ⁇ m or more the gaps between the fibers can be made larger, making it easier to uniformly impregnate the resin, and making it possible to suppress the generation of voids in the carbon fiber reinforced composite material obtained by using the carbon fiber bundle of the present invention.
  • the fiber diameter 6.5 ⁇ m or less the cross-sectional double structure is less likely to become noticeable in the flame-proofing step (step (3)) described below, and a carbon fiber bundle with high strand strength can be easily obtained without decreasing the strand elastic modulus.
  • the fiber diameter is preferably 5.7 ⁇ m or more and less than 6.5 ⁇ m, more preferably 5.8 ⁇ m or more and 6.4 ⁇ m or less, and even more preferably 5.9 ⁇ m or more and 6.3 ⁇ m or less.
  • the conditions for measuring the average diameter of the carbon fiber single fibers are as described in the Examples section below.
  • the strand strength is a strand tensile strength measured by a tensile test
  • the strand modulus is a strand tensile modulus measured by a tensile test.
  • the carbon fiber bundle of the present invention is substantially untwisted.
  • substantially no twist means that there is no twist in the fiber bundle, or there is localized twist, but there is an equal amount of S twist and Z twist.
  • the net twist number in the entire carbonization process is 0.5 turns/m or less.
  • the carbon fiber bundles are substantially untwisted, the openability of the carbon fiber bundles is good, and the performance of the obtained carbon fiber reinforced composite material is easily improved. It may also include carbon fibers that are sintered in a twisted state and then untwisted.
  • the carbon fibers when untwisted, the carbon fibers are in a helical state, and when they are made into a composite material with a matrix resin, they tend to buckle when compressed, and the compressive strength in the fiber direction tends to be low. From this point of view, it is preferable that the carbon fibers have straightness.
  • the compressive strength in the fiber direction can be measured using the following method.
  • prepreg a unidirectionally oriented prepreg with a resin content of approximately 33% by mass and a carbon fiber density of 125 g/ m2 .
  • test pieces with a width of 12.7 mm, a length of 80 mm, and a thickness of 1 mm are prepared from the obtained unidirectional laminate.
  • the length direction of the test piece is the 0° direction of the fiber.
  • the obtained test pieces are measured for compressive strength and compressive modulus in the fiber axis direction using an INSTRON 5882 measuring machine equipped with a 100 kN load cell in accordance with SACMA SRM 1R under conditions of a temperature of 23° C., a humidity of 50% RH, and a crosshead speed of 1.27 mm/min, and the measured values are converted to Vf (fiber volume content) of 56%.
  • the six test pieces are similarly measured, and the average value is calculated. The measurement is performed by adhering tabs cut from the same plate to each test piece.
  • the carbon fiber bundle of the present invention has a strand strength of 4.7 GPa or more and a strand modulus of elasticity of 320 GPa or more.
  • a carbon fiber bundle having a good balance between the strand strength and the strand modulus can be obtained, making it easier to obtain a carbon fiber reinforced composite material having excellent mechanical properties.
  • the lower limit of the strand strength is preferably 4.9 GPa or more, and more preferably 5.1 GPa or more.
  • the upper limit of the strand strength is not particularly limited, but is preferably 6.5 GPa or less, and more preferably 6.0 GPa or less, in consideration of the balance with the strand elastic modulus.
  • the upper and lower limits can be combined in any manner, and may be, for example, 4.7 GPa or more and 6.5 GPa or less, 4.9 GPa or more and 6.5 GPa or less, or 5.1 GPa or more and 6.0 GPa or less.
  • the lower limit of the strand elastic modulus is preferably 370 GPa or more, more preferably 380 GPa or more, and even more preferably 390 GPa or more.
  • the upper limit of the strand elastic modulus is not particularly limited, but in terms of the balance with the strand strength, it is preferably 450 GPa or less, and more preferably 420 GPa or less.
  • the upper and lower limits can be combined in any manner.
  • the elastic modulus may be 320 GPa or more and 450 GPa or less, 370 GPa or more and 450 GPa or less, 380 GPa or more and 420 GPa or less, or 390 GPa or more and 420 GPa or less.
  • the conditions for measuring the strand strength and strand modulus are as described in the Examples section below.
  • the carbon fiber bundle of the present invention is preferably unentangled.
  • the term "entanglement” used here refers to intentional entanglement using an entanglement device. Carbon fiber that naturally entangles single fibers during the manufacturing process is considered to be non-entangled. When the carbon fiber bundles are unentangled, the carbon fiber bundles have good openability when made into a carbon fiber reinforced composite material, and the impregnation with the matrix resin tends to be good, so that a carbon fiber reinforced composite material having excellent mechanical properties is likely to be obtained.
  • the hook drop value of the carbon fiber bundle is 500 mm or more, and preferably 1000 mm or more.
  • the hook drop value is measured in the following manner. First, a 2000 mm carbon fiber bundle is arranged vertically and the upper end is fixed. Next, a hook with a total weight of 30 g attached with a weight is inserted into the carbon fiber bundle 1.
  • the hook used here is a hook made by molding a metal wire with a diameter of 1 mm, and the radius of the hook part is 5 mm. Next, the hook is allowed to fall freely while being inserted into the carbon fiber bundle.
  • a carbon fiber bundle is a thread in which a large number of carbon fiber monofilaments are drawn in almost the same direction and integrated with a sizing agent or the like. However, the carbon fiber monofilaments are often entangled with each other at some point. The hook often stops at such a part. Therefore, the distance from the position where the hook is inserted into the carbon fiber bundle to the position where the hook stops can be measured. The falling distance of the hook from the insertion position to the stop position is the hook drop value.
  • the average void length of the carbon fiber single fibers is 22.0 nm or less. If the average void length of the carbon fiber bundle is 22.0 nm or less, the strand strength of the carbon fiber bundle is more likely to be maintained high. From this viewpoint, the average void length is more preferably 21.0 nm or less, and further preferably 19.5 nm or less. Regarding the lower limit of the average void length, if it is 5.0 nm or more, the flexibility of the fiber is easily ensured, and the lower limit of the average void length is more preferably 10 nm or more. The upper and lower limits can be combined in any manner.
  • the thickness may be 5.0 nm or more and 22.0 nm or less, 5.0 nm or more and 21.0 nm or less, or 10 nm or more and 19.5 nm or less.
  • the average void length can be controlled by adjusting the heating temperature and the temperature rise rate when the flame-resistant fiber bundle is heated and carbonized. The conditions for measuring the average void length are as described in the Examples section below.
  • the crystallite size Lc of the carbon fiber single fiber is 3.7 nm or less. If the crystallite size Lc of the carbon fiber bundle is 3.7 nm or less, the formation of defects and the decrease in strand strength of the carbon fiber bundle due to the crystallite size of the carbon fiber becoming too large are easily suppressed. From this viewpoint, the crystallite size Lc is more preferably 3.6 nm or less, and further preferably 3.4 nm or less.
  • the lower limit of the crystallite size Lc is preferably 3.0 nm or more, more preferably 3.1 nm or more, in order to obtain a high strand modulus. The upper and lower limits can be combined in any manner.
  • the thickness may be 3.0 nm or more and 3.7 nm or less, 3.0 nm or more and 3.6 nm or less, or 3.1 nm or more and 3.4 nm or less.
  • the crystal size Lc can be controlled by adjusting the heating temperature and the temperature rise rate when the flame-resistant fiber bundle is heated for carbonization treatment. The conditions for measuring the crystal size Lc are as described in the Examples section below.
  • the carbon fiber bundle of the present invention preferably has a product of strand strength (unit: GPa) and strand modulus (unit: GPa) of 1650 or more.
  • a product of strand strength and the strand modulus By setting the product of the strand strength and the strand modulus to be 1650 or more, a carbon fiber bundle having a better balance between the strand strength and the strand modulus can be obtained, and a carbon fiber reinforced composite material having better mechanical properties can be easily obtained.
  • the product of the strand strength and the strand modulus is more preferably 1700 or more, more preferably 1750 or more, and even more preferably 2000 or more.
  • the product of the strand strength and the strand modulus is preferably 3000 or less, and more preferably 2500 or less.
  • the upper and lower limits can be combined in any manner. For example, the range may be 1650 or more and 3000 or less, 1700 or more and 3000 or less, 1750 or more and 2500 or less, or 2000 or more and 2500 or
  • the carbon fiber bundle of the present invention preferably has a strand strength of 4.9 GPa or more from the viewpoint of the performance of the resulting carbon fiber reinforced composite material.
  • the carbon fiber bundle of the present invention preferably has a strand modulus of 385 GPa or more from the viewpoint of the performance of the resulting carbon fiber reinforced composite material.
  • the carbon fiber bundle of the present invention may have a strand strength of 4.9 GPa or more and a strand modulus of 385 GPa or more from the viewpoint of the performance of the resulting carbon fiber reinforced composite material.
  • the carbon fiber bundle of the present invention preferably has a strand modulus of elasticity of 390 GPa or more and 420 GPa or less.
  • a strand modulus of elasticity of 390 GPa or more and 420 GPa or less.
  • the performance of the obtained carbon fiber reinforced composite material can be improved.
  • the graphite crystal size of the carbon fiber bundle can be prevented from becoming excessively large, and a decrease in compressive strength in the fiber axis direction can be prevented, so that the performance of the obtained carbon fiber reinforced composite material can be improved.
  • the carbon fiber bundle of the present invention preferably has a strand strength of 5.4 GPa or more.
  • the strand strength of the carbon fiber bundle of the present invention is 4.7 GPa or more, preferably 4.9 GPa or more, more preferably 5.0 GPa or more, even more preferably 5.4 GPa or more, and particularly preferably 5.5 GPa or more.
  • the strand strength of the carbon fiber bundle is high, graphite crystals develop, and the compressive strength in the fiber axis direction tends to decrease.
  • the strand strength of the carbon fiber bundle is preferably 8.0 GPa or less, more preferably 7.5 GPa or less, even more preferably 7.0 GPa or less, particularly preferably 6.5 Pa or less, and most preferably 6.0 Pa or less.
  • the upper and lower limits can be combined in any manner.
  • the pressure may be 4.7 GPa or more and 8.0 GPa or less, 4.9 GPa or more and 7.5 GPa or less, 5.0 GPa or more and 7.0 GPa or less, 5.4 GPa or more and 6.5 Pa or less, or 5.5 GPa or more and 6.0 Pa or less.
  • the carbon fiber bundle of the present invention preferably has a knot strength of 400 N/mm2 or more .
  • the knot strength can be an index that reflects the mechanical performance of the fiber bundle in a direction other than the fiber axis direction, and can easily evaluate the performance in a direction perpendicular to the fiber axis.
  • the material is often formed by pseudo-isotropic lamination, which forms a complex stress field. In this case, in addition to tensile stress in the fiber axis direction and compressive stress in the fiber axis direction, stresses other than the fiber axis direction are also generated.
  • the knot strength of the carbon fiber bundle 400 is more preferably 415 N/mm2 or more , and even more preferably 430 N/mm2 or more .
  • the compressive strength in the direction other than the fiber axis direction also increases, and the graphite crystal size tends to become small and the elastic modulus decreases.
  • the knot strength of the carbon fiber bundle is preferably 600 N/mm2 or less , more preferably 550 N/mm2 or less , and even more preferably 500 N/ mm2 or less.
  • the upper and lower limits can be combined in any manner.
  • the strength may be 400 N/mm 2 or more and 600 N/mm 2 or less, 415 N/mm 2 or more and 550 N/mm 2 or less, or 430 N/mm 2 or more and 500 N/mm 2 or less.
  • the conditions for measuring the knot strength are as described in the Examples section below.
  • the fracture surface generation energy is 19 N/m or more.
  • the fracture surface creation energy is determined by forming a hemispherical defect having a predetermined size range on the surface of a single fiber using a laser, breaking the fiber at the site of the hemispherical defect in a tensile test, and then calculating the fracture surface creation energy from the breaking strength of the fiber and the depth of the hemispherical defect using the following Griffith equation (F1).
  • Fracture surface generation energy ⁇ 2 ⁇ C / 2E ... (F1)
  • is the breaking strength
  • E is the ultrasonic elastic modulus of the carbon fiber bundle
  • C is the depth of the hemispherical defect.
  • the fracture surface formation energy is an index of the resistance of carbon fibers to breakage and represents the matrix strength.
  • Carbon fibers are materials that exhibit brittle fracture, and their tensile strength is governed by defects. When carbon fibers have the same defects, the higher the matrix strength, the higher the fracture strength. Therefore, by making the fracture surface formation energy of the carbon fiber bundle 19 N/m or more, it becomes easier to increase the strength without decreasing the elastic modulus of the carbon fiber bundle, and it becomes easier to improve the performance of the resulting carbon fiber reinforced composite material. From these viewpoints, it is more preferable that the fracture surface generation energy of the carbon fiber bundle is 20.5 N/m or more.
  • the fracture surface formation energy of the carbon fiber bundle is preferably 30 N/m or less, and more preferably 25 N/m or less.
  • the upper and lower limits may be combined in any manner.
  • the tension may be 19 N/m or more and 30 N/m or less, or 20.5 N/m or more and 25 N/m or less.
  • the carbon fiber bundle of the present invention preferably has a density of 1.79 g/cm 3 or more. If the density of the carbon fiber bundle is 1.79 g/cm 3 or more, the strand strength and the strand elastic modulus can be easily increased. From this viewpoint, the density of the carbon fiber bundle is more preferably 1.81 g/cm 3 or more, and even more preferably 1.83 g/cm 3 or more. The density of the carbon fiber bundle is preferably 1.90 g/cm 3 or less, more preferably 1.88 g/cm 3 or less, and even more preferably 1.86 g/cm 3 or less.
  • the density of the carbon fiber bundle is 1.90 g/cm 3 or less, it is easy to prevent the graphite crystal size of the carbon fiber bundle from becoming excessively large, and it is easy to prevent a decrease in the compressive strength in the fiber axis direction, so that the performance of the obtained carbon fiber reinforced composite material is easily improved.
  • the upper and lower limits can be combined in any manner.
  • the density may be 1.79 g/cm 3 or more and 1.90 g/cm 3 or less, 1.81 g/cm 3 or more and 1.88 g/cm 3 or less, or 1.83 g/cm 3 or more and 1.86 g/cm 3 or less.
  • the conditions for measuring the density are as described in the Examples section below.
  • the method for producing carbon fibers of the present invention is a method for producing carbon fiber bundles, which comprises heating a carbon fiber precursor acrylic fiber bundle in an oxidizing atmosphere to form a flame-retardant fiber bundle, and heating the obtained flame-retardant fiber bundle in a non-oxidizing atmosphere to form a carbon fiber bundle, wherein, at a temperature for heating in the non-oxidizing atmosphere, the temperature rise rate when the atmospheric temperature is raised from 1800° C. to 2200° C. is 200 to 500° C./min, and the average diameter of the carbon fiber single fibers is 6.5 ⁇ m or more and 8.5 ⁇ m or less.
  • the method for producing carbon fibers of the present invention is a method for producing carbon fiber bundles, comprising heating a carbon fiber precursor acrylic fiber bundle in an oxidizing atmosphere to convert the carbon fiber precursor acrylic fiber bundle into a flame-resistant fiber bundle, and heating the flame-resistant fiber bundle in a non-oxidizing atmosphere to convert the flame-resistant fiber bundle into a carbon fiber bundle, wherein in the heating in the non-oxidizing atmosphere, the heating rate when heating from 1800° C. to 2200° C. is 200 to 500° C./min, and the average diameter of the carbon fiber single fibers contained in the obtained carbon fiber bundle is 6.5 ⁇ m or more and 8.5 ⁇ m or less.
  • Carbon fiber bundles can be produced with high productivity by setting the heating rate at 200° C./min or more when the atmospheric temperature is raised from 1800° C. to 2200° C.
  • the heating rate at 500° C./min or less when the atmospheric temperature is raised from 1800° C. to 2200° C.
  • it becomes easy to suppress a violent decomposition reaction accompanying a sudden temperature rise and it becomes easy to obtain a carbon fiber bundle having high density, strand strength, and knot strength without decreasing the strand modulus of the carbon fiber bundle having an average diameter of single carbon fiber fibers of 6.5 ⁇ m or more and 8.5 ⁇ m or less.
  • the heating rate when the atmospheric temperature is raised from 1800°C to 2200°C is the travel time of the fiber bundle at atmospheric temperatures from 1800°C to 2200°C divided by 400°C, which is the difference between 2200°C and 1800°C.
  • the carbon fiber precursor acrylic fiber bundles and the flame-resistant fiber bundles are heated in an unentangled state.
  • each single fiber of the fiber bundle can be uniformly flame-retarded, and the strand strength can be easily increased.
  • the carbon fiber precursor acrylic fiber bundles and the flame-resistant fiber bundles are heated in a substantially untwisted state.
  • each filament of the fiber bundle can be uniformly flame-retarded, and the strand strength can be easily increased.
  • the method for producing carbon fibers of the present invention preferably includes the following steps (1) to (2).
  • the method for producing carbon fibers of the present invention preferably includes the following steps (3) to (6).
  • the method for producing carbon fibers of the present invention preferably includes the following steps (1) to (6).
  • a coagulation step in which an acrylonitrile-based polymer solution is discharged into the air from a discharge hole by using a dry-wet spinning method, and then coagulated in a coagulation bath containing an aqueous solution of an organic solvent at a temperature of 10° C. or lower and having a concentration of 79.3 mass % or more and 82.0 mass % or less to obtain a coagulated fiber bundle containing the organic solvent.
  • a second drawing step in which the coagulated yarn bundle obtained in the coagulation step (1) is drawn at a draw ratio of 2.0 to 3.2 times in a warm aqueous solution having an organic solvent concentration of 40 to 65 mass % at a temperature of 75° C. or higher to obtain a carbon fiber precursor acrylic fiber bundle.
