[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024208249A1 - 5'-膦酸酯修饰的核苷类似物及其制备的寡核苷酸 - Google Patents

5'-膦酸酯修饰的核苷类似物及其制备的寡核苷酸 Download PDF

Info

Publication number
WO2024208249A1
WO2024208249A1 PCT/CN2024/085752 CN2024085752W WO2024208249A1 WO 2024208249 A1 WO2024208249 A1 WO 2024208249A1 CN 2024085752 W CN2024085752 W CN 2024085752W WO 2024208249 A1 WO2024208249 A1 WO 2024208249A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally substituted
independently
alkyl
group
oligonucleotide
Prior art date
Application number
PCT/CN2024/085752
Other languages
English (en)
French (fr)
Inventor
邵鹏程
舒东旭
顾开春
Original Assignee
上海舶望制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海舶望制药有限公司 filed Critical 上海舶望制药有限公司
Publication of WO2024208249A1 publication Critical patent/WO2024208249A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/141Esters of phosphorous acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical

Definitions

  • the present invention relates to nucleoside analogs useful for 5'-phosphonate modification and oligonucleotides prepared therefrom, and more particularly to modified nucleosides and analogs thereof useful for incorporation into the termini of oligonucleotides, such oligonucleotides also being included in double-stranded compositions.
  • oligonucleotides containing nucleotide sequences that are at least partially complementary to target RNA can change the function and activity of the target both in vitro and in vivo. It has been demonstrated that when delivered to cells containing target RNA (e.g., messenger RNA (mRNA), such oligonucleotides can modulate the expression of the target as antisense compounds, which can result in changes in the transcription or translation of the target RNA, and such techniques are generally considered to be antisense techniques.
  • target RNA e.g., messenger RNA (mRNA)
  • mRNA messenger RNA
  • antisense compounds hybridize with target RNA and modulate gene expression activity or function, such as transcription or translation.
  • RNAi RNA interference
  • RNAi mechanism is caused by D
  • the RNAi gene is initiated by the production of longer non-coding RNAs mediated by the icer enzyme, which loads these RNA molecules into the RNA-induced silencing complex (RISC), where the sense strand is discarded and the antisense strand or guide strand is hybridized with a fully or partially complementary mRNA sequence, and then the silencing of the mRNA is induced via Ago2-mediated degradation or translation inhibition.
  • RISC RNA-induced silencing complex
  • Advances in RNAi technology and delivery methods have given RNAi-based therapies more and more positive results, and such therapies represent a promising treatment direction for a class of diseases.
  • the present invention provides 5'-phosphonate modified nucleoside analogs and oligonucleotides prepared therefrom, and further provides a 5'-phosphonate modified nucleoside analog that can be incorporated into the end of an oligonucleotide, particularly the 5'-end of an oligonucleotide, to obtain a double-stranded oligonucleotide (e.g., dsRNA) or a single-stranded oligonucleotide (e.g., an antisense oligonucleotide), thereby improving and enhancing gene silencing activity and/or duration.
  • a double-stranded oligonucleotide e.g., dsRNA
  • a single-stranded oligonucleotide e.g., an antisense oligonucleotide
  • Oligonucleotides such as RNAi agents containing one or more 5'-phosphonate modified nucleoside analogs can also be further linked to targeting ligands such as N-acetylgalactosamine or peptides, and can also be further linked to pharmacokinetic modulators such as polyethylene glycol (PEG) moieties or lipids.
  • targeting ligands such as N-acetylgalactosamine or peptides
  • pharmacokinetic modulators such as polyethylene glycol (PEG) moieties or lipids.
  • Each T 1 is independently an optionally protected phosphine moiety
  • Each T 2 is independently an active phosphorus group
  • each X 1 is independently a chemical bond, O, S, NJ 1 or CJ 1 J 2 , wherein J 1 and J 2 are each independently hydrogen, halogen, sulfonyl, sulfinyl, optionally substituted C 1 -C 6 alkyl, optionally substituted C 3 -C 6 cycloalkyl, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, optionally substituted C 5 -C 12 aryl, optionally substituted 5-12 membered heteroaryl, optionally substituted 5-12 membered heterocycle;
  • Each X 2 is independently CR 15 or N;
  • Each X 3 is independently a chemical bond, an optionally substituted C 1 -C 3 alkylene group, SO, SO 2 , C( ⁇ O), P( ⁇ O)R; R is OH, SH, C 1 -C 6 alkyl group, NH 2 , NHSO 2 CH 3 ;
  • Each Bx is independently a heterocyclic base moiety
  • Each R 1 and R 2 is independently H, halogen, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, sulfinyl, sulfonyl, acetyl;
  • Each R 3 and R 15 is independently H, halogen, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, or optionally substituted C 2 -C 6 alkynyl;
  • Each of Q 1 and Q 2 is independently H, halogen, -CN, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl or NR 4 R 5 ;
  • Q 3 is O, S, NR 6 or CR 7 R 8 ;
  • Q 4 , Q 5 , Q 6 , Q 7 , Q 9 , Q 10 , Q 11 and Q 12 are each independently H, halogen, optionally protected hydroxy, acetoxy, azido, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, NR 9 R 10 ;
  • Q 8 is O, S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 R 19 ;
  • each of R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 18 and R 19 is independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid, C( ⁇ O)J 3 , C( ⁇ O)OJ 3 or C( ⁇ O)N(J 3 )(J 4 );
  • Each of J 3 , J 4 , J 5 and J 6 is independently H or C 1 -C 6 alkyl;
  • n is independently 0, 1 or 2.
  • each optionally substituted group comprises one or more substituents independently selected from the following: halogen, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • each T 1 is independently an optionally protected phosphine moiety having the formula:
  • Ra and Rc are each independently selected from hydroxy or protected hydroxy, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, amino or protected/substituted amino, natural or modified nucleoside; and R b is O, S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group;
  • the substituents in the substituted amino group are selected from the group consisting of an optionally substituted C 1 -C 6 alkyl group, an optionally substituted C 2 -C 6 alkenyl group, an optionally substituted C 2 -C 6 alkynyl group, a sulfinyl group, a sulfonyl group, and an acetyl group.
  • the sulfonyl group is preferably methylsulfonyl.
  • each optionally substituted group comprises one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, and CN.
  • Examples of protecting groups commonly used to protect phosphorus hydroxyl groups or phosphorus thiol groups include, but are not limited to, methyl, ethyl, benzyl (Bn), phenyl, isopropyl, tert-butyl, acetyl, chloroacetyl, trichloroacetyl, trifluoroacetyl, pivaloyl, tert-butoxymethyl, methoxymethyl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 2-trimethylsilylethyl, allyl, cyclohexyl (cHex), 9-fluorenylmethoxycarbonyl, mesylate, tosylate, trifluoromethanesulfonate, Sulfonic acid, benzoyl, benzoyl formate, p-phenylbenzoyl, 4-methoxybenz
  • Examples of commonly used amino protecting groups include, but are not limited to, 2-trimethylsilylethoxycarbonyl (Teoc), 1-methyl-1-(4-biphenylyl)ethoxycarbonyl (Bpoc), tert-butoxycarbonyl (BOC), allyloxycarbonyl (Alloc), 9-fluorenylmethoxycarbonyl (Fmoc), benzyloxycarbonyl (Cbz), benzyl, formyl, acetyl, pivaloyl, trihaloacetyl, benzoyl, nitrophenyl, acetyl, 2-nitrobenzenesulfonyl, phthalimido (Pht), p-toluenesulfonyl (Tos), trityl (Trt), 2,4-dioxybenzyl (PMB) and dithiosuccinyl.
  • Teoc 2-trimethylsilylethoxycarbonyl
  • Bpoc 1-methyl
  • each T 1 is independently an optionally protected phosphine moiety having the formula:
  • Ra and Rc are each independently selected from a protected hydroxyl group or a protected thiol group; and Rb is O or S.
  • the hydroxy protecting groups are each independently selected from acetyl, tert-butyl, tert-butoxymethyl, methoxymethyl, tetrahydropyranyl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 2-trimethylsilylethyl, p-chlorophenyl, 2,4-dinitrophenyl, benzyl, benzoyl, p-phenylbenzoyl, 2,6-dichlorobenzyl, diphenylmethyl, p-nitrobenzyl, trimethylsilyl, triethylsilyl, tert-butyl ...
  • POM methyl ether
  • preferred hydroxy protecting groups are each independently selected from acetyl, benzyl, tert-butyldimethylsilyl, pivalate methyl ether (POM), tert-butyldiphenylsilyl and 4,4'-dimethoxytrityl.
  • the thiol protecting groups are each independently selected from methyl, ethyl, acetyl, tert-butyl, tert-butoxymethyl, methoxymethyl, tetrahydropyranyl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 2-trimethylsilylethyl, p-chlorophenyl, 2,4-dinitrophenyl, benzyl, benzoyl, p-phenylbenzoyl, 2,6-dichlorobenzyl, diphenylmethyl, p-nitrobenzyl, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, triphenylsilyl, triisopropylsilyl, benzoylformate, chloroacetyl,
  • R b is O or S
  • Ra and R c are each independently selected from protected hydroxy, C 1 -C 6 alkyl, and C 1 -C 6 alkoxy.
  • R b is O
  • Ra and Rc are each independently selected from OH, SH, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 OC( ⁇ O)C(CH 3 ) 3 , OCH 2 CH 2 CN, NHSO 2 CH 3 .
  • one of Ra and Rc is hydroxyl or protected hydroxyl, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, amino or protected/substituted amino, and the other is a natural or modified nucleoside; and R b is O, S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group. More preferably, one of Ra and Rc is hydroxyl or protected hydroxyl, and the other is a natural nucleoside, and more preferably R b is O.
  • each T 2 is independently an active phosphorus group having the following structure: wherein M 4 is H, optionally substituted C 1 -C 6 alkyl, OH, OJ 7 , SH, SJ 7 or NJ 7 J 8 , M 5 is optionally substituted C 1 -C 6 alkyl, OH, OJ 7 , SH, SJ 7 or NJ 7 J 8 , each J 7 or J 8 is independently optionally substituted C 1 -C 6 alkyl or sulfonyl; and r is 0 or 1.
  • each optionally substituted group of the active phosphorus group comprises one or more substituents independently selected from the following: halogen, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • each J 7 or J 8 is independently a substituted C 1 -C 6 alkyl, wherein the substituent is selected from cyano and halogen.
  • M 4 is selected from methyl, iso, propyl, isopropyl.
  • M 4 is selected from methanesulfonylamide.
  • M 4 is OJ 7 , wherein J 7 is a substituted C 1 -C 6 alkyl, and the substituent is selected from cyano and halogen.
  • M 5 is selected from N(CH(CH 3 ) 2 ) 2 .
  • M 4 is O(CH 2 ) 2 CN
  • M 5 is N(CH(CH 3 ) 2 ) 2
  • r is 0.
  • each T2 reactive phosphorus group is independently a phosphoramidite.
  • each T2 reactive phosphorus group is independently selected from diisopropylcyanoethoxyphosphoramidite, diisopropylethylphosphoramidite, and H-phosphonate.
  • each X 1 is independently O.
  • each BX heterocyclic base moiety is independently selected from a natural nucleobase, a modified nucleobase, a universal base.
  • each BX heterocyclic base moiety is independently a pyrimidine, a substituted pyrimidine, a pseudouracil, a substituted pseudouracil, a purine, a hypoxanthine, or a substituted purine.
  • each BX heterocyclic base moiety is independently uracil, 5-thiazolouracil, thymine, cytosine, pseudouracil, N1-methyl-pseudouracil, hypoxanthine, 5-methylcytosine, 5-methyluracil, 3-benzoyluracil, 2,6-diaminopurine, adenine or guanine.
  • each BX heterocyclic base moiety is independently 2-thiouracil, 5-fluorouracil, dihydrouridine (D), 7-methylguanosine (m7G).
  • each R 15 and R 3 is independently H.
  • each R 1 and R 2 is independently H, methylsulfonyl, or acetyl.
  • each X 2 is independently N, and each R 1 and R 2 is independently H, methylsulfonyl, or acetyl.
  • a in Formula (I), (II) or (III) has one of the following formulae:
  • Q 1 and Q 2 are each independently H, halogen, -CN, or optionally substituted C 1 -C 6 alkyl;
  • Q 8 is O, S, SO, SO 2 , PR 16 R 17 , or NR 11 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, or NR 18 R 19 ;
  • R 11 , R 18 and R 19 are each independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid, C( ⁇ O)J 3 , C( ⁇ O)OJ 3 or C( ⁇ O)N(J 3 )(J 4 ); J 3 and J 4 are independently H or C 1 -C 6 alkyl.
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • each Q 1 and Q 2 are each independently H, F, -CN, or methyl; more preferably H.
  • Q 8 is S, SO, SO 2 .
  • M 1 is C(Rd)(Re)
  • X 2 is C
  • X 3 is a chemical bond
  • A is
  • Q 8 is S, SO, SO 2 , PR 16 R 17 or NR 11
  • Q 1 , Q 2 , R 11 , R 16 and R 17 are as defined herein for formula (I).
  • X 2 is N
  • X 3 is a chemical bond, -CH 2 -, -CH 2 CH 2 -, SO, SO 2 .
  • X 2 is CH and X 3 is a chemical bond.
  • n is 0 or 1.
  • the compounds provided herein have a compound represented by formula (I-1) or a stereoisomer thereof:
  • T 1 , T 2 , A, R 3 and Bx are each as defined in the above formula (I) and the embodiments;
  • X 3 is a chemical bond, C( ⁇ O), P( ⁇ O)R, SO or SO 2 ;
  • M 1 is C(Rd)(Re), C(Rd)(Re)C(Rg)(Rf), each of Rd, Re, Rg and Rf is independently selected from the following substituents: hydrogen, halogen, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkylthiol, O(CH 2 ) 2 -OCH 3 , NJ 5 , CN, OC( ⁇ O)J 5 , OC( ⁇ O)N(J 5 )(J 6 ) and C( ⁇ O)N((J 5 )(J 6 ), J 5 and J 6 are independently selected from the following substituents: formula (I-1)
  • each Rd, Re, Rg and Rf is independently selected from the following substituents: hydrogen, fluorine, hydroxyl, C 1 -C 6 alkoxy, O(CH 2 ) 2 -OCH 3 , more preferably hydrogen.
  • R 3 is hydrogen
  • Q 1 and Q 2 are each independently H, halogen, or optionally substituted C 1 -C 6 alkyl;
  • Q 8 is O, S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 R 19 ;
  • R 11 , R 18 and R 19 are independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid, C( ⁇ O)J 3 , C( ⁇ O)OJ 3 or C( ⁇ O)N(J 3 )(J 4 );
  • J 3 and J 4 are independently H or C 1 -C 6 alkyl.
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • the compounds provided herein have a compound represented by formula (I-2) or a stereoisomer thereof:
  • T 1 , T 2 , A, R 3 and Bx are each as defined in the above formula (I) and the embodiments;
  • each Rd, Re, Rg and Rf is independently selected from the following substituents: hydrogen, fluorine, hydroxyl, C 1 -C 6 alkoxy, O(CH 2 ) 2 —OCH 3 .