  • a flame-retardant process in which the carbon fiber precursor acrylic fiber bundle or the carbon fiber precursor acrylic fiber bundle obtained in the second drawing process (2) is heated in an oxidizing atmosphere to obtain a flame-retardant fiber bundle.
  • the coagulation step (1) is a step in which an acrylonitrile-based polymer solution is discharged into the air from a discharge hole by using a dry-wet spinning method, and then coagulated in a coagulation bath containing an aqueous solution (A) having an organic solvent concentration of 79.3 mass % or more and 82.0 mass % or less at a temperature of 10° C. or less to obtain a coagulated fiber bundle containing the organic solvent.
  • the temperature of the coagulation bath i.e., the aqueous solution (A) is not higher than 10° C.
  • the temperature of the aqueous solution (A) is preferably 4° C. or higher, and more preferably 6° C. or higher.
  • the temperature of the aqueous solution (A) may be 4 to 10° C., or 6 to 10° C.
  • the concentration of the organic solvent in the coagulation bath i.e., the aqueous solution (A) is 79.3% by mass or more and 82.0% by mass or less, and preferably 79.8% by mass or more and 81.2% by mass or less, relative to the total mass of the aqueous solution (A).
  • the organic solvent concentration is 79.3% by mass or more and 82.0% by mass or less, it is possible to obtain coagulated yarns that are dense both on the surface and inside, and as a result, it is easy to increase the strand strength and knot strength of the obtained carbon fiber bundle without decreasing the strand modulus of elasticity.
  • Examples of the organic solvent contained in the aqueous solution (A) include dimethylformamide, dimethylacetamide, and dimethylsulfoxide. Among these, dimethylformamide is preferred from the viewpoint of forming a denser structure.
  • the second drawing step (2) is a step of drawing the coagulated yarn bundle obtained in the coagulation step (1) at a temperature of 75° C. or higher in a warm aqueous solution (B) having an organic solvent concentration of 40 mass % or more and 65 mass % or less at a draw ratio of 2.0 times or more and 3.2 times or less to obtain a carbon fiber precursor acrylic fiber bundle.
  • the temperature of the hot aqueous solution (B) is 75° C. or higher, and preferably 85° C. or higher.
  • the temperature of the hot aqueous solution (B) is preferably 98° C. or less, and more preferably 95° C. or less.
  • the upper and lower limits may be combined in any manner.
  • the temperature may be 75° C. or higher and 98° C. or lower, or 85° C. or higher and 95° C. or lower.
  • the concentration of the organic solvent in the hot aqueous solution (B) is from 40% by mass to 65% by mass, and preferably from 50% by mass to 60% by mass, relative to the total mass of the hot aqueous solution (B).
  • Examples of the organic solvent contained in the hot aqueous solution (B) include dimethylformamide, dimethylacetamide, and dimethylsulfoxide. Among these, dimethylformamide is preferred from the viewpoint of forming a denser structure.
  • the stretching ratio in the hot aqueous solution (B) is 2.0 times or more and 3.2 times or less, and preferably 2.7 times or more and 3.0 times or less.
  • the stretching ratio in the hot aqueous solution (B) is 2.0 times or more, and preferably 2.7 times or more and 3.0 times or less.
  • the second drawing step (2) after drawing the coagulated yarn bundle in the hot aqueous solution (B), for example, a step of removing the organic solvent, a step of drawing with hot water, a step of drawing by vaporization with pressurized steam, a step of drawing with dry heat, a step of applying an oil agent, and a step of drying may be appropriately combined to obtain a carbon fiber precursor acrylic fiber.
  • a step of removing the organic solvent for example, a step of drawing with hot water, a step of drawing by vaporization with pressurized steam, a step of drawing with dry heat, a step of applying an oil agent, and a step of drying may be appropriately combined to obtain a carbon fiber precursor acrylic fiber.
  • the organic solvent is removed, and the bundle is shrunk or drawn in hot water (C) having a temperature of 90° C.
  • the second drawing step (2) preferably includes, in order, a step (2-1) of drawing the coagulated yarn bundle in a hot water solution (B) at a draw ratio of 2.0 to 3.2 times, a step (2-2) of removing the organic solvent, a step (2-3) of shrinking or drawing the coagulated yarn bundle in hot water (C) at a temperature of 90° C.
  • the second drawing step (2) may further include a step (2-4) of applying an oil composition. Step (2-4) can be carried out between steps (2-3) and (2-5).
  • Step (2-2) is a step of removing the organic solvent from the coagulated yarn bundle (hereinafter also referred to as the "drawn fiber bundle") after drawing in the warm aqueous solution (B).
  • Any method can be used to remove the organic solvent as long as it can remove the solvent.
  • the drawn fiber bundle can be washed and drawn in a multi-stage washing tank set at a temperature in the range of 50°C or higher and lower than 100°C.
  • the drawn fiber bundle after removing the organic solvent is shrunk or drawn at a magnification of 0.96 times or more and 1.30 times or less in hot water (C) having a temperature of 90° C. or more.
  • the step (2-3) can relieve the distortion due to drawing.
  • the temperature of the hot water (C) is 90° C. or higher. By setting the temperature of the hot water (C) to 90° C. or higher, it is possible to uniformly relax the stretching distortion, and it is possible to obtain a carbon fiber bundle having higher strand strength and knot strength without decreasing the strand modulus.
  • the temperature of the hot water (C) is preferably 97° C. or lower. By setting the temperature of the hot water (C) to 97° C.
  • the shrinkage or stretching ratio in warm water (C) is 0.96 times or more and 1.30 times or less. By setting the shrinkage or stretching ratio to 0.96 times or more, poor take-up due to loosening of the fiber bundle can be prevented, and stretching distortion can be stably relaxed. By setting the shrinkage or stretching ratio to 1.30 times or less, excessive load can be suppressed, and stretching distortion can be stably relaxed.
  • the stretched fiber bundle after removing the organic solvent is preferably shrunk (relaxed) in warm water (C) to a shrinkage ratio (relaxation ratio) of 0.96 to less than 1.00, or stretched to a stretch ratio of 1.00 to 1.30, more preferably shrunk (relaxed) to a shrinkage ratio (relaxation ratio) of 0.96 to 0.99, or stretched to a stretch ratio of 1.05 to 1.30, and further preferably shrunk (relaxed) to a shrinkage ratio (relaxation ratio) of 0.96 to 0.99.
  • the step (2-4) is a step of applying an oil composition to the drawn fiber bundle after it has been shrunk or drawn in warm water (C).
  • the oil composition can be determined in consideration of the functions required for the carbon fiber precursor acrylic fiber bundle.
  • a silicone-based oil composition can be used.
  • the oil composition can further contain additives such as antioxidants, antistatic agents, defoamers, preservatives, antibacterial agents, and penetrants, as necessary.
  • the oil composition can be applied to the drawn fiber bundle by any known method, such as a roller method, a guide method, a spray method, or a dipping method. After the oil composition has been applied to the drawn fiber bundle, it may be dried by a conventionally known method, if necessary.
  • the step (2-5) is a step in which the drawn fiber bundle is shrunk or drawn in warm water (C), preferably after an oil composition is applied thereto, and then dried as necessary, and then drawn at a draw ratio of 3.7 to 4.2 times in a pressurized water vapor atmosphere.
  • the stretching ratio in the pressurized water vapor atmosphere is 3.7 times or more and 4.2 times or less.
  • the single fiber fineness of the carbon fiber precursor acrylic fiber bundle is preferably in the range of 1.1 to 2.0 dtex, which can be controlled by the amount of the acrylonitrile polymer solution discharged from the discharge hole of the spinning nozzle and the draw ratio.
  • the flame-retardant process (3) is a process for heating the carbon fiber precursor acrylic fiber bundle or the carbon fiber precursor acrylic fiber bundle obtained in the second drawing process (2) in an oxidizing atmosphere to obtain a flame-retardant fiber bundle.
  • the atmosphere temperature in the flame-proofing step is preferably 220° C. or higher and 280° C. or lower.
  • the carbon fiber precursor acrylic fiber bundle it is preferable to heat the carbon fiber precursor acrylic fiber bundle until the density of the flame-resistant fiber bundle obtained is 1.33 g/cm 3 or more and 1.36 g/cm 3 or less.
  • the density of the flame-resistant fiber bundle 1.33 g/cm 3 or more, it is possible to suppress the occurrence of insufficient flame-resistant portions, and as a result, it is possible to suppress the occurrence of decomposition reactions caused by the heat treatment in the first carbonization process described later and subsequent steps, which will lead to the formation of defects, and it is easy to obtain a carbon fiber bundle having a high density, high strand strength, and high knot strength without decreasing the strand elastic modulus.
  • the density of the flame-resistant fiber bundle 1.36 g/cm 3 or less, it is possible to suppress the presence of a large amount of oxygen in the flame-resistant fiber bundle, and as a result, it is easy to suppress the reaction of excessive oxygen disappearing and forming defects by the heat treatment in the first carbonization process described later and subsequent steps, which will lead to the formation of carbon fiber bundles having a high density, high strand strength, and high knot strength without decreasing the strand elastic modulus.
  • the flame-resistant process it is preferable to elongate the carbon fiber precursor acrylic fiber bundle at an elongation rate of 3.0% or more and 8.0% or less to obtain a flame-resistant fiber bundle. It is more preferable to set the elongation rate in the flame-resistant process to 4.0% or more and 7.0% or less, and even more preferable to set the elongation rate in the flame-resistant process to 5.0% or more and 6.5% or less.
  • the elongation rate in the flame-resistant process By setting the elongation rate in the flame-resistant process to 3.0% or more, the molecular orientation of the flame-resistant fiber bundle can be improved, making it easier to obtain a carbon fiber bundle with high strand strength and knot strength without reducing the strand modulus.
  • the elongation rate in the flame-resistant process to 8.0% or less, excessive elongation can be suppressed, making it easier to obtain a stable flame-resistant fiber bundle.
  • the treatment time in the flame-proofing furnace can be, for example, 30 minutes or more and 100 minutes or less.
  • the first carbonization step (4) is a first carbonization step in which the flame-retardant fiber bundle obtained in the flame-retardant step (3) is heated in a non-oxidizing atmosphere having a temperature gradient in the range of an atmospheric temperature of 300° C. or more and 900° C. or less at an elongation rate of 4.0% or more and 5.0% or less.
  • the flame-resistant fiber bundle is preferably heated in a non-oxidizing atmosphere in a first carbonization furnace having a linear temperature gradient within the range of 300° C. or more and 900° C. or less.
  • the atmospheric temperature in the first carbonization step is 300° C. or higher and 900° C. or lower.
  • the atmospheric temperature in the first carbonization step By setting the atmospheric temperature in the first carbonization step to 900° C. or lower, it is possible to prevent the flame-resistant fiber bundle from becoming very brittle, and not only can the bundle be stably passed through the first carbonization step (first carbonization furnace), but also the formation of defects in the heat treatment in the second carbonization step and thereafter described below can be suppressed, and a carbon fiber bundle having high density, high strand strength, and knot strength can be easily obtained without decreasing the strand elastic modulus.
  • the elongation rate in the first carbonization step is 4.0% or more and 5.0% or less.
  • the elongation rate in the first carbonization step 4.0% or more the molecular orientation of the resulting carbon fiber bundle can be improved, and it is easy to improve the strand strength and knot strength without decreasing the strand elastic modulus.
  • By making the elongation rate in the first carbonization step 5.0% or less it is possible to suppress excessive elongation, and it is easy to pass through the first carbonization step (first carbonization furnace) stably.
  • the processing time in the first carbonization furnace (time of the first carbonization process) is preferably 1.0 to 3.0 minutes, more preferably 1.2 to 2.5 minutes.
  • time of the first carbonization process is preferably 1.0 to 3.0 minutes, more preferably 1.2 to 2.5 minutes.
  • Gases that form a non-oxidizing atmosphere include, for example, nitrogen, argon, and helium, with nitrogen being preferred from an economical standpoint.
  • the second carbonization step (5) is performed after the first carbonization step (4), by heating the fiber bundle while applying a tension of 0.15 cN/dtex to 0.21 cN/dtex to the fiber bundle in a non-oxidizing atmosphere having a temperature gradient in a range of 1000° C. to 1800° C.
  • the fiber bundle to be carbonized in the second oxygenation step (5) is the flame-resistant fiber bundle that has passed through the first carbonization step.
  • the atmospheric temperature in the second carbonization step is 1000° C. or higher and 1800° C. or lower.
  • the atmospheric temperature in the second carbonization step is set to 1800° C. or lower, the formation of defects in the heat treatment in the third carbonization step described below is suppressed, and a carbon fiber bundle having high density, strand strength, and knot strength is easily obtained without decreasing the strand elastic modulus.
  • a tension of 0.15 cN/dtex or more and 0.21 cN/dtex or less is applied to the total fineness of the carbon fiber precursor acrylic fiber bundle immediately before passing through the flame-retardant process (flame-retardant furnace), and preferably a tension of 0.17 cN/dtex or more and 0.20 cN/dtex or less is applied.
  • the processing time in the second carbonization furnace is preferably 1.3 minutes or more and 5.0 minutes or less.
  • the processing time in the second carbonization furnace is preferably 1.3 minutes or more and 5.0 minutes or less.
  • the third carbonization step (6) is a third carbonization step that, after the second carbonization step (5), heats the fiber bundle while applying a tension of 0.15 cN/dtex or more and 0.23 cN/dtex or less to the fiber bundle in a non-oxidizing atmosphere having a temperature gradient in an atmospheric temperature range of 1700° C. or more and 2300° C. or less.
  • the fiber bundle to be carbonized in the third carbonization step (6) is the flame-resistant fiber bundle that has passed through the second carbonization step.
  • the third carbonization step it is preferable to heat the fiber bundle that has passed through the second carbonization furnace (second carbonization step) in a non-oxidizing atmosphere in a third carbonization furnace having an atmospheric temperature in the range of 1700°C or more and 2300°C or less with a linear temperature gradient to obtain a carbon fiber bundle.
  • the atmospheric temperature in the third carbonization step is 1700° C. or higher and 2300° C. or lower.
  • the temperature in the second carbonization step it is preferable to make the atmospheric temperature in the third carbonization step higher than the atmospheric temperature in the second carbonization step, and more preferably 1800° C. or higher. By making the atmospheric temperature in the third carbonization step 2300° C.
  • the maximum heating temperature is preferably 2100 to 2300°C. When the maximum temperature is 2100° C. or higher, the strand elastic modulus can be easily increased, and when the maximum temperature is 2300° C. or lower, deterioration of the third carbonization furnace can be prevented.
  • the fiber bundle passing through the third carbonization step is significantly contracted, it is important to heat it under tension.
  • a tension of 0.15 cN/dtex or more and 0.23 cN/dtex or less is applied to the total fineness of the carbon fiber precursor acrylic fiber bundle immediately before passing through the flame-retardant step (flame-retardant furnace), and preferably a tension of 0.18 cN/dtex or more and 0.22 cN/dtex or less is applied.
  • the processing time in the third carbonization furnace (time of the third carbonization process) is preferably 1.0 minute or more and 3.0 minutes or less.
  • time of the third carbonization process is preferably 1.0 minute or more and 3.0 minutes or less.
  • the heating rate when the atmospheric temperature is raised from 1800°C to 2200°C is preferably 300°C/min to 600°C/min, more preferably 350°C/min to 550°C/min, and even more preferably 400°C/min to 500°C/min.
  • the heating rate when the atmospheric temperature is raised from 1800°C to 2200°C to 300°C/min or more it is easy to manufacture a carbon fiber bundle with high productivity.
  • the above-mentioned temperature rise rate is the travel time of the fiber bundle at an atmospheric temperature of 1800°C to 2200°C divided by 400°C, which is the difference between 2200°C and 1800°C.
  • the difference between the maximum atmospheric temperature in the second carbonization step (5) and the inlet atmospheric temperature in the third carbonization step (6) is preferably not more than 700° C., and more preferably not more than 500° C.
  • the difference between the maximum atmospheric temperature in the second carbonization step (5) and the inlet atmospheric temperature in the third carbonization step (6) is preferably 30° C. or more, and more preferably 50° C. or more.
  • the upper and lower limits can be combined in any manner.
  • the temperature may be 30° C. or higher and 700° C. or lower, or 50° C. or higher and 500° C. or lower.
  • the method for producing carbon fibers of the present invention may include the following (a) acrylonitrile polymer solution preparation step prior to the (1) coagulation step.
  • the method for producing a carbon fiber of the present invention may have the following first drawing step (b) between the coagulation step (1) and the second drawing step (2).
  • the method for producing carbon fibers of the present invention may have, after the third carbonization step (6), the following surface oxidation treatment step (c) and sizing step (d).
  • the acrylonitrile-based polymer solution preparation step (a) is a step of preparing an acrylonitrile-based polymer solution to be used in the coagulation step (1).
  • the acrylonitrile polymer used in the present invention is a polymer obtained by polymerizing acrylonitrile as a main monomer.
  • the acrylonitrile polymer may be a homopolymer obtained only from acrylonitrile, or a copolymer in which other monomers are copolymerized in addition to acrylonitrile as the main component.
  • the content of acrylonitrile-derived structural units (hereinafter also referred to as "acrylonitrile units”) in the acrylonitrile-based polymer can be determined, for example, taking into consideration the quality required for the resulting carbon fiber bundle, and is preferably 90% by mass or more and 100% by mass or less, more preferably 90% by mass or more and 99.5% by mass or less, and even more preferably 96% by mass or more and 99.5% by mass or less, relative to the total mass of the monomer units constituting the acrylonitrile-based polymer.