  • M 1 is CH 2 or CH 2 CH 2 .
  • R 3 is hydrogen
  • Q 1 and Q 2 are each independently H, halogen, or optionally substituted C 1 -C 6 alkyl;
  • Q 8 is S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 R 19 ;
  • R 11 , R 18 and R 19 are independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid, C( ⁇ O)J 3 , C( ⁇ O)OJ 3 or C( ⁇ O)N(J 3 )(J 4 );
  • J 3 and J 4 are independently H or C 1 -C 6 alkyl.
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • Ra and Rc are each independently selected from hydroxy or protected hydroxy, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, amine or protected/substituted amino, natural or modified nucleoside; and R b is O, S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group.
  • the substituents in the substituted amino group are selected from the group consisting of optionally substituted C 1 -C 6 alkyl, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, sulfinyl, sulfonyl, and acetyl.
  • the sulfonyl group is preferably methylsulfonyl.
  • R b is O or S
  • Ra and R c are each independently selected from protected hydroxy, C 1 -C 6 alkyl, and C 1 -C 6 alkoxy.
  • R b is O
  • Ra and Rc are each independently selected from OH, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 OC( ⁇ O)C(CH 3 ) 3 , OCH 2 CH 2 CN, NHSO 2 CH 3 .
  • T 2 is an active phosphorus group, and the active phosphorus group is a phosphoramidite.
  • T 2 active phosphorus group is selected from diisopropyl cyanoethoxy phosphoramidite, diisopropyl ethyl phosphoramidite and H-phosphonate.
  • the heterocyclic base moiety of B X is selected from natural nucleobases, modified nucleobases, and universal bases.
  • the heterocyclic base moiety of BX is pyrimidine, substituted pyrimidine, pseudouracil, substituted pseudouracil, purine, hypoxanthine or substituted purine.
  • the BX heterocyclic base moiety is uracil, 5-thiazolouracil, thymine, cytosine, pseudouracil, N1-methyl-pseudouracil, hypoxanthine, 5-methylcytosine, 5-methyluracil, 3-benzoyluracil, 2,6-diaminopurine, adenine or guanine.
  • each BX heterocyclic base moiety is independently 2-thiouracil, 5-fluorouracil, dihydrouridine (D), 7-methylguanosine (m7G).
  • the compounds of formula (I-2) provided herein have 1S, 2S, 4S or 1R, 2R, 4R stereoconfiguration.
  • the compounds provided herein have formula (II-1) or a stereoisomer thereof:
  • T 1 , T 2 , X 1 , X 3 , A, R 3 , Bx and n are each as defined in the above formula (II) and the embodiments; R 1 and R 2 are each independently H, methylsulfonyl or acetyl.
  • the compounds provided herein are of formula (II-1), n is 0 or 1.
  • X 3 is CH 2 or CH 2 CH 2 .
  • the compounds provided herein have formula (II-2) or formula (II-3) or stereoisomers thereof:
  • T 1 , T 2 , X 1 , A and Bx are each as defined above in formula (II) and the embodiments.
  • the compounds provided herein have formula (III-1) or formula (III-2) or stereoisomers thereof:
  • T 1 , T 2 , X 1 , A and Bx are each as defined above in formula (III) and the embodiments.
  • a in Formula (II-1), Formula (II-2), Formula (II-3), Formula (III-1) or Formula (III-2) has one of the following formulae:
  • Q 1 and Q 2 are each independently H, halogen, -CN, optionally substituted C 1 -C 6 alkyl;
  • Q 8 is O, S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • J 3 and J 4 are independently H or C 1 -C 6 alkyl.
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • the compounds provided herein have formula (II-1), formula (II-2), formula (II-3), formula (III-1) or formula (III-2), wherein each Q 1 and Q 2 are each independently H, F, -CN, methyl; more preferably H.
  • the compounds provided herein are of formula (II-1), formula (II-2), formula (II-3), formula (III-1), or formula (III-2), wherein T1 is an optionally protected phosphine moiety having the following formula:
  • Ra and Rc are each independently selected from hydroxy or protected hydroxy, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, amine or protected/substituted amino, natural or modified nucleoside; and R b is O, S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group.
  • the substituents in the substituted amino group are selected from the group consisting of optionally substituted C 1 -C 6 alkyl, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, sulfinyl, sulfonyl, and acetyl.
  • the sulfonyl group is preferably methylsulfonyl.
  • R b is O or S
  • Ra and R c are each independently selected from protected hydroxy, C 1 -C 6 alkyl, and C 1 -C 6 alkoxy.
  • R b is O
  • Ra and Rc are each independently selected from OH, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 OC( ⁇ O)C(CH 3 ) 3 , OCH 2 CH 2 CN, NHSO 2 CH 3 .
  • T 2 is an active phosphorus group, and the active phosphorus group is a phosphoramidite.
  • T 2 active phosphorus group is selected from diisopropyl cyanoethoxy phosphoramidite, diisopropyl ethyl phosphoramidite and H-phosphonate.
  • the heterocyclic base moiety of B X is selected from natural nucleobases, modified nucleobases, and universal bases.
  • the BX heterocyclic base moiety is pyrimidine, substituted pyrimidine, pseudouracil, substituted pseudouracil, purine, hypoxanthine or substituted purine.
  • the BX heterocyclic base moiety is uracil, 5-thiazolouracil, thymine, cytosine, pseudouracil, N1-methyl-pseudouracil, hypoxanthine, 5-methylcytosine, 5-methyluracil, 3-benzoyluracil, 2,6-diaminopurine, adenine or guanine.
  • each BX heterocyclic base moiety is independently 2-thiouracil, 5-fluorouracil, dihydrouridine (D), 7-methylguanosine (m7G).
  • the compounds provided herein have a compound represented by formula (IV) or a stereoisomer thereof:
  • Q 8 is S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 R 19 ;
  • Ra and Rc are each independently selected from hydroxyl or protected hydroxyl, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, protected or optionally substituted amino, natural or modified nucleoside;
  • R b is O, S or NR 12 ,
  • R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group;
  • the substituents in the substituted amino group are selected from the group consisting of an optionally substituted C 1 -C 6 alkyl group, an optionally substituted C 2 -C 6 alkenyl group, an optionally substituted C 2 -C 6 alkynyl group, a sulfinyl group, a sulfonyl group, and an acetyl group;
  • Q 1 and Q 2 are each independently H, halogen, -CN, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl or NR 4 R 5 ;
  • Each of R 4 , R 5 , R 11 , R 18 and R 19 is independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid;
  • Z is a nucleoside comprising a phosphoramidite, a sugar or a sugar-substituting moiety.
  • each substituted group comprises one or more substituents optionally independently selected from the following: halogen, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • Hydroxyl, thiol and amino protecting groups may optionally be selected from those commonly used protecting groups described herein, such as, but not limited to, those described for formula (I).
  • Q1 and Q2 are each independently H.
  • the sugar or sugar replacement moiety in the nucleoside comprises a 5-membered furanose ring, a non-furanose ring, or a 5-6-membered carbon ring system or an open system.
  • the sugar alternative substitution part is morpholinyl, cyclohexenyl, cyclohexyl, cyclopentyl, pyranyl, cyclohexane hexol.
  • the sugar moiety is furanose.
  • a non-locked nuclear base analog (UNA) or a glycerol nucleic acid base analog (GNA) is included in the nucleoside of the sugar or sugar alternative part.
  • a locked nucleic acid (LNA) or a bridged nucleic acid (BNA) is included.
  • the compound provided herein is of formula (IV), wherein Q8 is bonded to the 4'-carbon or the 5'-carbon of the sugar or sugar surrogate moiety.