  • the content of acrylonitrile units is 90% by mass or more, fusion between single fibers can be suppressed in each of the flame retardant and carbonization processes for converting the carbon fiber precursor acrylic fiber bundle into carbon fiber, and a decrease in the strand strength of the carbon fiber bundle can be easily prevented. Furthermore, adhesion between single fibers can be easily suppressed in processes such as stretching with a heated roller or pressurized steam. If the content of acrylonitrile units is 100% by mass or less, preferably 99.5% by mass or less, the solubility in the solvent is less likely to decrease, and precipitation and solidification of the acrylonitrile-based polymer can be prevented, making it easier to stably produce carbon fiber precursor acrylic fiber bundles.
  • the monomer unit other than the acrylonitrile unit in the acrylonitrile polymer can be appropriately selected from vinyl monomers copolymerizable with acrylonitrile, and is preferably a vinyl monomer unit that improves the hydrophilicity of the acrylonitrile polymer or a vinyl monomer unit that promotes a flame retardant reaction.
  • acrylic acid derivatives such as acrylic acid, methacrylic acid, itaconic acid, methyl acrylate, and methyl methacrylate
  • acrylamide derivatives such as acrylamide, methacrylamide, N-methylolacrylamide, and N,N-dimethylacrylamide
  • vinyl acetate can be mentioned.
  • the method for synthesizing the acrylonitrile polymer may be any polymerization method, and the present invention is not limited by the difference in the polymerization method.
  • the solvent for the acrylonitrile polymer solution include organic solvents such as dimethylacetamide, dimethylsulfoxide, and dimethylformamide; and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate. Dimethylformamide is preferred because of its high dissolving power for acrylonitrile polymers.
  • the polymer concentration of the acrylonitrile-based polymer solution is preferably 20% by mass or more and 25% by mass or less, and more preferably 21% by mass or more and 24% by mass or less, based on the total mass of the acrylonitrile-based polymer solution.
  • the polymer concentration 20% by mass or more the voids inside the coagulated yarn are reduced, making it easier to increase the strand strength of the carbon fiber bundle.
  • the polymer concentration 25% by mass or less the acrylonitrile-based polymer solution can maintain appropriate viscosity and fluidity, making it easier to manufacture carbon fiber precursor acrylic fiber bundles.
  • the temperature of the acrylonitrile polymer solution used in the solidification step (1) is preferably adjusted to 50°C or higher and 70°C or lower, and more preferably 55°C or higher and 65°C or lower.
  • the acrylonitrile polymer solution can maintain appropriate viscosity and fluidity, which makes it easier to manufacture carbon fiber precursor acrylic fiber bundles.
  • the first drawing step (b) is a step of drawing the coagulated yarn bundle in air at a draw ratio of 1.00 times or more and 1.20 times or less.
  • the first stretching step (b) is preferably carried out between the solidification step (1) and the second stretching step (2).
  • the coagulated yarn bundle taken in the coagulation step (1) is drawn in air while still containing the coagulation liquid.
  • the draw ratio in air is 1.00 times or more and 1.20 times or less, and preferably 1.05 times or more and 1.15 times or less.
  • the surface oxidation treatment step (c) is a step of subjecting the carbon fiber bundle obtained in the third carbonization step (6) to a surface oxidation treatment.
  • the surface oxidation treatment step (c) is preferably carried out after the third carbonization step (6).
  • the carbon fiber bundle obtained by passing through the third carbonization step (third carbonization furnace) is preferably subjected to a surface oxidation treatment.
  • the surface treatment method include known methods, i.e., oxidation treatments by electrolytic oxidation, chemical oxidation, air oxidation, etc., and any method may be used, but electrolytic oxidation treatment, which is widely carried out industrially, is preferred in that it is capable of stable surface oxidation treatment.
  • the ipa which indicates the surface treatment state, is 0.05 ⁇ A/ cm2 or more and 0.25 ⁇ A/ cm2 or less.
  • a method of adjusting the amount of electricity in the electrolytic oxidation treatment is simple.
  • the electrolytic oxidation treatment even with the same amount of electricity, the ipa varies greatly depending on the electrolyte used and its concentration.
  • an alkaline aqueous solution with a pH of more than 7 it is preferable to perform the oxidation treatment by passing an amount of electricity of 10 coulombs/g or more and 200 coulombs/g or less through the carbon fiber bundle as the anode.
  • the electrolyte include ammonium carbonate, ammonium bicarbonate, ammonium sulfate, calcium hydroxide, sodium hydroxide, and potassium hydroxide.
  • the sizing step (d) is a step of subjecting the carbon fiber bundles after the surface oxidation treatment step (c) to a sizing treatment.
  • the sizing step (d) is preferably carried out after the surface oxidation treatment step (c).
  • the surface-oxidized carbon fiber bundle obtained in the surface oxidation treatment step (c) is preferably subjected to a sizing treatment in succession.
  • the sizing treatment can be carried out by applying a solution in which a sizing agent is dissolved in an organic solvent or an emulsion in which a sizing agent is dispersed in water using an emulsifier to the carbon fiber bundle by, for example, a roller immersion method or a roller contact method, and then drying the bundle.
  • the amount of sizing agent attached to the surface of the carbon fibers can be adjusted by adjusting the concentration of the sizing agent liquid or the amount of the sizing agent squeezed out.
  • the drying can be carried out, for example, by using hot air, a hot plate, a heated roller, or various infrared heaters.
  • a known sizing agent can be used, for example, a sizing agent containing an epoxy resin, a polyether resin, an epoxy-modified polyurethane resin, or a polyester resin as a main component.
  • the cross-sectional area of each carbon fiber single fiber was calculated from the density (g/ cm3 ) of the carbon fiber bundle, the mass per meter of the carbon fiber bundle, i.e., the basis weight (g/m), and the number of filaments in the carbon fiber bundle.
  • the diameter of a perfect circle having an area equal to the cross-sectional area was calculated and used as the average diameter of the carbon fiber single fibers.
  • the density of the carbon fiber bundle was measured in accordance with Method C (gradient density pipe method) described in JIS R 7063:1999.
  • Knot strength measurements were performed as follows. A test specimen was prepared by attaching a 25 mm long grip to both ends of a 150 mm long carbon fiber bundle. When preparing the test specimen, a load of 0.1 ⁇ 10 ⁇ 3 N/denier was applied to align the carbon fiber bundle. A knot was formed in the test specimen at approximately the center, and the crosshead speed during tension was 100 mm/min. 12 pieces were tested, and the minimum and maximum values were removed, and the average value of the 10 pieces was taken as the measured value.
  • a carbon fiber single fiber was cut to 20 cm, and the center of the single fiber was attached and fixed to a mount for a single fiber tensile test for a sample length of 10 mm as shown in JIS R 7606:2000, and the excess part protruding from the mount was cut and removed to prepare a sample.
  • a laser was irradiated to these samples fixed to the mount to form a hemispherical defect.
  • a micropoint pulse energy 300 uJ
  • an ECLIPSE LV100 manufactured by Nikon Corporation was used.
  • the aperture stop of the optical microscope was set to the minimum, and the objective lens was set to 100 times. Under these conditions, a sample in which a hemispherical defect was formed was obtained by irradiating one pulse of a laser having a wavelength of 435 nm, the laser intensity of which was attenuated by 10% by an attenuator, to the center of the sample in the fiber axis direction and the center in the direction perpendicular to the fiber axis.
  • the sample attached to the mount was sandwiched between films, and the inside of the film was filled with a viscous liquid to perform a tensile test.
  • a film with a width of about 5 mm and a length of about 15 mm was prepared, and the film was attached to the upper part of both sides of the mount of the sample with an adhesive, and the mount was sandwiched between the films so as to cover the sample.
  • the space between the films was filled with a glycerin aqueous solution (1 part by mass of glycerin to 2 parts by mass of water), and a tensile test was performed at a tensile speed of 0.5 mm/min to measure the breaking load.
  • the sample pair divided into two in the tensile test was removed from the mount, carefully washed with water, and then naturally dried.
  • the sample was fixed with carbon paste on the SEM sample stage so that the fracture surface of the sample was facing up, and an SEM observation sample was prepared.
  • the fracture surfaces of the obtained SEM observation samples were observed by SEM using a scanning electron microscope (manufactured by JEOL Ltd., product name "JSM6060") under conditions of an acceleration voltage of 10 kV to 15 kV and a magnification of 10,000 times to 15,000 times.
  • the obtained SEM images were imported into a personal computer and analyzed using image analysis software to measure the depth of the hemispherical defect and the cross-sectional area of the fiber.
  • the "depth of the hemispherical defect" was defined as the longest distance when a line was drawn from the circumference of the single fiber to the center.
  • the breaking load was then divided by the cross-sectional area of the fiber (breaking load/cross-sectional area of the fiber) to calculate the breaking strength ( ⁇ ).
  • is the breaking strength (GPa)
  • E is the ultrasonic elastic modulus of the carbon fiber bundle (GPa)
  • C is the depth of the hemispherical defect (m).
  • the ultrasonic elastic modulus of the carbon fiber bundle was measured in accordance with the measurement method described below.
  • the ultrasonic propagation velocity was measured according to the measurement method shown in Fig. 1.
  • the distance L1 between the transmitter and the first receiver was 0.20 m
  • the distance L2 between the transmitter and the second receiver was 0.25 m
  • the tension applied to the carbon fiber bundle during measurement was 0.02 N/tex.
  • a pulse was given from the pulse transmission circuit to the transmitter to drive it and propagate ultrasonic waves to the carbon fiber bundle
  • reception time 1 the time from when the ultrasonic waves propagated from the carbon fiber bundle were detected by the second receiver was defined as reception time 2.
  • the ultrasonic elastic modulus of the carbon fiber bundle was calculated from the following formula (F3).
  • Ultrasonic elastic modulus (GPa) ((0.25 m ⁇ 0.20 m)/(reception time 2 (sec) ⁇ reception time 1 (sec))) 2 ⁇ density of carbon fiber bundle (g/cm 3 ) ⁇ 10 ⁇ 6 (F3)
  • the carbon fiber bundle was cut into a length of 50 mm, and 30 mg of the cut fiber was weighed out and aligned so that the fiber axis of the sample was exactly parallel. The fiber bundle was then adjusted to a uniform thickness of 1 mm using a sample adjustment tool. The fiber bundle was impregnated with a vinyl acetate/methanol solution to prevent the shape from collapsing, and then fixed to a wide-angle X-ray diffraction sample stage.
  • K is the Scherrer constant of 0.9
  • is the wavelength of the X-ray used (1.5418 ⁇ since CuK ⁇ rays are used here)
  • is the Bragg diffraction angle
  • ⁇ 0 is the true half-width
  • ⁇ 0 ⁇ E- ⁇ 1 ( ⁇ E is the apparent half-width
  • ⁇ 1 is an instrument constant, which is 1.05 ⁇ 10 ⁇ 2 rad here).
  • the average void length was calculated by SAXS (small angle X-ray scattering) as follows. Using the "SAXSpoint 2.0 system” manufactured by Anton Paar, CuK ⁇ (wavelength 1.54 ⁇ ) was used as X-rays, the exposure time was set to 30 minutes, the measurement environment was set to vacuum, and the distance from the sample to the detector was set to 610 mm. The carbon fiber bundles were aligned in one direction, and then the fiber axis direction was set vertically on the sample stage, and small-angle X-ray scattering measurement was performed.
  • SAXS small angle X-ray scattering
  • the scattering vector q was defined as 4 ⁇ sin ⁇ / ⁇ ( ⁇ : scattering angle, ⁇ : X-ray wavelength).
  • the two-dimensional scattering profile obtained according to the above measurement conditions was divided into 1000 azimuth angles of 360° and polar coordinate conversion was performed to obtain a scattering intensity map of azimuth angle-scattering vector q.
  • the carbon fiber axial direction is set to an azimuth angle of 0°.
  • prepreg a unidirectionally oriented prepreg with a resin content of about 33 mass% and a carbon fiber density of 125 g/ m2.
  • Example 1 ⁇ Preparation of carbon fiber precursor acrylic fiber bundle> An acrylonitrile-based polymer containing 98% by mass of acrylonitrile units and 2% by mass of methacrylic acid units was dissolved in dimethylformamide to prepare an acrylonitrile-based polymer solution having a concentration of 23.5% by mass. This acrylonitrile polymer solution was spun from a spinneret having several thousand nozzles with a diameter of 0.15 mm, and subjected to dry-wet spinning.
  • the solution was spun into air and passed through a space of about 5 mm, and then coagulated in a coagulation liquid filled with an aqueous solution (A) containing 80.4% by mass of dimethylformamide and adjusted to 8° C., and a coagulated fiber bundle was taken off.
  • the coagulated yarn bundle was then multiplied to a filament count of 12,000 and pulled out of the coagulation bath, stretched 1.1 times in air, and then stretched 2.9 times in a stretching tank filled with a hot aqueous solution (B) containing 55% by mass of dimethylformamide and adjusted to 90 ° C.
  • the stretched fiber bundle containing the solvent was washed with clean water, and then relaxed 0.98 times in hot water (C) at 96 ° C. Subsequently, an oil agent mainly composed of amino-modified silicone was applied to the stretched fiber bundle to a concentration of 1.1% by mass, and the fiber bundle was dried and densified.
  • the stretched fiber bundle after drying and densification was stretched 4.0 times under a pressurized water vapor atmosphere, and further improved in orientation and densification were performed, and then wound up to obtain an acrylonitrile precursor fiber bundle. The fineness of this fiber was 1.08 dtex.
  • a plurality of carbon fiber precursor acrylic fiber bundles were aligned in parallel and introduced into a flame-resistant furnace having a linear temperature gradient with an inlet atmosphere temperature of 220° C. and a maximum atmosphere temperature of 280° C.
  • the carbon fiber precursor acrylic fiber bundles were flame-resistant treated by blowing heated air into the flame-resistant furnace onto the carbon fiber precursor acrylic fiber bundles, to obtain a flame-resistant fiber bundle with a density of 1.345 g/cm 3.
  • the elongation was 6.0%, and the flame-resistant treatment time was 70 minutes.
  • the flame-retardant fiber bundle was passed through a first carbonization furnace having a linear temperature gradient in nitrogen, with an inlet atmospheric temperature of 300° C.
  • a second carbonization process was carried out using a second carbonization furnace in which a linear temperature gradient was set with an inlet atmosphere of 1100° C. and a maximum atmosphere temperature of 1200° C. in a nitrogen atmosphere. At that time, the elongation rate was ⁇ 2.0%, and the processing time was 1.6 minutes. At this time, the tension applied to the yarn bundle during the process was 0.19 cN/dtex.
  • a third carbonization treatment was performed using a third carbonization furnace in which a linear temperature gradient was set with an inlet atmosphere of 1800°C and a maximum atmosphere temperature of 2300°C in a nitrogen atmosphere to obtain a carbon fiber bundle.
  • the elongation rate was -2.0% and the treatment time was 1.9 minutes.
  • the tension applied to the yarn bundle during the treatment was 0.21 cN/dtex.
  • the difference between the maximum atmospheric temperature in the second carbonization furnace and the inlet atmosphere of the third carbonization furnace was set to 600°C, and the temperature increase rate when increasing the atmospheric temperature from 1800°C to 2200°C was set to 450°C/min.
  • the carbon fiber bundle was run through a 10 mass % aqueous solution of ammonium bicarbonate at a temperature of 30° C., and an electric current was applied between the carbon fiber bundle as the anode and a counter electrode so that the electric quantity was 40 coulombs per 1 g of the treated carbon fiber. It was then washed with warm water at 90° C. and dried. Next, 0.5% by mass of a sizing agent (manufactured by DIC Corporation, product name "Hydran N320”) was applied (sizing treatment), and the fiber bundle was wound around a bobbin to obtain a carbon fiber bundle.
  • a sizing agent manufactured by DIC Corporation, product name "Hydran N320
  • Examples 2 to 5 Carbon fiber bundles were produced and various measurements were carried out in the same manner as in Example 1, except that the concentration of the coagulation bath and the maximum atmospheric temperature of the second carbonization furnace were changed as shown in Tables 1 and 2. The results are shown in Table 3.
  • Example 1 A carbon fiber precursor acrylic fiber bundle was produced in the same manner as in Example 1, except that the production conditions for the carbon fiber precursor acrylic fiber bundle were changed as shown in Table 1 and the single fiber fineness of the carbon fiber precursor acrylic fiber bundle was changed to 1.0 dtex. Using the obtained carbon fiber precursor acrylic fiber bundle, a carbon fiber bundle was produced in the same manner as in Example 1, except that the production conditions of the carbon fiber bundle were changed as shown in Table 2, and various measurements were carried out. The results are shown in Table 3.
  • Example 2 A carbon fiber precursor acrylic fiber bundle was produced in the same manner as in Example 1, except that the production conditions for the carbon fiber precursor acrylic fiber bundle were changed as shown in Table 1 and the single fiber fineness of the carbon fiber precursor acrylic fiber bundle was changed to 0.77 dtex. Using the obtained carbon fiber precursor acrylic fiber bundle, a carbon fiber bundle was produced in the same manner as in Example 1, except that the production conditions of the carbon fiber bundle were changed as shown in Table 2, and various measurements were carried out. The results are shown in Table 3.
  • the carbon fiber bundles obtained in each Example had high strand strength and strand modulus, and were well balanced.
  • the carbon fiber bundles obtained in each Example were substantially untwisted.
  • the carbon fiber bundles obtained in Comparative Examples 1 and 2 had lower fracture surface formation energy, strand strength and strand modulus than the carbon fiber bundles obtained in each Example.
  • the commercially available carbon fiber bundle used in Reference Example 1 had a fracture surface formation energy comparable to that of the carbon fiber bundles obtained in each Example, but had a low CF density, strand strength, and strand modulus.
  • the carbon fiber bundle of the present invention exhibits high strand strength and knot strength without a decrease in elastic modulus, and the diameter of the single fiber is also large, making it useful in a wide range of applications that require high mechanical properties, such as automotive components, aerospace materials, civil engineering and construction materials, sports and leisure materials, pressure vessels, wind turbine blades, and other industrial materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Fibers (AREA)

Abstract

炭素繊維単繊維の平均直径が太くても、ストランド弾性率とストランド強度が高く、バランスの取れた物性を有する炭素繊維束及びその製造方法を提供する。本発明の炭素繊維束は、炭素繊維単繊維の平均直径が5.7μm以上6.5μm以下であり、実質上無撚りであり、炭素繊維束のストランド強度が4.7GPa以上であり、かつ炭素繊維束のストランド弾性率が320GPa以上である。

Description

炭素繊維束及び炭素繊維束の製造方法
 本発明は、炭素繊維束及び炭素繊維束の製造方法に関する。
 樹脂系成形品の機械特性を向上させる目的で、繊維を強化材として樹脂と複合化することが一般的に行われている。その中でも炭素繊維は比強度、比弾性率に優れ、軽量であるため、高性能樹脂の強化繊維として、従来のスポーツ・一般産業用途だけでなく、航空・宇宙用途、自動車用途など、幅広い用途に利用されている。近年、炭素繊維を強化繊維とし、マトリクス樹脂と一体化させて得られる炭素繊維強化複合材料の優位性はますます高まり、特に自動車、航空・宇宙用途において、炭素繊維強化複合材料の性能の向上に対する要求が高くなっている。
 これらの炭素繊維強化複合材料は、例えば、炭素繊維にマトリックス樹脂が含浸された中間製品であるプリプレグから、加熱・加圧といった成形・加工工程を経て成形される。
 炭素繊維とマトリックス樹脂との複合化において、炭素繊維強化複合材料の高い引張強度を追求するためには、炭素繊維単繊維の直径を細くすることで、炭素繊維そのもののストランド強度やストランド弾性率の向上を行ってきた。さらに、炭素繊維束へのマトリックス樹脂の含侵性を高くし、炭素繊維強化複合材料中のボイド生成を抑制することが重要となる。
 これまでに高いストランド強度及びストランド弾性率を有し、かつ樹脂の含侵性にも優れた炭素繊維束を得ようとする試みがなされている。
 特許文献1には、炭素繊維束を製造する過程にて、耐炎化工程にて繊維束に撚りを付与することで、優れたストランド弾性率を持ちつつ、複合材料への成形加工性を両立し、不連続繊維として用いた場合でも繊維長を維持しやすい炭素繊維が記載されている。
 特許文献2には、炭素化工程にて高い延伸張力で炭素化処理することで、ストランド弾性率と、炭素繊維複合材料の圧縮強度を高いレベルで両立する炭素繊維束が記載されている。
 特許文献3には、炭素繊維に硝酸イオン濃度が特定の範囲である電解質液中で電解表面処理をすることで、炭素繊維のストランド強度と接着強度を高める技術が記載されている。
国際公開第2019/244830号 国際公開第2019/203088号 日本国特開2002-327339号公報
 本発明者の詳細な検討によれば、特許文献1~3には以下の課題があることが見出された。
 特許文献1に記載の炭素繊維束は撚りを加えて製造しており、工程の増加による生産性の低下だけでなく、撚りを加えることによって繊維束に過度な集束が発生し、焼成後に解撚しても炭素繊維には螺旋形状が残る。そのため、長繊維のまま使用すると、樹脂の含浸性が不十分になる場合や、マトリックス樹脂との複合材料にしたときに、繊維軸方向に圧縮された場合に炭素繊維が座屈しやすく、繊維軸方向の圧縮強度が低くなる。
 特許文献2に記載の炭素繊維束は、単繊維直径が比較的太いものが記載されている。その中でも単繊維直径が細い方の炭素繊維は、高い延伸張力で炭素化処理するために炭素繊維前駆体繊維束に強い交絡処理を施している。強い交絡処理により、繊維束の束強度が向上するため、炭素化処理における延伸張力を高くしても毛羽の発生が少ない。しかし、得られる炭素繊維束は強い交絡がかかっているため、樹脂の含浸性は不十分である。
 また、その中でも、単繊維直径が太い方の炭素繊維は、繊維束に撚りをかけることにより、高い延伸張力で炭素化処理をできるようにしており、ストランド強度及びストランド弾性率が高い炭素繊維を得ている。
 しかしながら、撚りがある炭素繊維束はマトリックス樹脂の含浸性が悪く、炭素繊維強化複合材料の機械特性が良くならず、解撚しても螺旋状態が残り、炭素繊維強化複合材料を圧縮した際に炭素繊維の座屈が起きやすいため圧縮強度が低い。
 特許文献3に記載の炭素繊維は、ストランド強度、ストランド弾性率の測定結果が記載されているが、旧JIS法(JIS R-7601)で測定しているため、現在のJIS法(JIS R-7608:2007)より高い値となっている。その上で、本発明の様にストランド強度、ストランド弾性率のバランスが取れたものは記載されていない。
 また、市場ではこれまで以上に高いストランド強度及びストランド弾性率をもつ炭素繊維束が求められているが、一般的にストランド強度を高めるとストランド弾性率が下がり、ストランド弾性率を高めるとストランド強度が下がる傾向にある。このように、ストランド強度の向上とストランド弾性率の向上は相反するものであり、両方の物性を向上することは困難であった。
 さらに、近年では空飛ぶ車や大型ドローンの開発が進んでおり、炭素繊維強化複合材料を使用した製品はさらなる軽量化が必要である。軽量化するためには、炭素繊維強化複合材料を薄くする必要があり、炭素繊維強化複合材料の曲げ強度を低下させない必要がある。炭素繊維強化複合材料が曲げられると、曲げる外側は引張応力、曲げる内側は圧縮応力が生じる。そのため、炭素繊維のストランド強度、繊維軸方向の圧縮強度を高くする必要がある。炭素繊維の繊維軸方向の圧縮強度は、弾性率と単繊維の直径に依存するものであるので、単繊維の直径が太く弾性率が高い炭素繊維が必要である。
 本発明は、かかる課題を解決するためになされたものであり、炭素繊維単繊維の平均直径が太くても、ストランド弾性率とストランド強度が高く、バランスの取れた物性を有する炭素繊維束及びその製造方法を提供することにある。
 本発明は、下記の態様を有する。
[1]炭素繊維単繊維の平均直径が5.7μm以上6.5μm以下の炭素繊維束であって、
 実質上無撚りであり、
 炭素繊維束のストランド強度が4.7GPa以上であり、かつ炭素繊維束のストランド弾性率が320GPa以上である、炭素繊維束。
[2]無交絡である、[1]の炭素繊維束。
[3]炭素繊維単繊維の平均ボイド長さが22.0nm以下である、[1]または[2]の炭素繊維束。
[4]炭素繊維単繊維の結晶子サイズLcが3.7nm以下である、[1]~[3]のいずれかの炭素繊維束。
[5]ストランド強度(単位:GPa)とストランド弾性率(単位:GPa)の積が1650以上である、[1]~[4]のいずれかの炭素繊維束。
[6]ストランド強度が4.9GPa以上であり、ストランド弾性率が385GPa以上である、[1]~[5]のいずれかの炭素繊維束。
[7]ストランド弾性率が390GPa以上420GPa以下である、[1]~[6]のいずれかの炭素繊維束。
[8]ストランド強度が5.4GPa以上である、[1]~[7]のいずれかの炭素繊維束。
[9]結節強度が400N/mm以上である、[1]~[8]のいずれかの炭素繊維束。
[10]結節強度が415N/mm以上である、[1]~[8]のいずれかの炭素繊維束。
[11]破壊表面生成エネルギーが19N/m以上である、[1]~[10]のいずれかの炭素繊維束。
[12]破壊表面生成エネルギーが20.5N/m以上である、[1]~[10]のいずれかの炭素繊維束。
[13]密度が1.79g/cm以上である、[1]~[12]のいずれかの炭素繊維束。
[14]炭素繊維前駆体アクリル繊維束を耐炎化繊維束とするための酸化性雰囲気での加熱、および前記耐炎化繊維束を炭素繊維束とするための非酸化性雰囲気中での加熱を含む炭素繊維束の製造方法であって、
 前記非酸化性雰囲気での加熱において、1800℃から2200℃まで昇温するときの昇温速度が200~500℃/分であり、
 得られる炭素繊維束位に含まれる炭素繊維単繊維の平均直径が6.5μm以上8.5μm以下である、炭素繊維束の製造方法。
[15]前記炭素繊維前駆体アクリル繊維束および前記耐炎化繊維束を無交絡の状態で加熱する、[14]の炭素繊維束の製造方法。
[16]前記炭素繊維前駆体アクリル繊維束および前記耐炎化繊維束を実質的に無撚りの状態で加熱する、[14]または[15]の炭素繊維束の製造方法。
[17]下記(1)~(2)の工程を含む、[14]~[16]のいずれかの炭素繊維束の製造方法。
(1)アクリロニトリル系重合体溶液を、乾湿式紡糸法を用いて吐出孔から空気中に吐出させた後、温度10℃以下、有機溶剤の濃度が79.3質量%以上82.0質量%以下の水溶液からなる凝固浴中で凝固させて前記有機溶剤を含む凝固糸束を得る凝固工程。
(2)前記凝固工程で得られた凝固糸束を温度75℃以上、有機溶剤の濃度が40質量%以上65質量%以下の温水溶液中で、延伸倍率2.0倍以上3.2倍以下に延伸して前記炭素繊維前駆体アクリル繊維束を得る第二延伸工程。
[18]前記凝固工程と前記第二延伸工程の間に、前記凝固工程で得られた凝固糸束を空気中で延伸倍率1.00倍以上1.20倍以下に延伸する第一延伸工程を有する、[14]~[17]のいずれかの炭素繊維束の製造方法。
[19]前記第二延伸工程において、凝固糸束を延伸した後に、前記有機溶剤を除去し、温度90℃以上の温水中で倍率0.96倍以上1.30倍以下に収縮又は延伸し、加圧水蒸気雰囲気下で延伸倍率3.7倍以上4.2倍以下に延伸して前記炭素繊維前駆体アクリル繊維束を得る、[14]~[18]のいずれかの炭素繊維束の製造方法。
[20]前記凝固工程で用いる前記水溶液の有機溶剤の濃度が79.8質量%以上81.2質量%以下である、[14]~[19]のいずれかの炭素繊維束の製造方法。
[21]前記有機溶剤がジメチルホルムアミドである、[14]~[20]のいずれかの炭素繊維束の製造方法。
[22]下記(3)~(6)の工程を含む、[14]~[21]のいずれかの炭素繊維束の製造方法。
(3)炭素繊維前駆体アクリル繊維束または第二延伸工程で得られた炭素繊維前駆体アクリル繊維束を、酸化性雰囲気中で加熱し、耐炎化繊維束を得る耐炎化工程。
(4)前記耐炎化工程で得られた耐炎化繊維束を、雰囲気温度が300℃以上900℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、伸長率が4.0%以上5.0%以下で加熱する第一炭素化工程。
(5)前記第一炭素化工程後に、雰囲気温度が1000℃以上1800℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、0.15cN/dtex以上0.21cN/dtex以下の張力を繊維束に付与しながら、繊維束を加熱する第二炭素化工程。
(6)前記第二炭素化工程後に、雰囲気温度が1700℃以上2300℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、0.15cN/dtex以上0.23cN/dtex以下の張力を繊維束に付与しながら、繊維束を加熱する第三炭素化工程。
[23]前記耐炎化工程が、前記炭素繊維前駆体アクリル繊維束または前記第二延伸工程で得られた炭素繊維前駆体アクリル繊維束を、雰囲気温度が220℃以上280℃以下の範囲内で温度勾配を有する酸化性雰囲気中で、伸長率が3.0%以上8.0%以下で加熱し、密度が1.33g/cm以上1.36g/cm以下の耐炎化繊維束を得る工程である、[22]の炭素繊維束の製造方法。
[24]前記第二炭素化工程での最高雰囲気温度と、前記第三炭素化工程での入口雰囲気温度の差が700℃以下である、[22]または[23]の炭素繊維束の製造方法。
[25]前記第二炭素化工程での最高雰囲気温度と、前記第三炭素化工程での入口雰囲気温度の差が500℃以下である、[22]または[23]の炭素繊維束の製造方法。
[26]前記非酸化性雰囲気での加熱における加熱温度の最高温度が、2100~2300℃である、[14]~[25]のいずれかの炭素繊維束の製造方法。
 本発明によれば、炭素繊維単繊維の平均直径が太くても、ストランド弾性率とストランド強度が高く、バランスの取れた物性を有する炭素繊維束及びその製造方法を提供できる。
 本発明によれば、曲げ強度に優れる薄い炭素繊維強化複合材料に適した炭素繊維束を得ることができる。
炭素繊維束の超音波弾性率の測定方法を説明する説明図である。
[炭素繊維束]
 本発明の炭素繊維束は、炭素繊維単繊維の平均直径が5.7μm以上6.5μm以下であり、実質上無撚りであり、炭素繊維束のストランド強度が4.7GPa以上であり、かつ炭素繊維束のストランド弾性率が320GPa以上である。
 なお、「炭素繊維束」とは複数本の炭素繊維の単繊維が集束されたものを意味する。
 本発明の炭素繊維束において、炭素繊維単繊維の平均直径、すなわち繊維径は5.7μm以上6.5μm以下である。
 繊維径を5.7μm以上とすることで、繊維間の隙間を大きくすることができ、樹脂を均一に含浸させやすくなり、本発明の炭素繊維束を用いて得られる炭素繊維強化複合材料中のボイド生成を抑制することが可能となる。繊維径を6.5μm以下とすることで、後述する耐炎化工程((3)の工程)において断面二重構造が顕著となりにくく、ストランド弾性率を低下させることなく、高ストランド強度の炭素繊維束を得やすい。
 樹脂含侵の均一性と高いストランド強度を両立させるため、繊維径は5.7μm以上6.5μm未満であることが好ましく、5.8μm以上6.4μm以下であることがより好ましく、5.9μm以上6.3μm以下がさらに好ましい。
 炭素繊維単繊維の平均直径の測定条件は、後述する実施例に記載のとおりである。
 ストランド強度は引張試験によるストランド引張強度であり、ストランド弾性率は引張試験によるストランド引張弾性率である。
 本発明の炭素繊維束は、実質上無撚りである。
 本発明において「実質上無撚り」とは、繊維束に撚りが存在しないか、又は局所的に撚りが存在するものの、S撚りとZ撚りが同等に存在することを意味する。繊維束にS撚りとZ撚りが同等に存在する場合、炭素化工程全体として正味の撚り数が0.5ターン/m以下であることが好ましい。
 炭素繊維束が実質的に無撚りであることで、炭素繊維束の開繊性が良好となり、得られる炭素繊維強化複合材料の性能をより高くしやすい。
 撚りが存在する状態で焼成を行い、撚りがある炭素繊維を解撚したものも含むことができる。ただし、解撚した場合は炭素繊維が螺旋状態となるので、マトリックス樹脂との複合材料としたとき、圧縮した場合に座屈しやすくなり、繊維方向の圧縮強度が低くなりやすい。この点から、炭素繊維は直進性を有することが好ましい。
 繊維方向の圧縮強度は、以下の方法で測定することができる。
[炭素繊維強化複合材料の繊維軸方向の圧縮強度測定方法]
(プリプレグの製造)
 エポキシ樹脂#350(三菱ケミカル社製)を塗布した離型紙上にボビンから巻出した炭素繊維束を配置してエポキシ樹脂を含侵する。その上に保護フィルムを積層して、樹脂含有率約33質量%、炭素繊維密度125g/mの一方向配向プリプレグ(以下、プリプレグという。)を作成する。
(一方向積層材料の製造)
 プリプレグを2プライ積層してバギングし、バッグ内を真空ポンプで減圧する。その後、これをオートクレーブ内に入れ、オートクレーブ内を昇温速度2℃/分で昇温し、80℃で1時間保持し、次いで、昇温速度2℃/分で昇温し、130℃で1.5時間保持し硬化させ、炭素繊維強化複合材料を得る。その際、オートクレーブ内圧力は、80℃で1時間保持した後で昇圧し、0.6MPaとする。また、真空ポンプによる吸引はオートクレーブ内圧力が0.14MPaの時点で停止し、バッグ内を大気開放する。
<炭素繊維樹脂複合材料の繊維軸方向圧縮物性評価>
 得られる一方向積層材から幅12.7mm、長さ80mm、厚み1mmの試験片を6個作製する。試験片の長さ方向が繊維の0°方向である。得られた試験片について、SACMA SRM 1Rに準拠し、100kNロードセルを備えたINSTRON 5882測定機を用い、温度23℃、湿度50%RHの環境下、クロスヘッドスピード1.27mm/minの条件で、繊維軸方向の圧縮強度および圧縮弾性率を測定し、測定値をVf(繊維体積含有率)56%に換算する。6個の試験片について同様に測定し、平均値を求める。なお、測定は、同じ板から切り出したタブを各試験片に接着して行う。
 本発明の炭素繊維束は、ストランド強度が4.7GPa以上であり、ストランド弾性率が320GPa以上である。
 炭素繊維束のストランド強度を4.7GPa以上とし、かつストランド弾性率を320GPa以上とすることで、ストランド強度とストランド弾性率のバランスが取れた炭素繊維束になり、機械物性に優れる炭素繊維強化複合材料が得られやすくなる。
 これらの観点から、前記ストランド強度の下限は、4.9GPa以上であることが好ましく、5.1GPa以上であることがより好ましい。前記ストランド強度の上限は特に制限はないが、ストランド弾性率とのバランスから、6.5GPa以下であることが好ましく、6.0GPa以下であることがより好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、4.7GPa以上6.5GPa以下であってよく、4.9GPa以上6.5GPa以下であってよく、5.1GPa以上6.0GPa以下であってよい。
 前記ストランド弾性率の下限は、370GPa以上であることが好ましく、380GPa以上であることがより好ましく、390GPa以上であることがさらに好ましい。前記ストランド弾性率の上限は特に制限はないが、ストランド強度とのバランスから、450GPa以下であることが好ましく、420GPa以下がより好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、320GPa以上450GPa以下であってよく、370GPa以上450GPa以下であってよく、380GPa以上420GPa以下であってよく、390GPa以上420GPa以下であってよい。
 ストランド強度及びストランド弾性率の測定条件は、後述する実施例に記載のとおりである。
 本発明の炭素繊維束は、無交絡であることが好ましい。
 ここでいう交絡とは、交絡装置を使用して意図的に交絡をしたものである。炭素繊維の製造過程で単繊維同志が自然と絡むものは無交絡とする。
 炭素繊維束が無交絡であることで、炭素繊維強化複合材料にする際に、炭素繊維束の開繊性が良くなり、マトリックス樹脂の含浸性が良好となりやすく、炭素繊維強化複合材料の機械物性に優れるものが得られやすい。
 この場合、炭素繊維束のフックドロップ値は、500mm以上となり、1000mm以上であることが好ましい。
 フックドロップ値は、以下の方法で測定される。
 まず、2000mmの炭素繊維束を鉛直方向に配し、上端を固定しておく。ついで、錘を付けた合計重量30gのフックを炭素繊維束1に差し入れる。ここで用いるフックは、直径1mm金属製ワイヤーを成形することで作製されるフックであり、フック部分の半径が5mmのものである。ついで、フックを炭素繊維束に差し入れたまま自由落下させる。上述したように、炭素繊維束とは、炭素繊維単フィラメントが多数本、ほぼ同一方向に引き揃えられサイズ剤などにより一体化された糸条である。しかしながら、いずれかの箇所で炭素繊維単フィラメント同士が絡み合っていることが多い。このような部分でフックが止まることが多い。したがって、フックを炭素繊維束に差し入れた位置からフックが止まった位置までの距離を測定することができる。差し入れた位置から停止位置までのフックの落下距離がフックドロップ値となる。
 本発明の炭素繊維束において、炭素繊維単繊維の平均ボイド長さが22.0nm以下であることが好ましい。
 炭素繊維束の平均ボイド長さが、22.0nm以下であれば炭素繊維束のストランド強度をより高く維持しやすい。この観点から、21.0nm以下がより好ましく、19.5nm以下がさらに好ましい。
 平均ボイド長の下限は、5.0nm以上であれば繊維の屈曲性が担保されやすく、10nm以上がより好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、5.0nm以上22.0nm以下であってよく、5.0nm以上21.0nm以下であってよく、10nm以上19.5nm以下であってよい。