  • the compound provided herein is of formula (IV), wherein the sugar or sugar-substituting nucleoside has the following structural representation:
  • M 2 is independently C(q 3 )(q 4 ), C(q 3 )(q 4 )C(q 5 )(q 6 );
  • X 1 is each independently a chemical bond, O, S, NJ 1 or CJ 1 J 2 , wherein J 1 and J 2 are each independently hydrogen, halogen, sulfonyl, sulfinyl, optionally substituted C 1 -C 6 alkyl, optionally substituted C 3 -C 6 cycloalkyl, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, optionally substituted C 5 -C 12 aryl, optionally substituted 5-12 membered heteroaryl, optionally substituted 5-12 membered heterocycle;
  • X 2 are each independently CR 15 or N;
  • X 3 are each independently a chemical bond, an optionally substituted C 1 -C 3 alkylene group, SO, SO 2 , C( ⁇ O), or P( ⁇ O)R; R is OH, SH, a C 1 -C 6 alkyl group, NH 2 , or NHSO 2 CH 3 ;
  • Bx are each independently a heterocyclic base moiety
  • R 13 are each independently hydrogen or C 1 -C 6 alkyl.
  • each R 15 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 , q 9 and q 10 is independently selected from the following groups: hydrogen, fluorine, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, O(CH 2 ) 2 —OCH 3 .
  • each R 15 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 , q 9 and q 10 is independently selected from the following groups: hydrogen.
  • the compound provided herein is of formula (IV), wherein the sugar or sugar-substituting nucleoside has the following structural representation:
  • the compound provided herein is of formula (IV), wherein the sugar or sugar-substituting nucleoside has the following furanose structure schematic:
  • the compounds provided herein have a compound represented by formula (IV-1) or a stereoisomer thereof:
  • R 15 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 , q 9 and q 10 are each independently selected from hydrogen, fluorine, hydroxyl, methyl, methoxy, O(CH 2 ) 2 -OCH 3.
  • R 15 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 , q 9 and q 10 are each independently selected from hydrogen.
  • M 3 is O, S, C(q 7 )(q 8 ), M 2 is C(q 3 )(q 4 ), X 2 is CR 15 or N, X 3 is a chemical bond, SO, SO 2 , R 15 , q 1 , q 2 , q 3 , q 4 , q 7 and q 8 , as defined herein, as shown in the following structure:
  • M 3 is O, S, CH 2 , M 2 is CH 2 , X 2 is CH, and X 3 is a chemical bond.
  • M 3 is CH 2 , M 2 is CH 2 , X 2 is N, and X 3 is a chemical bond, SO, or SO 2 .
  • M3 is C( q7 )( q8 )
  • M2 is C( q3 )( q4 )C( q5 )( q6 )
  • X2 is CR15 or N
  • X3 is a chemical bond, SO, SO2 , R15 , q1 , q2 , q3 , q4 , q5 , q6 , q7 and q8 , as defined herein, as shown in the following structure:
  • M3 is CH2
  • M2 is CH2CH2
  • X2 is CH
  • X3 is a chemical bond .
  • M3 is CH2, M2 is CH2CH2 , X2 is N , and X3 is a chemical bond, SO or SO2 .
  • the compound provided herein is of formula (IV-1), wherein Q 8 is S.
  • R b is O or S
  • Ra and R c are each independently selected from protected hydroxyl, C 1 -C 6 alkyl, and C 1 -C 6 alkoxy.
  • Ra and Rc are each independently selected from hydroxyl, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 OCH 3 , OCH 2 CH 2 CN, NHSO 2 CH 3 .
  • the compounds provided herein are of formula (IV) or (IV-1), wherein the B X heterocyclic base moiety is selected from natural nucleobases, modified nucleobases, and universal bases.
  • the compounds of formula (IV) or (IV-1) provided herein, the BX heterocyclic base moieties are independently pyrimidine, substituted pyrimidine, pseudouracil, substituted pseudouracil, purine, hypoxanthine or substituted purine.
  • the BX heterocyclic base moieties are independently uracil, 5-thiazolouracil, thymine, cytosine, pseudouracil, N1-methyl-pseudouracil, hypoxanthine, 5-methylcytosine, 5-methyluracil, 3-benzoyluracil, 2,6-diaminopurine, adenine or guanine.
  • each BX heterocyclic base moiety is independently 2-thiouracil, 5-fluorouracil, dihydrouridine (D), 7-methylguanosine (m7G).
  • the compound provided herein is of formula (IV) or (IV-1), wherein the phosphoramidite is selected from diisopropylcyanoethoxyphosphoramidite, diisopropylethylphosphoramidite and H-phosphonate.
  • the oligonucleotides include but are not limited to single-stranded antisense oligonucleotides (ASOs), miRNAs, and double-stranded ribonucleotides (dsRNAs). In some embodiments, the 5'-end of the antisense strand in the double-stranded ribonucleotides (dsRNAs) is applied.
  • ASOs single-stranded antisense oligonucleotides
  • miRNAs miRNAs
  • dsRNAs double-stranded ribonucleotides
  • dsRNAs double-stranded ribonucleotides
  • an oligonucleotide comprises a 5'-terminal nucleotide represented by formula (V), formula (VI) or formula (VII) and one of their stereoisomers:
  • each T 1 is independently an optionally protected phosphine moiety
  • Each T3 is independently an internucleoside linking group that will link the 5'-terminal nucleotide to the oligonucleotide;
  • each X 1 is independently a chemical bond, O, S, NJ 1 or CJ 1 J 2 , wherein J 1 and J 2 are each independently hydrogen, halogen, sulfonyl, sulfinyl, optionally substituted C 1 -C 6 alkyl, optionally substituted C 3 -C 6 cycloalkyl, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, optionally substituted C 5 -C 12 aryl, optionally substituted 5-12 membered heteroaryl, optionally substituted 5-12 membered heterocycle;
  • Each X 2 is independently CR 15 or N;
  • Each X 3 is independently a chemical bond, an optionally substituted C 1 -C 3 alkylene group, SO, SO 2 , C( ⁇ O), P( ⁇ O)R; R is OH, SH, C 1 -C 6 alkyl group, NH 2 , NHSO 2 CH 3 ;
  • Each Bx is independently a heterocyclic base moiety
  • Each R 1 and R 2 is independently H, halogen, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, sulfinyl, sulfonyl, acetyl;
  • Each R 3 and R 15 is independently H, halogen, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, or optionally substituted C 2 -C 6 alkynyl;
  • Q 1 and Q 2 are each independently H, halogen, -CN, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl or NR 4 R 5 ;
  • Each Q 3 is independently O, S, NR 6 or CR 7 R 8 ;
  • each of Q 4 , Q 5 , Q 6 , Q 7 , Q 9 , Q 10 , Q 11 and Q 12 is independently H, halogen, optionally protected hydroxy, acetoxy, azido, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, NR 9 R 10 ;
  • Each Q 8 is independently O, S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • Each of R 16 and R 17 is independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 R 19 ;
  • each of R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 18 and R 19 is independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid, C( ⁇ O)J 3 , C( ⁇ O)OJ 3 or C( ⁇ O)N(J 3 )(J 4 );
  • Each of J 3 , J 4 , J 5 and J 6 is independently H or C 1 -C 6 alkyl;
  • n 0, 1 or 2.
  • each optionally substituted group comprises one or more substituents independently selected from the following groups: halogen, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • an oligonucleotide wherein T1 is an optionally protected phosphine moiety having the formula:
  • Ra and Rc are each independently selected from hydroxy or protected hydroxy, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, amino or protected/substituted amino, natural or modified nucleoside; and R b is O, S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group;
  • the substituents in the substituted amino group are selected from the group consisting of an optionally substituted C 1 -C 6 alkyl group, an optionally substituted C 2 -C 6 alkenyl group, an optionally substituted C 2 -C 6 alkynyl group, a sulfinyl group, a sulfonyl group, and an acetyl group;
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • Examples of commonly used protecting groups for protecting phosphorus hydroxyl or phosphorus mercapto groups include, but are not limited to, methyl, ethyl, benzyl (Bn), phenyl, isopropyl, tert-butyl, acetyl, chloroacetyl, trichloroacetyl, trifluoroacetyl, pivaloyl, tert-butoxymethyl, methoxymethyl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 2-trimethylsilylethyl, allyl, cyclohexyl (cHex), 9-fluorenylmethoxycarbonyl, mesylate, tosylate, trifluoro methanesulfonate, benzoyl, benzoylformate, p-phenylbenzoyl, 4-methoxybenzyl, monomethoxycarbonyl, methyl, ethyl,
  • Examples of commonly used amino protecting groups include, but are not limited to, 2-trimethylsilylethoxycarbonyl (Teoc), 1-methyl-1-(4-biphenylyl)ethoxycarbonyl (Bpoc), tert-butoxycarbonyl (BOC), allyloxycarbonyl (Alloc), 9-fluorenylmethoxycarbonyl (Fmoc), benzyloxycarbonyl (Cbz), benzyl, formyl, acetyl, pivaloyl, trihaloacetyl, benzoyl, nitrophenyl, acetyl, 2-nitrobenzenesulfonyl, phthalimido (Pht), p-toluenesulfonyl (Tos), trityl (Trt), 2,4-dioxybenzyl (PMB) and dithiosuccinyl.
  • Teoc 2-trimethylsilylethoxycarbonyl
  • Bpoc 1-methyl
  • R b is O or S
  • Ra and Rc are each independently selected from a protected hydroxyl group, a C 1 -C 6 alkyl group, and a C 1 -C 6 alkoxy group.
  • an oligonucleotide is provided in which Ra and Rc are each OH and Rb is O.
  • one of Ra and Rc is OH, the other is a natural nucleoside, and Rb is O.
  • T3 is an internucleoside linking group that connects a 5′-nucleotide represented by formula (V), formula (VI) or formula (VII) and their stereoisomers to the 5′-terminus of the oligonucleotide, and the internucleoside linking group is selected from a phosphorus-containing linking group or a phosphorus-free linking group.
  • the phosphorus-containing internucleoside linking groups are independently: phosphodiester linking groups, phosphotriester linking groups, thiophosphate linking groups, dithiophosphate bond linking groups, alkylphosphonate linking groups, aminophosphonate linking groups, phosphonate linking groups, phosphinate linking groups, phosphinate linking groups, thiophosphoramidate linking groups and aminophosphoroester linking groups.
  • the internucleoside linking group is independently an alkylphosphonate linking group, a phosphodiester internucleoside linking group or a phosphorothioate internucleoside linking group.
  • the BX heterocyclic base moiety is selected from a natural nucleobase, a modified nucleobase, and a universal base.
  • the heterocyclic base moiety BX is pyrimidine, substituted pyrimidine, pseudouracil, substituted pseudouracil, purine, hypoxanthine, or substituted purine.
  • the BX heterocyclic base moiety is uracil, 5-thiazolouracil, thymine, cytosine, pseudouracil, N1-methyl-pseudouracil, hypoxanthine, 5-methylcytosine, 5-methyluracil, 3-benzoyluracil, 2,6-diaminopurine, adenine or guanine.
  • each BX heterocyclic base moiety is independently 2-thiouracil, 5-fluorouracil, dihydrouridine (D), 7-methylguanosine (m7G).
  • R15 and R3 are H.
  • X 1 is O.
  • each R 1 and R 2 is independently H, methylsulfonyl, or acetyl.
  • each X 2 is independently N, and each R 1 and R 2 is independently H, methylsulfonyl, or acetyl.
  • the oligonucleotide provided, A in Formula (V), (VI) or (VII) has one of the following formulas:
  • Q 1 and Q 2 are each independently H, halogen, -CN, optionally substituted C 1 -C 6 alkyl;
  • Q 8 is O, S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • J 3 and J 4 are independently H or C 1 -C 6 alkyl.
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • Q1 and Q2 are each independently H, F, -CN, or methyl; more preferably H.
  • Q 8 is S, SO, SO 2 .
  • an oligonucleotide is provided wherein X 2 is N, and X 3 is a chemical bond, -CH 2 -, -CH 2 CH 2 -, SO, or SO 2 .
  • an oligonucleotide is provided wherein X 2 is CH and X 3 is a chemical bond.
  • n is 0 or 1 in the 5'-terminal nucleotide represented by formula (VI) or (VII) provided herein.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (V-1) or a stereoisomer thereof:
  • T 1 , T 3 , A, R 3 and Bx are each as defined in formula (V) and the embodiments above;
  • X 3 is a chemical bond, C( ⁇ O), P( ⁇ O)R, SO or SO 2 ;
  • M 1 is C(Rd)(Re), C(Rd)(Re)C(Rg)(Rf), each of Rd, Re, Rg and Rf is independently selected from the following substituents: hydrogen, halogen, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkylthiol, O(CH 2 ) 2 -OCH 3 , NJ 5 , CN, OC( ⁇ O)J 5 , OC( ⁇ O)N(J 5 )(J 6 ) and C( ⁇ O)N((J 5 )(J 6 ), J 5 and J 6 are independently H or C 1 -C 6 alkyl; 6 al
  • an oligonucleotide comprising a 5'-terminal nucleotide having formula (V-1) or a stereoisomer thereof, wherein X 3 is SO 2 or a chemical bond; and R 3 is hydrogen.
  • provided oligonucleotides include a 5'-terminal nucleotide having formula (V-1) or a stereoisomer thereof, wherein Rd, Re, Rg and Rf are independently selected from the following substituent groups: hydrogen, fluorine, hydroxyl, C 1 -C 6 alkoxy, O(CH 2 ) 2 -OCH 3 , more preferably hydrogen.
  • an oligonucleotide comprising a 5'-terminal nucleotide having formula (V-1) or a stereoisomer thereof, wherein A has one of the following formulae:
  • Q 1 and Q 2 are each independently H, halogen, or optionally substituted C 1 -C 6 alkyl;
  • Q8 is O, S, SO, SO2 , PR16R17 or NR11 ;
  • R 11 , R 18 and R 19 are independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid, C( ⁇ O)J 3 , C( ⁇ O)OJ 3 or C( ⁇ O)N(J 3 )(J 4 ); J 3 and J 4 are independently H or C 1 -C 6 alkyl.
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (V-2) or a stereoisomer thereof:
  • T 1 , T 3 , A, R 3 and Bx are each as defined in formula (V) and the embodiments above;
  • each Rd, Re, Rg and Rf is independently selected from the following substituent groups: hydrogen, fluorine, hydroxyl, C 1 -C 6 alkoxy, O(CH 2 ) 2 -OCH 3 , more preferably hydrogen.
  • M 1 is CH 2 or CH 2 CH 2 .
  • R 3 is hydrogen
  • the oligonucleotides provided herein comprise a compound having formula (V-2) or a stereoisomer thereof wherein A has one of the following formulae:
  • Q 1 and Q 2 are each independently H, halogen, or optionally substituted C 1 -C 6 alkyl;
  • Q 8 is S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 R 19 ;
  • R 11 , R 18 and R 19 are independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid, C( ⁇ O)J 3 , C( ⁇ O)OJ 3 or C( ⁇ O)N(J 3 )(J 4 );
  • J 3 and J 4 are independently H or C 1 -C 6 alkyl.