 平均ボイド長さは、耐炎化繊維束を加熱して炭素化処理する際の加熱温度や昇温速度を調節することで制御できる。
 平均ボイド長さの測定条件は、後述する実施例に記載のとおりである。
 本発明の炭素繊維束において、炭素繊維単繊維の結晶子サイズLcが3.7nm以下であることが好ましい。
 炭素繊維束の結晶子サイズLcが3.7nm以下であれば炭素繊維の結晶子サイズが大きくなりすぎることによる欠陥の形成および炭素繊維束のストランド強度低下を抑制しやすい。この観点から、前記結晶子サイズLcは、3.6nm以下がより好ましく、3.4nm以下がさらに好ましい。
 また、前記結晶子サイズLcの下限は、高いストランド弾性率を得るため3.0nm以上が好ましく、3.1nm以上がより好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、3.0nm以上3.7nm以下であってよく、3.0nm以上3.6nm以下であってよく、3.1nm以上3.4nm以下であってよい。
 結晶サイズLcは、耐炎化繊維束を加熱して炭素化処理する際の加熱温度や昇温速度を調節することで制御できる。
 結晶サイズLcの測定条件は、後述する実施例に記載のとおりである。
 本発明の炭素繊維束は、ストランド強度(単位:GPa)とストランド弾性率(単位:GPa)の積が1650以上であることが好ましい。
 ストランド強度とストランド弾性率の積を1650以上とすることで、ストランド強度とストランド弾性率のバランスにより優れた炭素繊維束になり、機械物性により優れる炭素繊維強化複合材料が得られやすくなる。
 ストランド強度とストランド弾性率の積は、1700以上であることがより好ましく、1750以上であることがより好ましく、2000以上であることがさらに好ましい。また、ストランド強度とストランド弾性率の積は3000以下が好ましく、2500以下がより好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、1650以上3000以下であってよく、1700以上3000以下であってよく、1750以上2500以下であってよく、2000以上2500以下であってよい。
 本発明の炭素繊維束は、得られる炭素繊維強化複合材料の性能の観点から、ストランド強度が4.9GPa以上であることが好ましい。本発明の炭素繊維束は、得られる炭素繊維強化複合材料の性能の観点から、ストランド弾性率が385GPa以上であることが好ましい。本発明の炭素繊維束は、得られる炭素繊維強化複合材料の性能の観点から、ストランド強度が4.9GPa以上であり、かつ、ストランド弾性率が385GPa以上であってよい。
 本発明の炭素繊維束は、ストランド弾性率が390GPa以上420GPa以下であることが好ましい。
 炭素繊維束のストランド弾性率を390GPa以上とすることで、得られる炭素繊維強化複合材料の性能をより高くしやすい。また、ストランド弾性率を420GPa以下とすることで、炭素繊維束の黒鉛結晶サイズが過剰に大きくなることを抑制することができ、繊維軸方向の圧縮強度の低下を抑制することができるため、得られる炭素繊維強化複合材料の性能をより高くしやすい。
 本発明の炭素繊維束は、ストランド強度が5.4GPa以上であることが好ましい。
 炭素繊維束のストランド強度を5.4GPa以上とすることで、得られる炭素繊維強化複合材料の性能をより高くしやすい。
 これらの観点から、本発明の炭素繊維束のストランド強度は4.7GPa以上であり、4.9GPa以上であることが好ましく、5.0GPa以上であることがより好ましく、5.4GPa以上であることがさらに好ましく、5.5GPa以上であることが特に好ましい。一方、炭素繊維束のストランド強度が高くなると、黒鉛結晶が発達してしまい、繊維軸方向の圧縮強度が低下する傾向がある。ストランド強度と繊維軸方向の圧縮強度のバランスが取れた炭素繊維束を得るため、炭素繊維束のストランド強度は8.0GPa以下が好ましく、7.5GPa以下がより好ましく、7.0GPa以下がさらに好ましく、6.5Pa以下が特に好ましく、6.0Pa以下が最も好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、4.7GPa以上8.0GPa以下であってよく、4.9GPa以上7.5GPa以下であってよく、5.0GPa以上7.0GPa以下であってよく、5.4GPa以上6.5Pa以下であってよく、5.5GPa以上6.0Pa以下であってよい。
 本発明の炭素繊維束は、結節強度が400N/mm以上であることが好ましい。
 結節強度は、繊維軸方向以外の繊維束の機械的な性能を反映させる指標となりうるものであり、特に繊維軸に垂直な方向の性能を簡易的に評価することができる。炭素繊維強化複合材料においては、擬似等方積層により材料を形成することが多く、複雑な応力場を形成する。その際、繊維軸方向の引張、繊維軸方向の圧縮応力の他に、繊維軸方向以外の応力も発生している。さらに、衝撃試験のような比較的高速なひずみを付与した場合、材料内部の発生応力状態はかなり複雑であり、繊維軸方向と異なる方向の強度が重要となる。したがって、炭素繊維束の結節強度を400N/mm以上とすることで、得られる炭素繊維強化複合材料の性能をより高くしやすい。
 これらの観点から、炭素繊維束の結節強度は415N/mm以上であることがより好ましく、430N/mm以上であることがさらに好ましい。一方、炭素繊維束の結節強度が高くなると、繊維軸方向以外の圧縮強度も高くなり、黒鉛結晶サイズが小さくなって弾性率が低下する傾向にある。ストランド弾性率と結節強度のバランスが取れた炭素繊維束を得るため、炭素繊維束の結節強度は600N/mm以下であることが好ましく、550N/mm以下であることがより好ましく、500N/mm以下であることがさらに好ましい。
 上記の上限及び下限は任意に組み合わせることができる。400N/mm以上600N/mm以下であってよく、415N/mm以上550N/mm以下であってよく、430N/mm以上500N/mm以下であってよい。
 結節強度の測定条件は、後述する実施例に記載のとおりである。
 本発明の炭素繊維束において、破壊表面生成エネルギーが19N/m以上であることが好ましい。
 破壊表面生成エネルギーは、単繊維表面にレーザーにて所定範囲の大きさを有する半球状欠陥を形成し、この繊維を引張試験によりその半球状欠陥部位で破断させ、繊維の破断強度と半球状欠陥の深さから、以下のグリフィス式(F1)より求められる。
 破壊表面生成エネルギー=σπC/2E ・・・(F1)
 ここで、σは破断強度、Eは炭素繊維束の超音波弾性率、Cは半球状欠陥の深さである。
 破壊生成エネルギーは炭素繊維の壊れ難さの指標であり、基質強度を表している。炭素繊維は、脆性的な破壊を示す材料であり、その引張強度は欠陥点の支配を受けている。炭素繊維が同じ欠陥点を有する場合、その基質強度が高い程、破壊強度は高くなる。したがって、炭素繊維束の破壊表面生成エネルギーを19N/m以上とすることで、炭素繊維束の弾性率を低下させることなく強度をより高くしやすくなり、得られる炭素繊維強化複合材料の性能をより高くしやすい。
 これらの観点から、炭素繊維束の破壊表面生成エネルギーは20.5N/m以上であることがより好ましい。
 一方、炭素繊維束の破壊表面生成エネルギーが高くなると、炭素繊維束を構成する単繊維表面の強度が高くなり、黒鉛結晶サイズが大きくなり、結果、繊維軸方向の圧縮強度が低下する傾向がある。破壊表面生成エネルギーと繊維軸方向の圧縮強度のバランスが取れた炭素繊維束を得るため、炭素繊維束の破壊表面生成エネルギーは30N/m以下であることが好ましく、25N/m以下であることがより好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、19N/m以上30N/m以下であってよく、20.5N/m以上25N/m以下であってよい。
 破壊表面生成エネルギーの測定条件は、後述する実施例に記載のとおりである。
 本発明の炭素繊維束は、密度が1.79g/cm以上であることが好ましい。
 炭素繊維束の密度が1.79g/cm以上であれば、ストランド強度、ストランド弾性率をより高くしやすい。
 この観点から、炭素繊維束の密度は1.81g/cm以上がより好ましく、1.83g/cm以上がさらに好ましい。炭素繊維束の密度は1.90g/cm以下が好ましく、1.88g/cm以下がより好ましく、1.86g/cm以下がさらに好ましい。炭素繊維束の密度が1.90g/cm以下であれば、炭素繊維束の黒鉛結晶サイズが過剰に大きくなることを抑制しやすく、繊維軸方向の圧縮強度の低下を抑制しやすくなるため、得られる炭素繊維強化複合材料の性能をより高くしやすい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、1.79g/cm以上1.90g/cm以下であってよく、1.81g/cm以上1.88g/cm以下であってよく、1.83g/cm以上1.86g/cm以下であってよい。
 密度の測定条件は、後述する実施例に記載のとおりである。
[炭素繊維束の製造方法]
 本発明の炭素繊維の製造方法は、炭素繊維前駆体アクリル繊維束を酸化性雰囲気で加熱して耐炎化繊維束とし、得られた耐炎化繊維束を非酸化性雰囲気中で加熱して炭素繊維束とする炭素繊維束の製造方法であって、前記非酸化性雰囲気中で加熱する温度において、雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度が200~500℃/分であり、炭素繊維単繊維の平均直径を6.5μm以上8.5μm以下とする。
 すなわち、本発明の炭素繊維の製造方法は、炭素繊維前駆体アクリル繊維束を耐炎化繊維束とするための酸化性雰囲気での加熱、および前記耐炎化繊維束を炭素繊維束とするための非酸化性雰囲気中での加熱を含む炭素繊維束の製造方法であって、前記非酸化性雰囲気での加熱において、1800℃から2200℃まで昇温するときの昇温速度が200~500℃/分であり、得られる炭素繊維束位に含まれる炭素繊維単繊維の平均直径が6.5μm以上8.5μm以下である。
 雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度を200℃/分以上とすることで、高い生産性で炭素繊維束を製造しやすい。雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度を500℃/分以下とすることで、急激な温度上昇に伴う激しい分解反応を抑制しやすくなり、炭素繊維単繊維の平均直径が6.5μm以上8.5μm以下の炭素繊維束のストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 これらの観点から、雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度の下限は、210℃/分以上が好ましく、215℃/分以上がさらに好ましく、220℃/分が最も好ましい。また、前記昇温速度の上限は、490℃/分以下が好ましく、480℃/分以下がさらに好ましく、470℃/分以下が最も好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、210~490℃/分であってよく、215~480℃/分であってよく、220~470℃/分であってよい。
 雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度は雰囲気温度1800℃から2200℃での繊維束の走行時間で、2200℃と1800℃の差である400℃を割った値である。
 炭素繊維前駆体アクリル繊維束および耐炎化繊維束は無交絡の状態で加熱されることが好ましい。
 繊維束が無交絡の状態で加熱されることで、繊維束の各単繊維に斑なく耐炎化しやすく、ストランド強度、ストランド強度を高くしやすい。
 炭素繊維前駆体アクリル繊維束および耐炎化繊維束は実質的に撚りのない状態で加熱されることが好ましい。
 繊維束が実質的に撚りのない状態で加熱されることで、繊維束の各単繊維に斑なく耐炎化しやすく、ストランド強度、ストランド強度を高くしやすい。
 本発明の炭素繊維の製造方法は、下記(1)~(2)の工程を含むことが好ましい。また、本発明の炭素繊維の製造方法は、下記(3)~(6)の工程を含むことが好ましい。また、本発明の炭素繊維の製造方法は、下記(1)~(6)の工程を含むことが好ましい。
(1)アクリロニトリル系重合体溶液を、乾湿式紡糸法を用いて吐出孔から空気中に吐出させた後、温度10℃以下、有機溶剤の濃度が79.3質量%以上82.0質量%以下の水溶液からなる凝固浴中で凝固させて前記有機溶剤を含む凝固糸束を得る凝固工程。
(2)(1)の凝固工程で得られた凝固糸束を温度75℃以上、有機溶剤の濃度が40質量%以上65質量%以下の温水溶液中で、延伸倍率2.0倍以上3.2倍以下に延伸して炭素繊維前駆体アクリル繊維束を得る第二延伸工程。
(3)炭素繊維前駆体アクリル繊維束または(2)の第二延伸工程で得られた炭素繊維前駆体アクリル繊維束を酸化性雰囲気中で加熱し、耐炎化繊維束を得る耐炎化工程。
(4)(3)の耐炎化工程で得られた耐炎化繊維束を、雰囲気温度が300℃以上900℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、伸長率が4.0%以上5.0%以下で加熱する第一炭素化工程。
(5)(4)の第一炭素化工程後に、雰囲気温度が1000℃以上1800℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、0.15cN/dtex以上0.21cN/dtex以下の張力を繊維束に付与しながら、繊維束を加熱する第二炭素化工程。
(6)(5)の第二炭素化工程後に、雰囲気温度が1700℃以上2300℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、0.15cN/dtex以上0.23cN/dtex以下の張力を繊維束に付与しながら、繊維束を加熱する第三炭素化工程。
<凝固工程>
 (1)の凝固工程は、アクリロニトリル系重合体溶液を、乾湿式紡糸法を用いて吐出孔から空気中に吐出させた後、温度10℃以下、有機溶剤の濃度が79.3質量%以上82.0質量%以下の水溶液(A)からなる凝固浴中で凝固させて前記有機溶剤を含む凝固糸束を得る工程である。
 凝固浴、すなわち水溶液(A)の温度は、10℃以下である。水溶液(A)の温度を10℃以下とすることで、緻密な凝固繊維を形成しやすく、特に繊維表面の緻密性を高めることができ、ストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 水溶液(A)の温度は、4℃以上であることが好ましく、6℃以上であることがより好ましい。水溶液(A)の温度を4℃以上とすることで、凝固繊維の過度な緻密化を抑制する事ができ、後の工程での延伸性を確保しやすい。例えば、水溶液(A)の温度は4~10℃であってよく、6~10℃であってよい。
 凝固浴、すなわち水溶液(A)の有機溶剤の濃度は、水溶液(A)の総質量に対して79.3質量%以上82.0質量%以下であり、79.8質量%以上81.2質量%以下であることが好ましい。有機溶剤の濃度を79.3質量%以上82.0質量%以下とすることで、表面及び内部が共に緻密な凝固糸を得ることができ、その結果、得られる炭素繊維束のストランド弾性率を低下させることなくストランド強度及び結節強度を高くしやすい。
 水溶液(A)に含まれる有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドが挙げられる。これらの中でも、より緻密な構造を形成するという観点から、ジメチルホルムアミドが好ましい。
<第二延伸工程>
 (2)の第二延伸工程は、(1)の凝固工程で得られた凝固糸束を温度75℃以上、有機溶剤の濃度が40質量%以上65質量%以下の温水溶液(B)中で、延伸倍率2.0倍以上3.2倍以下に延伸して炭素繊維前駆体アクリル繊維束を得る工程である。
 温水溶液(B)の温度は、75℃以上であり、85℃以上であることが好ましい。温水溶液(B)の温度を75℃以上とすることで、十分な延伸性を確保することができるため、安定に延伸しやすい。
 温水溶液(B)の温度は、98℃以下であることが好ましく、95℃以下であることがより好ましい。温水溶液(B)の温度を98℃以下とすることで、凝固糸束の急激な温度変化を抑制する事ができ、均一に延伸しやすい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、75℃以上98℃以下であってよく、85℃以上95℃以下であってよい。
 温水溶液(B)の有機溶剤の濃度は、温水溶液(B)の総質量に対して40質量%以上65質量%以下であり、50質量%以上60質量%以下であることが好ましい。温水溶液(B)の有機溶剤の濃度を40質量%以上65質量%以下とすることで、表面及び内部が共に緻密な構造を形成することができ、ストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 温水溶液(B)に含まれる有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドが挙げられる。これらの中でも、より緻密な構造を形成するという観点から、ジメチルホルムアミドが好ましい。
 温水溶液(B)中での延伸倍率は2.0倍以上3.2倍以下であり、2.7倍以上3.0倍以下であることが好ましい。温水溶液(B)中での延伸倍率を2.0倍以上とすることで、十分な分子配向性を持った炭素繊維前駆体アクリル繊維束を製造することが可能となり、ストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。温水溶液(B)中での延伸倍率を3.2倍以下とすることで、過剰な延伸を抑制でき、安定に延伸しやすい。
 (2)の第二延伸工程においては、温水溶液(B)中で凝固糸束を延伸した後に、例えば、有機溶剤を除去する工程、温水で延伸する工程、加圧水蒸気府に気化で延伸する工程、乾熱で延伸する工程、油剤を付与する工程、乾燥する工程を適宜組合せて炭素繊維前駆体アクリル繊維を得てもよい。
 具体的には、(2)の第二延伸工程において、凝固糸束を延伸した後に、有機溶剤を除去し、温度90℃以上の温水(C)中で倍率0.96倍以上1.30倍以下に収縮又は延伸し、加圧水蒸気雰囲気下で延伸倍率3.7倍以上4.2倍以下に延伸して炭素繊維前駆体アクリル繊維束を得てもよい。
 すなわち、(2)の第二延伸工程は、凝固糸束を温水溶液(B)中で延伸倍率2.0倍以上3.2倍以下に延伸する工程(2-1)、有機溶剤を除去する工程(2-2)、温度90℃以上の温水(C)中で倍率0.96倍以上1.30倍以下に収縮又は延伸する工程(2-3)、加圧水蒸気雰囲気下で延伸倍率3.7倍以上4.2倍以下に延伸する工程(2-5)を順に有することが好ましい。また、(2)の第二延伸工程は、油剤組成物を付与する工程(2-4)をさらに有してもよい。工程(2-4)は、工程(2-3)と工程(2-5)の間に行うことができる。
 工程(2-2)は、温水溶液(B)中で延伸した後の凝固糸束(以下、「延伸繊維束」ともいう。)から有機溶剤を除去する工程である。有機溶剤の除去方法としては、脱溶剤することができればいかなる方法でもよい。例えば、50℃以上100℃未満の範囲の温度に設定された多段洗浄槽にて、延伸繊維束を洗浄・延伸を行うことができる。
 工程(2-3)は、有機溶剤を除去した後の延伸繊維束を、温度90℃以上の温水(C)中で倍率0.96倍以上1.30倍以下に収縮又は延伸する工程である。工程(2-3)により延伸の歪みを緩和することができる。
 温水(C)の温度は90℃以上である。温水(C)の温度を90℃以上とすることで均一に延伸の歪みを緩和することが可能となり、ストランド弾性率を低下させることなく、より高いストランド強度及び結節強度をもつ炭素繊維束を得ることが可能となる。温水(C)の温度は、97℃以下であることが好ましい。温水(C)の温度を97℃以下とすることで、延伸繊維束の急激な温度変化を抑制する事ができ、均一に延伸の歪みを緩和することが可能となり、ストランド弾性率を低下させることなく、より高いストランド強度及び結節強度をもつ炭素繊維束を得ることが可能となる。