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • each of Q1 and Q2 is independently H, F, -CN, methyl, and more preferably H.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (V-1) or formula (V-2), wherein T1 is an optionally protected phosphine moiety having the following formula:
  • Ra and Rc are each independently selected from hydroxy or protected hydroxy, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, amino or protected/substituted amino, natural or modified nucleoside; and R b is O, S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group.
  • the substituents in the substituted amino group are selected from the group consisting of optionally substituted C 1 -C 6 alkyl, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, sulfinyl, sulfonyl, and acetyl.
  • the sulfonyl group is preferably methylsulfonyl.
  • oligonucleotides are provided wherein R b is O. In certain embodiments, oligonucleotides are provided wherein R b is S.
  • oligonucleotides are provided where Ra and Rc are each OH, SH, NH 2 , NHSO 2 CH 3 .
  • an oligonucleotide is provided in which Ra and Rc are each OH and Rb is O.
  • the provided oligonucleotide comprises a 5'-terminal nucleotide represented by formula (V-1) or formula (V-2), wherein T 3 is an internucleotide linking group.
  • the oligonucleotides provided have an internucleotide linking group selected from an alkylphosphonate linking group, a phosphodiester internucleoside linking group, or a phosphorothioate internucleoside linking group.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (V-1) or formula (V-2), wherein Q 8 is SO 2 .
  • the oligonucleotide provided comprises a 5'-terminal nucleotide represented by formula (V-1) or formula (V-2), wherein Q 8 is S.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (V-1) or formula (V-2), wherein each BX heterocyclic base moiety is selected from a natural nucleobase, a modified nucleobase, and a universal base.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (V-1) or formula (V-2), wherein each BX heterocyclic base moiety is independently pyrimidine, substituted pyrimidine, pseudouracil, substituted pseudouracil, purine, hypoxanthine or substituted purine.
  • the BX heterocyclic base moiety is uracil, 5-thiazolouracil, thymine, cytosine, pseudouracil, N1-methyl-pseudouracil, hypoxanthine, 5-methylcytosine, 5-methyluracil, 3-benzoyluracil, 2,6-diaminopurine, adenine or guanine.
  • each BX heterocyclic base moiety is independently 2-thiouracil, 5-fluorouracil, dihydrouridine (D), 7-methylguanosine (m7G).
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VI-1) or a stereoisomer thereof:
  • T 1 , T 3 , X 1 , X 3 , A, R 3 , Bx and n are each as defined in the above formula (VI) and the embodiments; R 1 and R 2 are each independently H, methylsulfonyl or acetyl.
  • oligonucleotides are provided wherein n is 0 or 1.
  • oligonucleotides are provided wherein X 3 is CH 2 or CH 2 CH 2 .
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VI-2) or a stereoisomer thereof:
  • T 1 , T 3 , X 1 , A, and Bx are each as defined in formula (VI) and the embodiments above.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VI-3) or a stereoisomer thereof:
  • T 1 , T 3 , X 1 , A, and Bx are each as defined in formula (VI) and the embodiments above.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VII-1) or a stereoisomer thereof:
  • T 1 , T 3 , X 1 , A, and Bx are each as defined in the above formula (VII) and embodiments.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VII-2) or a stereoisomer thereof:
  • T 1 , T 3 , X 1 , A, and Bx are each as defined in the above formula (VII) and embodiments.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or a stereoisomer thereof, wherein A independently has one of the following formulae:
  • Q 1 and Q 2 are each independently H, halogen, -CN, optionally substituted C 1 -C 6 alkyl;
  • Q 8 is O, S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • J 3 and J 4 are independently H or C 1 -C 6 alkyl.
  • Each optionally substituted group contains one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • the oligonucleotide provided comprises a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or a stereoisomer thereof, wherein each Q1 and Q2 are independently H, F, -CN, methyl. More preferably, H.
  • the provided oligonucleotide comprises a compound having formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or stereoisomers thereof, wherein Q 8 is independently NR 11 , and R 11 is independently methyl or methylsulfonyl.
  • the provided oligonucleotide comprises a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or stereoisomers thereof, wherein Q 8 is SO 2 .
  • the provided oligonucleotide comprises a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or stereoisomers thereof, wherein Q 8 is S.
  • provided oligonucleotides comprise a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or stereoisomers thereof, wherein each BX heterocyclic base moiety is selected from a natural nucleobase, a modified nucleobase, or a universal base.
  • provided oligonucleotides comprise a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or stereoisomers thereof, wherein each BX heterocyclic base moiety is independently pyrimidine, substituted pyrimidine, pseudouracil, substituted pseudouracil, purine, hypoxanthine or substituted purine.
  • the BX heterocyclic base moiety is uracil, 5-thiazolouracil, thymine, cytosine, pseudouracil, N1-methyl-pseudouracil, hypoxanthine, 5-methylcytosine, 5-methyluracil, 3-benzoyluracil, 2,6-diaminopurine, adenine or guanine.
  • each BX heterocyclic base moiety is independently 2-thiouracil, 5-fluorouracil, dihydrouridine (D), 7-methylguanosine (m7G).
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or a stereoisomer thereof, wherein T1 is an optionally protected phosphine moiety having the following formula:
  • Ra and Rc are each independently selected from hydroxy or protected hydroxy, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, amino or protected/substituted amino, natural or modified nucleoside; and R b is O, S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group.
  • the substituents in the substituted amino group are selected from the group consisting of optionally substituted C 1 -C 6 alkyl, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, sulfinyl, sulfonyl, and acetyl.
  • the sulfonyl group is preferably methylsulfonyl.
  • R b is O. In certain embodiments, R b is S.
  • oligonucleotides are provided where Ra and Rc are each OH, SH, NH 2 , NHSO 2 CH 3 .
  • an oligonucleotide is provided in which Ra and Rc are each OH and Rb is O.
  • the provided oligonucleotide comprises a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or stereoisomers thereof, wherein T 3 is an internucleotide linking group.
  • the oligonucleotide provided comprises a 5'-terminal nucleotide represented by formula (VI-1), formula (VI-2), formula (VI-3), (VII-1), (VII-2) or their stereoisomers, wherein the internucleotide linking group is selected from an alkyl phosphonate linking group, a phosphodiester internucleoside linking group or a thiophosphate internucleoside linking group.
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VIII) or a stereoisomer thereof:
  • Q 8 is S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 R 19 ;
  • Ra and Rc are each independently selected from hydroxyl or protected hydroxyl, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, protected or optionally substituted amino, natural or modified nucleoside;
  • R b is O or S or NR 12 ,
  • R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group;
  • Q 1 and Q 2 are each independently H, halogen, -CN, or optionally substituted C 1 -C 6 alkyl;
  • the substituents in the substituted amino group are selected from the group consisting of an optionally substituted C 1 -C 6 alkyl group, an optionally substituted C 2 -C 6 alkenyl group, an optionally substituted C 2 -C 6 alkynyl group, a sulfinyl group, a sulfonyl group, and an acetyl group;
  • R 11 , R 18 and R 19 are independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid;
  • Z is a nucleoside comprising a sugar or sugar-substituting moiety
  • T3 is an internucleoside linking group for linking the 5'-terminal nucleotide of formula (VIII) or its stereoisomer to the oligonucleotide;
  • Each substituted group contains one or more substituent groups optionally independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN.
  • Q 8 is SO or SO 2 .
  • the oligonucleotide provided has the formula (VIII) in which Q 8 is S.
  • Q 1 and Q 2 are each independently H.
  • the sugar or sugar replacement portion in the nucleoside of the sugar or sugar replacement portion, includes a 5-membered furanose ring, a non-furanose ring or a 5-6-membered carbon ring system or an open system.
  • the sugar moiety is furanose.
  • a non-locked nucleobase analog (UNA) or a glycerol nucleic acid base analog (GNA) is included in the nucleoside of the sugar or sugar alternative portion.
  • a locked nucleic acid (LNA) or a bridged nucleic acid (BNA) is included.
  • an oligonucleotide is provided, wherein Q 8 is bonded to the 4'-carbon or the 5'-carbon of the sugar or sugar-substituting moiety, in formula (VIII).
  • the oligonucleotide provided is of formula (VIII), wherein the sugar or sugar-substituting nucleoside has the following structural representation:
  • M 2 is C(q 3 )(q 4 ), C(q 3 )(q 4 )C(q 5 )(q 6 );
  • each X 1 is independently a chemical bond, O, S, NJ 1 or CJ 1 J 2 , wherein J 1 and J 2 are each independently hydrogen, halogen, sulfonyl, sulfinyl, optionally substituted C 1 -C 6 alkyl, optionally substituted C 3 -C 6 cycloalkyl, optionally substituted C 2 -C 6 alkenyl, optionally substituted C 2 -C 6 alkynyl, optionally substituted C 5 -C 12 aryl, optionally substituted 5-12 membered heteroaryl, optionally substituted 5-12 membered heterocycle;
  • Each X 2 is independently CR 15 or N;
  • Each X 3 is independently a chemical bond, an optionally substituted C 1 -C 3 alkylene group, SO, SO 2 , C( ⁇ O), P( ⁇ O)R; R is OH, SH, C 1 -C 6 alkyl group, NH 2 , NHSO 2 CH 3 ;
  • Each Bx is independently a heterocyclic base moiety
  • each of R 15 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 , q 9 and q 10 is independently hydrogen, halogen, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, O(CH 2 ) 2 -OCH 3 , CN, OC( ⁇ O)J 5 , C( ⁇ O)N(J 5 )(J 6 ) and C( ⁇ O)N((J 5 )(J 6 ), J 5 and J 6 are independently H or C 1 -C 6 alkyl;
  • Each R 13 is independently hydrogen or C 1 -C 6 alkyl.
  • each R 15 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 and q 9 is independently selected from the following groups: hydrogen, fluorine, hydroxyl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, O(CH 2 ) 2 -OCH 3 , more preferably hydrogen.
  • the oligonucleotide provided is of formula (VIII), wherein the sugar or sugar-substituting nucleoside has the following structural representation:
  • M 3 is O, S, C(q 7 )(q 8 ), C(q 7 )(q 8 )C(q 9 )(q 10 ).
  • q 1 , q 2 , q 7 , q 8 , q 9 , and q 10 are each independently selected from hydrogen, fluorine, hydroxy, methyl, methoxy, and O(CH 2 ) 2 —OCH 3 .
  • the oligonucleotide provided is of formula (VIII), wherein the sugar or sugar-substituting nucleoside has the following furanose structure:
  • an oligonucleotide comprising a 5'-terminal nucleotide represented by formula (VIII-1) or a stereoisomer thereof:
  • R 15 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 , q 9 and q 10 are each independently selected from hydrogen, fluorine, hydroxyl, methyl, methoxy, O(CH 2 ) 2 -OCH 3 .
  • R 15 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 , q 9 and q 10 are each independently selected from hydrogen.
  • M3 is O, S, C( q7 )( q8 ), M2 is C( q3 )( q4 ), X2 is R15 or N, X3 is a chemical bond, SO, SO2 , R15 , q1 , q2 , q3 , q4, q7 and q8 , as defined herein, as shown in the following structure:
  • M 3 is O, S, CH 2 , M 2 is CH 2 , X 2 is CH, and X 3 is a chemical bond.
  • M 3 is CH 2 , M 2 is CH 2 , X 2 is N, and X 3 is a chemical bond, SO, or SO 2 .
  • M3 is C( q7 )( q8 )
  • M2 is C( q3 )( q4 )C( q5 )( q6 )
  • X2 is CR15 or N
  • X3 is a chemical bond, SO, SO2 , R15 , q1 , q2 , q3 , q4 , q5 , q6 , q7 and q8 , as defined herein, as shown in the following structure:
  • M3 is CH2
  • M2 is CH2CH2
  • X2 is CH
  • X3 is a chemical bond .
  • M3 is CH2, M2 is CH2CH2 , X2 is N , and X3 is a chemical bond, SO or SO2 .
  • the provided oligonucleotide is of formula (VIII-1), wherein Q 8 is SO or SO 2.
  • the provided oligonucleotide is of formula (VIII-1), wherein Q 8 is S.
  • the provided oligonucleotide is of formula (VIII-1), wherein R b is oxygen.
  • the oligonucleotide provided is of formula (VIII-1), wherein Q 8 is SO or SO 2 , and Ra and Rc are each independently selected from OH, SH, NH 2 , NHSO 2 CH 3 .
  • an oligonucleotide is provided, wherein in formula (VIII-1), Q 8 is SO or SO 2 , R b is oxygen, and Ra and Rc are each independently selected from OH.
  • the provided oligonucleotide is of formula (VIII-1), wherein Q 8 is SO or SO 2 , and X 1 is oxygen.
  • an oligonucleotide is provided, wherein in formula (VIII-1), Q 8 is S, and X 1 is oxygen.
  • an oligonucleotide is provided, wherein in formula (VIII-1), Q 8 is S, R b is oxygen, and Ra and R c are each independently selected from OH.
  • the B X heterocyclic base moiety is selected from natural nucleobases, modified nucleobases, and universal bases.
  • the heterocyclic base moiety BX is pyrimidine, substituted pyrimidine, pseudouracil, substituted pseudouracil, purine, hypoxanthine or substituted purine.
  • the BX heterocyclic base moiety is uracil, 5-thiazolouracil, thymine, cytosine, pseudouracil, N1-methyl-pseudouracil, hypoxanthine, 5-methylcytosine, 5-methyluracil, 3-benzoyluracil, 2,6-diaminopurine, adenine or guanine.
  • each BX heterocyclic base moiety is independently 2-thiouracil, 5-fluorouracil, dihydrouridine (D), 7-methylguanosine (m7G).
  • the oligonucleotide provided, in Formula (VIII) or Formula (VIII-1), provides an oligonucleotide comprising linked monomer subunits, wherein each internucleoside linking group is independently an alkylphosphonate linking group, a phosphodiester internucleoside linking group, or a thiophosphate nucleoside linking group.
  • a single-use oligonucleotide wherein the 5'-terminal nucleotide has a compound fragment of the formula:
  • Q 8 is S, SO, SO 2 , PR 16 R 17 or NR 11 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 R 19 ;
  • R 16 and R 17 are independently ( ⁇ O), ( ⁇ S), OH, SH, C 1 -C 6 alkyl, NR 18 ;
  • Ra and Rc are each independently selected from hydroxy or protected hydroxy, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, protected or optionally substituted amino, natural or modified nucleoside; and R b is O or S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group;
  • the substituents in the substituted amino group are selected from the group consisting of an optionally substituted C 1 -C 6 alkyl group, an optionally substituted C 2 -C 6 alkenyl group, an optionally substituted C 2 -C 6 alkynyl group, a sulfinyl group, a sulfonyl group, and an acetyl group;
  • R 11 , R 18 and R 19 are independently H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, methylsulfonyl, sulfonic acid;
  • Each substituted group contains one or more substituents optionally independently selected from the following: halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, CN;
  • an oligonucleotide that comprises a 5'-terminal nucleoside represented by one of the following specific structures or stereoisomers thereof:
  • an oligonucleotide that comprises a 5'-terminal nucleoside represented by one of the following specific structures or stereoisomers thereof:
  • Oligonucleotides described herein include but are not limited to single-stranded antisense oligonucleotides (ASOs), miRNAs, double-stranded ribonucleotides (dsRNAs).