 温水(C)中での収縮又は延伸倍率は0.96倍以上1.30倍以下である。収縮又は延伸倍率を0.96倍以上とすることで、繊維束のバラケによる引取不良を防止でき、安定に延伸の歪みを緩和することが可能となる。収縮又は延伸倍率を1.30倍以下とすることで、過剰な負荷を抑制でき、安定に延伸の歪みを緩和することが可能となる。
 工程(2-3)においては、有機溶剤を除去した後の延伸繊維束を温水(C)中で、収縮倍率(緩和倍率)0.96倍以上1.00倍未満に収縮(緩和)するか、延伸倍率1.00倍以上1.30倍以下に延伸することが好ましく、収縮倍率(緩和倍率)0.96倍以上0.99倍以下に収縮(緩和)するか、延伸倍率1.05倍以上1.30倍以下に延伸することがより好ましく、収縮倍率(緩和倍率)0.96倍以上0.99倍以下に収縮(緩和)することがさらに好ましい。
 工程(2-4)は、温水(C)中で収縮又は延伸した後の延伸繊維束に油剤組成物を付与する工程である。
 油剤組成物は、炭素繊維前駆体アクリル繊維束に求める機能を勘案して決定できる。例えば、シリコーン系油剤組成物が挙げられる。油剤組成物には、必要に応じて、さらに酸化防止剤、帯電防止剤、消泡剤、防腐剤、抗菌剤、浸透剤等の添加物を配合することができる。
 油剤組成物を延伸繊維束に付与する方法としては、ローラー法、ガイド法、スプレー法、ディップ法等の公知の方法を用いることができる。
 油剤組成物を延伸繊維束に付与した後、必要に応じて、従来公知の方法で乾燥してもよい。
 工程(2-5)は、温水(C)中で収縮又は延伸した後、好ましくは油剤組成物を付与し、必要に応じて乾燥した後の延伸繊維束を加圧水蒸気雰囲気下で延伸倍率3.7倍以上4.2倍以下に延伸する工程である。
 加圧水蒸気雰囲気中での延伸倍率は3.7倍以上4.2倍以下である。加圧水蒸気雰囲気中での延伸倍率を3.7倍以上とすることで、得られる炭素繊維前駆体アクリル繊維束の分子配向性が向上され、ストランド弾性率を低下させることなく、より高いストランド強度及び結節強度をもつ炭素繊維束を得ることが可能となる。加圧水蒸気雰囲気中での延伸倍率を4.2倍以下とすることで、過剰な延伸を抑制することができ、安定に延伸することが可能となる。
 炭素繊維前駆体アクリル繊維束の単繊維繊度は、1.1~2.0dtexの範囲にすることが好ましい。前記単繊維繊度は、紡糸ノズルの吐出孔からアクリロニトリル系重合体溶液の吐出量、延伸倍率で制御できる。
<耐炎化工程>
 (3)の耐炎化工程は、炭素繊維前駆体アクリル繊維束または(2)の第二延伸工程で得られた炭素繊維前駆体アクリル繊維束を酸化性雰囲気中で加熱し、耐炎化繊維束を得る耐炎化工程である。
 耐炎化工程では、雰囲気温度が220℃以上280℃以下の範囲内で温度勾配を有する酸化性雰囲気中で炭素繊維前駆体アクリル繊維束を加熱することが好ましい。例えば、炭素繊維前駆体アクリル繊維束を酸化性雰囲気中で、雰囲気温度が220℃以上280℃以下の範囲内で直線的な温度勾配を有する耐炎化炉内で加熱することがより好ましい。
 耐炎化工程では、熱による環化反応と酸素による酸化反応が起こっており、この2つの反応をバランスよく生じさせることがストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を得るために重要である。
 耐炎化工程での雰囲気温度は220℃以上280℃以下とすることが好ましい。耐炎化工程での炭素繊維前駆体アクリル繊維束を通過させる雰囲気の温度を220℃以上とすることで、酸化反応が十分に生じていない部分を少なくでき、単繊維の断面方向で大きな構造斑が発生することを抑制できるため、ストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。耐炎化工程での炭素繊維前駆体アクリル繊維束を通過させる雰囲気の温度を280℃以下とすることで、単繊維の表面に近い部分により多くの酸素が存在することを抑制でき、その結果、後述する第一炭素化工程以降での加熱処理により過剰の酸素が消失、欠陥点を形成する反応を抑制しやすくなり、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 耐炎化工程では、得られる耐炎化繊維束の密度が1.33g/cm以上1.36g/cm以下となるまで炭素繊維前駆体アクリル繊維束を加熱することが好ましい。耐炎化繊維束の密度を1.33g/cm以上とすることで、耐炎化が不十分な箇所が発生することを抑制でき、その結果、後述する第一炭素化工程以降での加熱処理により分解反応が生じて欠陥点を形成することを抑制できるため、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。耐炎化繊維束の密度を1.36g/cm以下とすることで、耐炎化繊維束内に多くの酸素が存在することを抑制でき、その結果、後述する第一炭素化工程以降での加熱処理により過剰の酸素が消失、欠陥点を形成する反応を抑制しやすくなり、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 耐炎化工程では、伸長率が3.0%以上8.0%以下で炭素繊維前駆体アクリル繊維束を伸長して耐炎化繊維束とすることが好ましい。耐炎化工程での伸長率は4.0%以上7.0%以下とすることがより好ましく、5.0%以上6.5%以下とすることがさらに好ましい。耐炎化工程での伸長率を3.0%以上とすることで耐炎化繊維束の分子配向性が向上できるため、ストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。耐炎化工程での伸長率を8.0%以下とすることで過剰な伸長を抑制することができ、安定に耐炎化繊維束を得やすい。
 酸化性雰囲気を形成するガスとしては、例えば、空気、酸素、二酸化窒素が挙げられ、経済性の面から空気が好ましい。
 耐炎化炉内での処理時間(耐炎化処理の時間)は、例えば、30分以上100分以下とすることができる。
<第一炭素化工程>
 (4)の第一炭素化工程は、(3)の耐炎化工程で得られた耐炎化繊維束を、雰囲気温度が300℃以上900℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、伸長率が4.0%以上5.0%以下で加熱する第一炭素化工程である。
 第一炭素化工程では、耐炎化繊維束を非酸化性雰囲気中で、雰囲気温度が300℃以上900℃以下の範囲内で直線的な温度勾配を有する第一炭素化炉内で加熱することが好ましい。
 第一炭素化工程での雰囲気温度は300℃以上900℃以下である。第一炭素化工程での雰囲気温度を900℃以下とすることで、耐炎化繊維束が非常に脆くなることを抑制することが可能となり、安定に第一炭素化工程(第一炭素化炉)を通過させることができるだけでなく、後述する第二炭素化工程以降での加熱処理にて欠陥点の形成を抑制し、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 第一炭素化工程での伸長率は4.0%以上5.0%以下である。第一炭素化工程での伸長率を4.0%以上とすることで、得られる炭素繊維束の分子配向性を向上することができ、ストランド弾性率を低下させることなくストランド強度及び結節強度を向上させやすい。第一炭素化工程での伸長率を5.0%以下とすることで過剰な伸長を抑制することができ、安定に第一炭素化工程(第一炭素化炉)を通過させやすい。
 第一炭素化炉での処理時間(第一炭素化処理の時間)は1.0分以上3.0分以下が好ましく、1.2分以上2.5分以下がより好ましい。第一炭素化炉での処理時間を1.0分以上とすることで、急激な温度上昇に伴う激しい分解反応を抑制することが可能となり、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。第一炭素化炉での処理時間を3.0分以下とすることで、炭素繊維束の結晶の配向度が低下することを抑制でき、ストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 非酸化性雰囲気を形成するガスとしては、例えば、窒素、アルゴン、ヘリウムが挙げられ、経済性の面から窒素が好ましい。
<第二炭素化工程>
 (5)の第二炭素化工程は、(4)の第一炭素化工程後に、雰囲気温度が1000℃以上1800℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、0.15cN/dtex以上0.21cN/dtex以下の張力を繊維束に付与しながら、繊維束を加熱するである。なお、(5)の第二酸素化工程において炭素化の対象となる繊維束とは、第一炭素化工程を通過した耐炎化繊維束である。
 第二炭素化工程では、第一炭素化炉内(第一炭素化工程)を通過した繊維束を非酸化性雰囲気中で、雰囲気温度が1000℃以上1800℃以下の範囲内で直線的な温度勾配を有する第二炭素化炉内で加熱することが好ましい。
 第二炭素化工程での雰囲気温度は1000℃以上1800℃以下である。第二炭素化工程での雰囲気温度を1800℃以下とすることで、後述する第三炭素化工程での加熱処理にて欠陥点の形成を抑制し、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 第二炭素化工程(第二炭素化炉)を通過する繊維束は大きな収縮を伴うために、緊張下で加熱をすることが重要である。第二炭素化工程では、耐炎化工程(耐炎化炉)を通過させる直前の炭素繊維前駆体アクリル繊維束の総繊度に対して0.15cN/dtex以上0.21cN/dtex以下の張力を付与し、好ましくは0.17cN/dtex以上0.20cN/dtex以下の張力を付与する。第二炭素化工程(第二炭素化炉)を通過する繊維束に付与する張力を0.15cN/dtex以上とすることで、得られる炭素繊維束の分子配向性を高い状態に維持することが可能となり、ストランド弾性率を低下させることなくストランド強度及び結節強度を向上させやすい。第二炭素化工程(第二炭素化炉)を通過する繊維束に付与する張力を0.21cN/dtex以下とすることで、過剰な張力による炭素繊維束の単繊維破断を抑制することが可能となり、炭素繊維強化複合材料を安定に得やすい。
 第二炭素化炉での処理時間(第二炭素化処理の時間)は1.3分以上5.0分以下が好ましい。第二炭素化炉での処理時間を1.3分以上とすることで、急激な温度上昇に伴う激しい分解反応を抑制することが可能となり、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。第二炭素化炉での処理時間を5.0分以下とすることで、高い生産性を維持しつつ炭素繊維束の結晶の配向度を十分高くすることが可能となり、ストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を効率よく得やすい。
<第三炭素化工程>
 (6)の第三炭素化工程は、(5)の第二炭素化工程後に、雰囲気温度が1700℃以上2300℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、0.15cN/dtex以上0.23cN/dtex以下の張力を繊維束に付与しながら、繊維束を加熱する第三炭素化工程である。なお、(6)の第三炭素化工程において炭素化の対象となる繊維束とは、第二炭素化工程を通過した耐炎化繊維束である。
 第三炭素化工程では、第二炭素化炉内(第二炭素化工程)を通過した繊維束を非酸化性雰囲気中で、雰囲気温度が1700℃以上2300℃以下の範囲内で直線的な温度勾配を有する第三炭素化炉内で加熱して、炭素繊維束を得ることが好ましい。
 第三炭素化工程での雰囲気温度は1700℃以上2300℃以下である。第二炭素化工程の温度を考えると、第三炭素化工程での雰囲気温度を第二炭素化工程での雰囲気温度より高くすることが好ましく、1800℃以上とすることがより好ましい。第三炭素化工程での雰囲気温度を2300℃以下とすることで、第三炭素化炉の劣化を防止できるだけでなく、得られる炭素繊維束の欠陥点の形成を抑制し、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 加熱温度の最高温度は、2100~2300℃であることが好ましい。
 最高温度が2100℃以上であることで、ストランド弾性率を高くしやすく、2300℃以下であれば、第三炭素化炉の劣化を防止しうる。
 第三炭素化工程(第三炭素化炉)を通過する繊維束は大きな収縮を伴うために、緊張下で加熱をすることが重要である。第三炭素化工程では、耐炎化工程(耐炎化炉)を通過させる直前の炭素繊維前駆体アクリル繊維束の総繊度に対して0.15cN/dtex以上0.23cN/dtex以下の張力を付与し、好ましくは0.18cN/dtex以上0.22cN/dtex以下の張力を付与する。第三炭素化工程(第三炭素化炉)を通過する繊維束に付与する張力を0.15cN/dtex以上とすることで、得られる炭素繊維束の分子配向性を高い状態に維持することが可能となり、ストランド弾性率を低下させることなくストランド強度及び結節強度を向上させやすい。第三炭素化工程(第三炭素化炉)を通過する繊維束に付与する張力を0.23cN/dtex以下とすることで、過剰な張力による炭素繊維束の単繊維破断を抑制することが可能となり、炭素繊維強化複合材料を安定に得やすい。
 第三炭素化炉での処理時間(第三炭素化処理の時間)は1.0分以上3.0分以下が好ましい。第三炭素化炉での処理時間を1.0分以上とすることで、急激な温度上昇に伴う激しい分解反応を抑制することが可能となり、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。第三炭素化炉での処理時間を3.0分以下とすることで、高い生産性を維持しつつ炭素繊維束の結晶の配向度を十分高くすることが可能となり、ストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を効率よく得やすい。
 (6)の第三炭素化工程において、雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度は、300℃/分以上600℃/分以下であることが好ましく、350℃/分以上550℃/分以下であることがより好ましく、400℃/分以上500℃/分以下であることがさらに好ましい。雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度を300℃/分以上とすることで、高い生産性で炭素繊維束を製造しやすい。雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度を600℃/分以下とすることで、急激な温度上昇に伴う激しい分解反応を抑制することが可能となり、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 前述の昇温速度は雰囲気温度1800℃から2200℃での繊維束の走行時間で、2200℃と1800℃の差である400℃を割った値である。
 (5)の第二炭素化工程での最高雰囲気温度と(6)の第三炭素化工程での入口雰囲気温度との差は700℃以下であることが好ましく、500℃以下であることがより好ましい。(5)の第二炭素化工程での最高雰囲気温度と(6)の第三炭素化工程での入口雰囲気温度との差を700℃以下とすることで、(6)の第三炭素化工程における初期での激しい分解反応を抑制することが可能となり、ストランド弾性率を低下させることなく、密度が高く、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。
 (5)の第二炭素化工程での最高雰囲気温度と(6)の第三炭素化工程での入口雰囲気温度との差は、30℃以上であることが好ましく、50℃以上であることがより好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、30℃以上700℃以下であってよく、50℃以上500℃以下であってよい。
<その他の工程>
 本発明の炭素繊維の製造方法は、(1)の凝固工程の前に下記(a)のアクリロニトリル系重合体溶液調製工程を有していてもよい。
 本発明の炭素繊維の製造方法は、(1)の凝固工程と(2)の第二延伸工程の間に、下記(b)の第一延伸工程を有していてもよい。
 本発明の炭素繊維の製造方法は、(6)の第三炭素化工程の後に、下記(c)の表面酸化処理工程及び(d)のサイジング工程を有していてもよい。
(a)アクリロニトリル系重合体溶液を調製するアクリロニトリル系重合体溶液調製工程。
(b)(1)の凝固工程で得られた凝固糸束を空気中で延伸倍率1.00倍以上1.20倍以下に延伸する第一延伸工程。
(c)(6)の第三炭素化工程で得られた炭素繊維束を表面酸化処理する表面酸化処理工程。
(d)(c)の表面酸化処理工程で得られた表面酸化処理後の炭素繊維束をサイジング処理するサイジング工程。
(アクリロニトリル系重合体溶液調製工程)
 (a)のアクリロニトリル系重合体溶液調製工程は、(1)の凝固工程で用いるアクリロニトリル系重合体溶液を調製する工程である。
 本発明で用いられるアクリロニトリル系重合体は、アクリロニトリルを主な単量体とし、これを重合して得られる重合体である。アクリロニトリル系重合体は、アクリロニトリルのみから得られるホモポリマーであってもよいし、主成分であるアクリロニトリルに加えて他の単量体が共重合したコポリマーであってもよい。
 アクリロニトリル系重合体中のアクリロニトリルに由来する構成単位(以下、「アクリロニトリル単位」とも言う。)の含有量は、例えば、得られる炭素繊維束に求める品質を勘案して決定でき、例えば、アクリロニトリル系重合体を構成する単量体単位の総質量に対して90質量%以上100質量%以下であることが好ましく、90質量%以上99.5質量%以下であることがより好ましく、96質量%以上99.5質量%以下であることがさらに好ましい。アクリロニトリル単位の含有量が90質量%以上であれば、炭素繊維前駆体アクリル繊維束を炭素繊維に転換するための耐炎化及び炭素化のそれぞれの工程で、単繊維同士の融着を抑制でき、炭素繊維束のストランド強度の低下を防ぎやすい。さらに、加熱ローラーや加圧水蒸気による延伸等の処理において、単繊維間の接着を抑制しやすい。アクリロニトリル単位の含有量が100質量%以下、好ましくは99.5質量%以下であれば、溶剤への溶解性が低下しにくく、アクリロニトリル系重合体の析出・凝固を防止できるため、炭素繊維前駆体アクリル繊維束を安定して製造しやすい。
 アクリロニトリル系重合体がアクリロニトリル単位以外の単量体単位を有する場合、アクリロニトリル系重合体中のアクリロニトリル以外の単量体単位としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、アクリロニトリル系重合体の親水性を向上させるビニル系単量体単位、耐炎化反応を促進するビニル系単量体単位が好ましい。例えば、アクリル酸、メタクリル酸、イタコン酸、アクリル酸メチル、メタクリル酸メチル等のアクリル酸誘導体;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N、N-ジメチルアクリルアミド等のアクリルアミド誘導体;酢酸ビニルが挙げられる。
 アクリロニトリル系重合体を合成する方法はどのような重合方法であってもよく、重合方法の相違によって本発明が制約されるものではない。
 アクリロニトリル系重合体溶液の溶剤としては、例えば、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤;塩化亜鉛、チオシアン酸ナトリウム等の無機化合物の水溶液;が挙げられる。アクリロニトリル系重合体に対する溶解力が高い点から、ジメチルホルムアミド好ましい。
 アクリロニトリル系重合体溶液の重合体濃度は、アクリロニトリル系重合体溶液の総質量に対して、20質量%以上25質量%以下であることが好ましく、21質量%以上24質量%以下であることがより好ましい。重合体濃度を20質量%以上とすることで、凝固糸内部のボイドが減少するため、炭素繊維束のストランド強度を高くしやすい。重合体濃度を25質量%以下とすることでアクリロニトリル系重合体溶液は適度な粘度と流動性を保つことができるため、炭素繊維前駆体アクリル繊維束の製造が容易となりやすい。
 アクリロニトリル系重合体溶液の(1)の凝固工程に使用する際の温度は、50℃以上70℃以下に調整することが好ましく、より好ましくは55℃以上65℃以下である。アクリロニトリル系重合体溶液の温度を50℃以上70℃以下とすることで、アクリロニトリル系重合体溶液は適度な粘度と流動性を保つことができるため、炭素繊維前駆体アクリル繊維束の製造が容易となりやすい。
(第一延伸工程)
 (b)の第一延伸工程は、前記凝固糸束を空気中で延伸倍率1.00倍以上1.20倍以下に延伸する工程である。
 (b)の第一延伸工程は、(1)の凝固工程と(2)の第二延伸工程の間に行われることが好ましい。
 (b)の第一延伸工程では、(1)の凝固工程で引き取られた凝固糸束を、凝固液を含んだ状態のまま、空気中にて延伸する。空気中での延伸倍率は、1.00倍以上1.20倍以下であり、1.05倍以上1.15倍以下であることが好ましい。空気中での延伸倍率を1.00倍以上とすることで不均一な収縮を抑えることが可能となり、結果的にストランド弾性率を低下させることなく、高いストランド強度及び結節強度をもつ炭素繊維束を得やすい。空気中での延伸倍率を1.20倍以下とすることで、過剰な延伸を抑制でき、安定に延伸しやすい。
(表面酸化処理工程)
 (c)の表面酸化処理工程は、(6)の第三炭素化工程で得られた炭素繊維束を表面酸化処理する工程である。
 (c)の表面酸化処理工程は、(6)の第三炭素化工程の後に行われることが好ましい。
 第三炭素化工程(第三炭素化炉)を通過して得られた炭素繊維束は、表面酸化処理に供されることが好ましい。表面処理方法としては、公知の方法、すなわち電解酸化、薬剤酸化及び空気酸化等による酸化処理が挙げられ、いずれの方法を用いてもよいが、安定な表面酸化処理が可能である点で、工業的に広く実施されている電解酸化処理が好ましい。
 表面酸化処理では、表面処理状態を表すipaを0.05μA/cm以上0.25μA/cm以下にすることが好ましい。このような範囲に制御するためには、電解酸化処理にて電気量を調整する方法が簡便である。電解酸化処理では、同一電気量であっても、用いる電解質及びその濃度によってipaは大きく異なってくるが、pHが7より大きいアルカリ性水溶液中では、炭素繊維束を陽極として10クーロン/g以上200クーロン/g以下の電気量を流して酸化処理を行うことが好ましい。
 電解質としては、例えば炭酸アンモニウム、重炭酸アンモニウム、硫酸アンモニウム、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。
(サイジング工程)
 (d)のサイジング工程は、(c)の表面酸化処理工程後の炭素繊維束をサイジング処理する工程である。
 (d)のサイジング工程は、(c)の表面酸化処理工程の後に行われることが好ましい。
 (c)の表面酸化処理工程で得られた表面酸化処理された炭素繊維束は、続けてサイジング処理に供されることが好ましい。サイジング処理は、有機溶剤にサイジング剤を溶解させた溶解液や、例えば、乳化剤を用いてサイジング剤を水に分散させたエマルジョン液を、例えば、ローラー浸漬法、ローラー接触法によって炭素繊維束に付与し、次いで、これを乾燥することによって行うことができる。
 炭素繊維の表面へのサイジング剤の付着量の調節は、サイジング剤液の濃度調整や絞り量調整によって行うことができる。
 乾燥は、例えば、熱風、熱板、加熱ローラー、各種赤外線ヒーターを利用して行うことができる。
 サイジング剤としては、公知のサイジング剤を使用できる。例えば、エポキシ樹脂、ポリエーテル樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂を主成分としたサイジング剤が挙げられる。
 以下、実施例によって本発明を具体的に説明するが、本発明はその要旨を超えない限り以下の記載によっては限定されない。
 本実施例で行った各種測定方法は、以下の通りである。
[炭素繊維単繊維の平均直径の測定方法]
 炭素繊維束の密度(g/cm)、炭素繊維束1m当たりの質量、すなわち目付(g/m)、炭素繊維束のフィラメント数より、炭素繊維の単繊維1本当たりの断面積を算出した。その断面積と等しい面積を有する真円の直径を算出し、炭素繊維の単繊維の平均直径とした。
 なお、炭素繊維束の密度は、JIS R 7063:1999に記載されたC法(密度こう配管法)に準拠して測定した。
[ストランド強度、ストランド弾性率の測定方法]
 JIS R 7608:2007に準拠して、炭素繊維束のストランド強度及びストランド弾性率を測定した。
 なお、ストランド弾性率は、同法のA法で算出した。
[結節強度の測定方法]
 結節強さの測定は以下のように実施した。
 150mm長の炭素繊維束の両端に長さ25mmの掴み部を取り付け試験体とした。試験体の作製の際、0.1×10-3N/デニールの荷重を掛けて炭素繊維束の引き揃えを行った。この試験体に結び目を1つ、ほぼ中央部に形成し、引張時のクロスヘッド速度は100mm/分で実施した。試験数は12本で実施し、最小と最大値を取り除き、10本の平均値を測定値とした。
[破壊表面生成エネルギーの測定方法]
 炭素繊維の単繊維を20cmに切断し、この単繊維の中央部をJIS R 7606:2000に示される試料長10mm用の単繊維引張試験の台紙に貼り付け固定し、台紙からはみ出た余分な部分を切断して取り除いたサンプルを作製した。次いで、台紙に固定したこれらのサンプルに対し、レーザーを照射することで半球状欠陥を形成した。レーザー・インターフェース・システムには、フォトニックインストゥルメンツ社製のマイクロポイント(パルスエネルギー300uJ)を使用した。レーザーの集光に必要な光学顕微鏡には、ニコン社製のECLIPSE LV100を使用した。光学顕微鏡の開口絞りは最小に、対物レンズは100倍に設定した。この条件で、サンプルの繊維軸方向の中央部で、かつ、繊維軸に垂直方向の中央部に対して、アッテネータでレーザー強度を10%減衰させた波長435nmのレーザーを1パルス照射して、半球状欠陥を形成したサンプルを得た。サンプルである炭素繊維が収縮破壊を起こさないように、台紙に貼り付けた状態のサンプルをさらにフィルムで挟み、フィルム内を粘性液体で満たして引張試験を行った。具体的には、幅約5mm、長さ約15mmのフィルムを用意して、サンプルの台紙の両面の上部に前記フィルムを接着材で貼り付け、サンプルを覆うように台紙ごと前記フィルムで挟み込んだ。このフィルム間をグリセリン水溶液(グリセリン1質量部に対して水2質量部の割合)で満たした上で、引張速度0.5mm/分で引張試験を行い、破断荷重を測定した。次いで、引張試験で2つに分割されたサンプル対を台紙から取り出し、水で慎重に洗浄した後、自然乾燥させた。次いで、サンプルの破断面が上になるように、SEM試料台にカーボンペーストで固定してSEM観察サンプルを作製した。得られたSEM観察サンプルについて、走査電子顕微鏡(日本電子株式会社製、商品名「JSM6060」)を用い、加速電圧10kV以上15kV以下、倍率10000倍以上15000倍以下の条件にて破断面をSEM観察した。得られたSEM画像をパソコンに取り込み、画像解析ソフトにより画像解析して、半球状欠陥の深さと繊維断面積を測定した。ここで、「半球状欠陥の深さ」とは、単繊維の円周上から中心へ線を引いた際に、最も長くなる距離とした。
 次に、破断荷重を繊維断面積で除して(破断荷重/繊維断面積)、破断強度(σ)を算出した。
 下記式(F2)より、破壊表面生成エネルギーを求めた。30本の単繊維について破壊表面生成エネルギーを算出し、その平均値を炭素繊維束の破壊表面生成エネルギーとした。
 破壊表面生成エネルギー=σπC/2E ・・・(F2)
 ここで、σは破断強度(GPa)、Eは炭素繊維束の超音波弾性率(GPa)、Cは半球状欠陥の深さ(m)である。
 なお、炭素繊維束の超音波弾性率は、後述の測定方法に準拠して測定した。
<炭素繊維束の超音波弾性率の測定方法>
 図1に示す測定方法に従って、超音波伝搬速度を測定した。発信子と第1受信子との距離L1は0.20m、発信子と第2受信子との距離L2は0.25mとし、測定時の炭素繊維束に付与した張力は0.02N/texとした。パルス発信回路からパルスを発信子に与えて駆動、炭素繊維束に超音波を伝播させてから、炭素繊維束から伝播してきた超音波を第1受信子が検知するまでの時間を受信時間1とし、炭素繊維束から伝播してきた超音波を第2受信子が検知するまでの時間を受信時間2とした。
 下記式(F3)より、炭素繊維束の超音波弾性率を求めた。
 超音波弾性率(GPa)=((0.25m-0.20m)/(受信時間2(sec)-受信時間1(sec)))×炭素繊維束の密度(g/cm)×10-6 ・・・(F3)
[結晶子サイズLc]
 炭素繊維束を50mm長に切断し、これを30mg精秤採取し、試料繊維軸が正確に平行になるようにして引き揃えた後、試料調整用治具を用いて幅1mmの厚さが均一な繊維試料束に整えた。この繊維試料束に酢酸ビニル/メタノール溶液を含浸させて形態が崩れないように固定した後、これを広角X線回折試料台に固定した。X線源として、リガク社製のCuKα線(Niフィルター使用)X線発生装置を用い、同じくリガク社製のゴニオメーターにより、透過法によってグラファイトの面指数(002)に相当する2θ=25°近傍の回折ピークをシンチレーションカウンターにより検出した。出力は40kV-100mAにて測定した。回折ピークにおける半値巾から下記の式(F4)を用いて、結晶子サイズLcを求めた。
Lc=Kλ/(β0cosθ)・・・・・・・・(F4)
(式中、Kはシェラー定数0.9、λは用いたX線の波長(ここではCuKα線を用いているので、1.5418Å)、θはBraggの回折角、β0は真の半値巾、β0=βE-β1(βEは見かけの半値巾、β1は装置定数であり、ここでは1.05×10-2rad)である。)
 なお、測定はn=5で行った。
[平均ボイド長さの算出方法]
 Macromolecules,Vol.33,No.5,2000に記載のRuland法に従い、以下のようにしてSAXS(小角X線散乱法)による平均ボイド長さを算出した。
 AntonPaar社製の「SAXSpoint 2.0 system」を用い、X線としてCuKα(波長1.54Å)を使用し、露光時間を30分、測定環境を真空、サンプルから検出器までの距離を610mmに設定し、炭素繊維束を一方向に引き揃えた後、繊維軸方向を縦に試料台にセットして、小角X線散乱測定を行った。このとき、繊維軸に対して垂直方向に炭素繊維内部のボイドに由来する散乱が観測された。
 Ruland法による解析は、グラフ作成ソフト(Igor Pro 8.0)を用いて行った。なお、本明細書では散乱ベクトルqを4πsinθ/λと定義した(θ:散乱角、λ:X線波長)。上記測定条件に従って得られた2次元散乱プロファイルを方位角360°を1000分割して極座標変換し、方位角-散乱ベクトルqの散乱強度マップを得た。ここで、炭素繊維軸方向を方位角0°とする。得られた散乱強度マップに対し、炭素繊維の軸に対して垂直方向(方位角90°)かつ炭素繊維表面でのX線全反射に由来するストリークを含まない範囲(q=0.8~1.86nm-1)でRuland法による解析を行った。具体的には、方位角-散乱ベクトルqの散乱強度マップのq方向5ピクセル毎に平均化して各qにおける方位角vs散乱強度プロファイルを得た。このプロファイルの方位角0~180°の範囲をガウス関数でFittingし積分幅Bを算出した。qをqに対してプロットし、直線近似した時の切片と傾きを得て、下記式(F5)式より炭素繊維に存在するボイドのボイド長さLとボイドの配向分布の積分幅を算出した。
 (散乱ベクトルq)(方位角方向の散乱強度分布の積分幅B)=(散乱ベクトルq)(ボイドの配向分布の積分幅)+(2π/L)  ・・・(F5)
[炭素繊維強化複合材料の繊維軸方向の圧縮強度測定方法]
(プリプレグの製造)
 エポキシ樹脂#350を塗布した離型紙上にボビンから巻出した炭素繊維束を配置してエポキシ樹脂を含侵した。その上に保護フィルムを積層して、樹脂含有率約33質量%、炭素繊維密度125g/mの一方向配向プリプレグ(以下、プリプレグという。)を作成した。
(一方向積層材料の製造)
 プリプレグを2プライ積層してバギングし、バッグ内を真空ポンプで減圧した後、これをオートクレーブ内に入れ、オートクレーブ内を昇温速度2℃/分で昇温し、80℃で1時間保持し、次いで、昇温速度2℃/分で昇温し、130℃で1.5時間保持し硬化させ、炭素繊維強化複合材料を得た。その際、オートクレーブ内圧力は、80℃で1時間保持した後で昇圧し、0.6MPaとした。また、真空ポンプによる吸引はオートクレーブ内圧力が0.14MPaの時点で停止し、バッグ内を大気開放した。
<炭素繊維強化複合材料の繊維軸方向圧縮物性評価>
 得られた一方向積層材から幅12.7mm、長さ80mm、厚み1mmの試験片を6個作製した。試験片の長さ方向が繊維の0°方向である。得られた試験片について、SACMA SRM 1Rに準拠し、100kNロードセルを備えたINSTRON 5882測 定機を用い、温度23℃、湿度50%RHの環境下、クロスヘッドスピード1.27mm/minの条件で、繊維軸方向の圧縮強度および圧縮弾性率を測定し、測定値をVf(繊維体積含有率)56%に換算した。6個の試験片について同様に測定し、平均値を求めた。なお、測定は、同じ板から切り出したタブを各試験片に接着して行った。
[実施例1]
<炭素繊維前駆体アクリル繊維束の作製>
 アクリロニトリル単位を98質量%、メタクリル酸単位を2質量%含むアクリロニトリル系重合体をジメチルホルムアミドに溶解し、濃度23.5質量%のアクリロニトリル系重合体溶液を調製した。
 このアクリロニトリル系重合体溶液を直径0.15mm、数2000の吐出孔を配置した紡糸口金から紡出させて乾湿式紡糸した。すなわち、空気中に紡出させて約5mmの空間を通過させた後、8℃に調温した80.4質量%ジメチルホルムアミドを含有する水溶液(A)を満たした凝固液中で凝固させ、凝固糸束を引き取った。
 次いで凝固糸束をフィラメント数12000に合糸して凝固浴から引き出し、空気中で1.1倍延伸した後、90℃に調温した55質量%ジメチルホルムアミドを含有する温水溶液(B)を満たした延伸槽中にて2.9倍延伸した。延伸後、溶剤を含有している延伸繊維束を清浄な水で洗浄し、次に、96℃の温水(C)中で0.98倍の緩和を行った。引き続き、延伸繊維束にアミノ変性シリコーンを主成分とする油剤を1.1質量%となるよう付与し乾燥緻密化した。乾燥緻密化後の延伸繊維束を、加圧水蒸気雰囲気下にて4.0倍延伸して、更なる配向の向上と緻密化を行った後に巻き取ってアクリロニトリル系前駆体繊維束を得た。この繊維の繊度は、1.08dtexであった。
<炭素繊維束の作製>
 複数の炭素繊維前駆体アクリル繊維束を平行に揃えた状態で入口雰囲気温度を220℃、最高雰囲気温度を280℃として直線的な温度勾配を有する耐炎化炉に導入した。耐炎化炉内にて加熱された空気を炭素繊維前駆体アクリル繊維束に吹き付けることによって、炭素繊維前駆体アクリル繊維束を耐炎化処理し、密度1.345g/cmの耐炎化繊維束を得た。伸長率は6.0%とし、耐炎化処理時間は70分とした。
 次いで、耐炎化繊維束を窒素中、入口雰囲気温度を300℃、最高雰囲気温度を700℃として直線的な温度勾配を有する第一炭素化炉にて4.5%の伸長を加えながら通過させ、第一炭素化処理を行った。処理時間は2.0分とした。
 さらに、窒素雰囲気中で入口雰囲気を1100℃、最高雰囲気温度を1200℃として直線的な温度勾配を設定した第二炭素化炉を用いて第二炭素化処理を行った。その際、伸長率は-2.0%、処理時間は1.6分とした。このとき、処理中の糸束にかかっている張力は0.19cN/dtexであった。
 引き続き、窒素雰囲気中で入口雰囲気を1800℃、最高雰囲気温度を2300℃として直線的な温度勾配を設定した第三炭素化炉を用いて第三炭素化処理して炭素繊維束を得た。その際、伸長率は-2.0%、処理時間は1.9分とした。このとき、処理中の糸束にかかっている張力は0.21cN/dtexであった。
 また、第二炭素化炉の最高雰囲気温度と第三炭素化炉の入口雰囲気の差を600℃とし、雰囲気温度を1800℃から2200℃まで昇温するときの昇温速度を450℃/分とした。
 引き続いて、温度が30℃の重炭酸アンモニウム10質量%水溶液中を走行せしめ、炭素繊維束を陽極として、被処理炭素繊維1g当たり40クーロンの電気量となるように対極との間で通電処理を行った。
 次いで、温水90℃で洗浄した後、乾燥した。
 次いで、サイジング剤(DIC株式会社製、商品名「ハイドランN320」)を0.5質量%付着させ(サイジング処理)、ボビンに巻き取り、炭素繊維束を得た。
 サイジング処理後の炭素繊維束について、単繊維の平均直径、密度、目付、結節強度、破壊表面生成エネルギー、ストランド強度及びストランド弾性率を測定した。これらの結果を表3に示す。
 なお、表3中の「強度×弾性率」は、ストランド強度×ストランド弾性率である。
[実施例2~5]
 凝固浴の濃度、第二炭素化炉の最高雰囲気温度を表1及び表2に示す通りに変更した以外は、実施例1と同様にして炭素繊維束を作製し、各種測定を行った。結果を表3に示す。
[比較例1]
 炭素繊維前駆体アクリル繊維束の作製条件を表1に示す通りに変更し、炭素繊維前駆体アクリル繊維束の単繊維繊度が1.0dtexとなるように変更した以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束を作製した。
 得られた炭素繊維前駆体アクリル繊維束を用い、炭素繊維束の作製条件を表2に示す通り変更した以外は、実施例1と同様にして炭素繊維束を作製し、各種測定を行った。結果を表3に示す。
[比較例2]
 炭素繊維前駆体アクリル繊維束の作製条件を表1に示す通りに変更し、炭素繊維前駆体アクリル繊維束の単繊維繊度が0.77dtexとなるように変更した以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束を作製した。
 得られた炭素繊維前駆体アクリル繊維束を用い、炭素繊維束の作製条件を表2に示す通り変更した以外は、実施例1と同様にして炭素繊維束を作製し、各種測定を行った。結果を表3に示す。
[参考例1]
 市販されている炭素繊維束(東レ株式会社製、商品名「M40JB」)について、各種測定を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3の結果から明らかなように、各実施例で得られた炭素繊維束は、ストランド強度及びストランド弾性率が高く、バランスが取れていた。なお、各実施例で得られた炭素繊維束は、実質上無撚りであった。
 一方、比較例1、2で得られた炭素繊維束は各実施例で得られた炭素繊維束に比べて破壊表面生成エネルギーが低く、ストランド強度及びストランド弾性率が低かった。
 また、市販品である参考例1で使用した炭素繊維束は、各実施例で得られた炭素繊維束と同程度の破壊表面生成エネルギーを有するものの、CF密度が小さく、ストランド強度及びストランド弾性率が低かった。また、単繊維の直径も小さいため、炭素繊維強化複合材料を作製する場合に高いマトリックス樹脂粘度により含浸不足を生じて、炭素繊維強化複合材料の引張強度低下する懸念がある。
 本発明の炭素繊維束は、弾性率が低下することなく高いストランド強度、結節強度が発現できており、単繊維の直径も太いため、高い機械特性が要求される用途、例えば自動車用部材、航空宇・宙素材、土木・建築用素材、スポーツ・レジャー用素材、圧力容器、風車ブレード等の工業用素材等、幅広い用途において有用である。

Claims (26)

  1.  炭素繊維単繊維の平均直径が5.7μm以上6.5μm以下の炭素繊維束であって、
     実質上無撚りであり、
     炭素繊維束のストランド強度が4.7GPa以上であり、かつ炭素繊維束のストランド弾性率が320GPa以上である、炭素繊維束。
  2.  無交絡である、請求項1に記載の炭素繊維束。
  3.  炭素繊維単繊維の平均ボイド長さが22.0nm以下である、請求項1または2に記載の炭素繊維束。
  4.  炭素繊維単繊維の結晶子サイズLcが3.7nm以下である、請求項1~3のいずれか一項に記載の炭素繊維束。
  5.  ストランド強度(単位:GPa)とストランド弾性率(単位:GPa)の積が1650以上である、請求項1~4のいずれか一項に記載の炭素繊維束。
  6.  ストランド強度が4.9GPa以上であり、ストランド弾性率が385GPa以上である、請求項1~5のいずれか一項に記載の炭素繊維束。
  7.  ストランド弾性率が390GPa以上420GPa以下である、請求項1~6のいずれか一項に記載の炭素繊維束。
  8.  ストランド強度が5.4GPa以上である、請求項1~7のいずれか一項に記載の炭素繊維束。
  9.  結節強度が400N/mm以上である、請求項1~8のいずれか一項に記載の炭素繊維束。
  10.  結節強度が415N/mm以上である、請求項1~8のいずれか一項に記載の炭素繊維束。
  11.  破壊表面生成エネルギーが19N/m以上である、請求項1~10のいずれか一項に記載の炭素繊維束。
  12.  破壊表面生成エネルギーが20.5N/m以上である、請求項1~10のいずれか一項に記載の炭素繊維束。
  13.  密度が1.79g/cm以上である、請求項1~12のいずれか一項に記載の炭素繊維束。
  14.  炭素繊維前駆体アクリル繊維束を耐炎化繊維束とするための酸化性雰囲気での加熱、および前記耐炎化繊維束を炭素繊維束とするための非酸化性雰囲気中での加熱を含む炭素繊維束の製造方法であって、
     前記非酸化性雰囲気での加熱において、1800℃から2200℃まで昇温するときの昇温速度が200~500℃/分であり、
     得られる炭素繊維束位に含まれる炭素繊維単繊維の平均直径が6.5μm以上8.5μm以下である、炭素繊維束の製造方法。
  15.  前記炭素繊維前駆体アクリル繊維束および前記耐炎化繊維束を無交絡の状態で加熱する、請求項14に記載の炭素繊維束の製造方法。
  16.  前記炭素繊維前駆体アクリル繊維束および前記耐炎化繊維束を実質的に無撚りの状態で加熱する、請求項14または15に記載の炭素繊維束の製造方法。
  17.  下記(1)~(2)の工程を含む、請求項14~16のいずれか一項に記載の炭素繊維束の製造方法。
    (1)アクリロニトリル系重合体溶液を、乾湿式紡糸法を用いて吐出孔から空気中に吐出させた後、温度10℃以下、有機溶剤の濃度が79.3質量%以上82.0質量%以下の水溶液からなる凝固浴中で凝固させて前記有機溶剤を含む凝固糸束を得る凝固工程。
    (2)前記凝固工程で得られた凝固糸束を温度75℃以上、有機溶剤の濃度が40質量%以上65質量%以下の温水溶液中で、延伸倍率2.0倍以上3.2倍以下に延伸して前記炭素繊維前駆体アクリル繊維束を得る第二延伸工程。
  18.  前記凝固工程と前記第二延伸工程の間に、前記凝固工程で得られた凝固糸束を空気中で延伸倍率1.00倍以上1.20倍以下に延伸する第一延伸工程を有する、請求項14~17のいずれか一項に記載の炭素繊維束の製造方法。
  19.  前記第二延伸工程において、凝固糸束を延伸した後に、前記有機溶剤を除去し、温度90℃以上の温水中で倍率0.96倍以上1.30倍以下に収縮又は延伸し、加圧水蒸気雰囲気下で延伸倍率3.7倍以上4.2倍以下に延伸して前記炭素繊維前駆体アクリル繊維束を得る、請求項14~18のいずれか一項に記載の炭素繊維束の製造方法。
  20.  前記凝固工程で用いる前記水溶液の有機溶剤の濃度が79.8質量%以上81.2質量%以下である、請求項14~19のいずれか一項に記載の炭素繊維束の製造方法。
  21.  前記有機溶剤がジメチルホルムアミドである、請求項14~20のいずれか一項に記載の炭素繊維束の製造方法。
  22.  下記(3)~(6)の工程を含む、請求項14~21のいずれか一項に記載の炭素繊維束の製造方法。
    (3)炭素繊維前駆体アクリル繊維束または第二延伸工程で得られた炭素繊維前駆体アクリル繊維束を、酸化性雰囲気中で加熱し、耐炎化繊維束を得る耐炎化工程。
    (4)前記耐炎化工程で得られた耐炎化繊維束を、雰囲気温度が300℃以上900℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、伸長率が4.0%以上5.0%以下で加熱する第一炭素化工程。
    (5)前記第一炭素化工程後に、雰囲気温度が1000℃以上1800℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、0.15cN/dtex以上0.21cN/dtex以下の張力を繊維束に付与しながら、繊維束を加熱する第二炭素化工程。
    (6)前記第二炭素化工程後に、雰囲気温度が1700℃以上2300℃以下の範囲内で温度勾配を有する非酸化性雰囲気中で、0.15cN/dtex以上0.23cN/dtex以下の張力を繊維束に付与しながら、繊維束を加熱する第三炭素化工程。
  23.  前記耐炎化工程が、前記炭素繊維前駆体アクリル繊維束または前記第二延伸工程で得られた炭素繊維前駆体アクリル繊維束を、雰囲気温度が220℃以上280℃以下の範囲内で温度勾配を有する酸化性雰囲気中で、伸長率が3.0%以上8.0%以下で加熱し、密度が1.33g/cm以上1.36g/cm以下の耐炎化繊維束を得る工程である、請求項22に記載の炭素繊維束の製造方法。
  24.  前記第二炭素化工程での最高雰囲気温度と、前記第三炭素化工程での入口雰囲気温度の差が700℃以下である、請求項22または23に記載の炭素繊維束の製造方法。
  25.  前記第二炭素化工程での最高雰囲気温度と、前記第三炭素化工程での入口雰囲気温度の差が500℃以下である、請求項22または23に記載の炭素繊維束の製造方法。
  26.  前記非酸化性雰囲気での加熱における加熱温度の最高温度が、2100~2300℃である、請求項14~25のいずれか一項に記載の炭素繊維束の製造方法。
PCT/JP2023/017522 2023-05-10 2023-05-10 炭素繊維束及び炭素繊維束の製造方法 WO2024232033A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/017522 WO2024232033A1 (ja) 2023-05-10 2023-05-10 炭素繊維束及び炭素繊維束の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/017522 WO2024232033A1 (ja) 2023-05-10 2023-05-10 炭素繊維束及び炭素繊維束の製造方法

Publications (1)

Publication Number Publication Date
WO2024232033A1 true WO2024232033A1 (ja) 2024-11-14

Family

ID=93431529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017522 WO2024232033A1 (ja) 2023-05-10 2023-05-10 炭素繊維束及び炭素繊維束の製造方法

Country Status (1)

Country Link
WO (1) WO2024232033A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143680A1 (ja) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法
WO2010143681A1 (ja) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 機械的性能発現に優れた炭素繊維束
JP2011219514A (ja) * 2010-04-03 2011-11-04 Toho Tenax Co Ltd プリプレグ、炭素繊維複合材料およびその製造方法
JP2018145541A (ja) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 炭素繊維束及びその製造方法
CN110409018A (zh) * 2019-08-08 2019-11-05 中复神鹰碳纤维有限责任公司 干喷湿纺高强高模耐磨聚丙烯腈基碳纤维的制备方法
WO2019244830A1 (ja) * 2018-06-18 2019-12-26 東レ株式会社 炭素繊維およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143680A1 (ja) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法
WO2010143681A1 (ja) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 機械的性能発現に優れた炭素繊維束
JP2011219514A (ja) * 2010-04-03 2011-11-04 Toho Tenax Co Ltd プリプレグ、炭素繊維複合材料およびその製造方法
JP2018145541A (ja) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 炭素繊維束及びその製造方法
WO2019244830A1 (ja) * 2018-06-18 2019-12-26 東レ株式会社 炭素繊維およびその製造方法
CN110409018A (zh) * 2019-08-08 2019-11-05 中复神鹰碳纤维有限责任公司 干喷湿纺高强高模耐磨聚丙烯腈基碳纤维的制备方法

Similar Documents

Publication Publication Date Title
CN112368432B (zh) 碳纤维及其制造方法
WO2016068034A1 (ja) 炭素繊維束およびその製造方法
US20150274860A1 (en) Flame-resistant fiber bundle, carbon fiber bundle, and processes for producing these
EP1130140B1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
JPH11217734A (ja) 炭素繊維およびその製造方法
JP7342700B2 (ja) 炭素繊維束およびその製造方法
JP6610835B1 (ja) 炭素繊維およびその製造方法
JP5907321B1 (ja) 炭素繊維束およびその製造方法
JP5561446B1 (ja) 炭素繊維束の製造方法ならびに炭素繊維束
JP2002266173A (ja) 炭素繊維および炭素繊維強化複合材料
JP6020202B2 (ja) 炭素繊維束およびその製造方法
JP2023146344A (ja) 炭素繊維束及び炭素繊維束の製造方法
WO2024232033A1 (ja) 炭素繊維束及び炭素繊維束の製造方法
WO2024232032A1 (ja) 炭素繊維束及び炭素繊維束の製造方法
CN113597484B (zh) 碳纤维束及其制造方法
JP2017137614A (ja) 炭素繊維束およびその製造方法
JP5842343B2 (ja) 炭素繊維前駆体アクリル繊維束の製造方法
WO2024122529A1 (ja) 炭素繊維及びその製造方法
JPH05214614A (ja) アクリル系炭素繊維およびその製造方法
JP7360244B2 (ja) 炭素繊維の製造方法及び当該炭素繊維
JP2023146345A (ja) 炭素繊維束及び炭素繊維束の製造方法
WO2025028341A1 (ja) サイジング剤を含有する炭素繊維束、炭素繊維強化複合材料および圧力容器
WO2024090012A1 (ja) 炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法
JP2024128260A (ja) 炭素繊維前駆体繊維及びその製造方法、炭素繊維束の製造方法
US20240301592A1 (en) Carbon fibers, carbon fiber bundle, and production method for carbon fiber bundle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23936586

Country of ref document: EP

Kind code of ref document: A1