  • ASOs single-stranded antisense oligonucleotides
  • miRNAs double-stranded ribonucleotides
  • dsRNAs double-stranded ribonucleotides
  • the oligonucleotides provided are single-stranded oligonucleotides.
  • the single-stranded oligonucleotides are conventional antisense oligonucleotides (also known as ASOs), ribozymes, or aptamers.
  • the oligonucleotides provided are double-stranded ribonucleic acid (dsRNA) reagents, double-stranded nucleoside nucleic acids well known in the art of such compounds, wherein one or two chains are oligonucleotides as disclosed herein.
  • dsRNA double-stranded ribonucleic acid
  • the oligonucleotides provided are double-stranded ribonucleic acid (dsRNA) agents, each of which comprises: a sense strand and an antisense strand, wherein the sense strand and the antisense strand are fully or partially complementary, and the antisense strand is partially or fully complementary to a nucleic acid target gene; at least one of the sense strand and the antisense strand is an oligonucleotide as provided above, comprising at least one 5'-terminal nucleotide represented by (V), formula (V-1), formula (V-2), formula (VI), formula (VI-1), formula (VI-2), formula (VI-3), formula (VII), formula (VII-1), formula (VII-2), formula (VIII), formula (VIII-1) or a stereoisomer thereof; and wherein the double-stranded ribonucleic acid (dsRNA) agent optionally further comprises an independent targeting group
  • the oligonucleotide provided is a double-stranded ribonucleic acid (dsRNA) agent, wherein the antisense strand comprises at least one 5'-terminal nucleotide represented by Formula (V), (V-1), (V-2), (VI), (VI-1), (VI-2), (VI-3), (VII), (VII-1), (VII-2), (VIII), (VIII-1), or a stereoisomer thereof.
  • dsRNA double-stranded ribonucleic acid
  • oligonucleotides or double-stranded ribonucleic acids are provided in which each strand comprises 8-40 nucleotides, respectively.
  • a double-stranded ribonucleic acid (dsRNA) agent is provided, optionally further comprising an independent targeting group, and further comprising one or more targeting groups on the 5'-terminal and/or 3'-terminal nucleotides of any one chain in the double-stranded ribonucleic acid (dsRNA) agent.
  • the targeting group can be a ligand conventionally used in the field of siRNA administration.
  • the targeting group in the double-stranded ribonucleic acid (dsRNA) reagent provided, can be selected from one or more ligands formed by the following targeting molecules or their derivatives: polymers, carbohydrates, receptor ligands expressed by hepatocytes, antibodies, quantum dots, polypeptides, or small molecule ligands.
  • the targeting groups is selected from a ligand that can bind to a receptor on the surface of a mammalian hepatocyte.
  • each of the targeting groups independently comprises a ligand having affinity for the asialoglycoprotein receptor (ASGPR) on the surface of mammalian hepatocytes.
  • ASGPR asialoglycoprotein receptor
  • dsRNA double-stranded ribonucleic acid
  • at least one or each of the targeting groups is a ligand comprising galactose or N-acetylgalactosamine.
  • dsRNA double-stranded ribonucleic acid
  • p is 1 or 2.
  • the oligonucleotide or double-stranded ribonucleic acid (dsRNA) reagent provided is used in the preparation of a drug, and the drug is used to inhibit gene expression.
  • the inhibition of gene expression comprises contacting one or more cells, tissues or animals with the oligonucleotide or double-stranded ribonucleic acid (dsRNA).
  • a method for inhibiting gene expression comprising: contacting a cell with an oligonucleotide or double-stranded ribonucleic acid (dsRNA) agent as described herein, wherein each strand of the oligonucleotide comprises 8-40 nucleotides, respectively, and the antisense strand of the oligonucleotide agent is complementary to the target RNA.
  • dsRNA double-stranded ribonucleic acid
  • the cell is in an animal. In certain embodiments, the cell is in a human. In certain embodiments, the target RNA is selected from mRNA, pre-mRNA and micro RNA. In certain embodiments, the target RNA is mRNA. In certain embodiments, the target RNA is human mRNA. In certain embodiments, the target RNA is cleaved, thereby inhibiting its function. In certain embodiments, the method further includes detecting the level of the target RNA.
  • a method for inhibiting gene expression comprising: contacting one or more cells or tissues with an oligonucleotide or double-stranded ribonucleic acid (dsRNA) reagent provided by a 5'-terminal nucleotide represented by (V), formula (V-1), formula (V-2), formula (VI), formula (VI-1), formula (VI-2), formula (VI-3), formula (VII), formula (VII-1), formula (VII-2), formula (VIII), formula (VIII-1) or its stereoisomers.
  • dsRNA oligonucleotide or double-stranded ribonucleic acid
  • 5'-phosphonate modified nucleoside analogs are provided, and can be used to be incorporated into the end of an oligonucleotide as a nucleotide monomer compound, particularly as the 5'-end of an antisense strand. Also provided herein are intermediates and methods for preparing these oligonucleotides.
  • the 5'-phosphonate modified nucleoside analogs of the modification provided herein can be used to improve oligonucleotide expression inhibition duration and/or activity.
  • the oligonucleotides and compositions provided herein are expected to hybridize with a portion of a target RNA so that the target RNA loses normal function.
  • the oligonucleotides are expected to also be used as primers and probes in diagnostic applications.
  • substituted refers to a parent compound in which a hydrogen atom is not replaced by other substituents, or one or more hydrogen atoms are replaced by substituents.
  • substituted group as used herein are intended to include groups that are usually added to other groups or parent compounds to enhance desired properties or provide other desired effects.
  • the substituted group may be protected or unprotected, and may be added to an available site or many available sites in the parent compound.
  • the substituted group may also be further substituted by other substituted groups, and may be directly connected to the parent compound or may be connected to the parent compound through a linking group such as an alkyl or hydrocarbyl group.
  • a linking group such as an alkyl or hydrocarbyl group.
  • the substituents herein may be conventional suitable substituents well known in the art.
  • Suitable substituents herein include, but are not limited to, halogen, hydroxyl, alkyl, alkenyl, alkynyl, acyl (—C( ⁇ O)R aa ), carboxyl (—C( ⁇ O)OR aa ), aliphatic, alicyclic, alkoxy, substituted oxygen (—OR aa ), aryl, aralkyl, heterocyclic, heteroaryl, heteroarylalkyl, amino (—N(R bb )(R cc ) ), imino ( ⁇ NR bb ), acylamino (—C( ⁇ O)N(R bb )(R cc ) or —N(R bb )C( ⁇ O)R aa , azido (—N 3 ), nitro (—NO 2 ), cyano (—CN), ureido (—N(R bb )C( ⁇ O)N(R bb )(R
  • each of Raa , Rbb and R C-C is independently H, an optionally attached chemical functional group or another substituent group, and a preferred list includes, but is not limited to, H, alkyl, alkenyl, alkynyl, aliphatic, alkoxy, acyl, aryl, aralkyl, heteroaryl, alicyclic, heterocyclic and heteroarylalkyl.
  • substituteduents are intended aspects of the present invention, and those of ordinary skill in the art of medicinal chemistry and organic chemistry will understand the versatility of such substituents, and "substituents" should satisfy the principle that their total number in the present invention will conform to the principle that a chemical bond can be formed with the atom or group to which they are attached.
  • the other is OH, SH, C1 - C6 alkyl, NR18R19 .
  • alkyl refers to a straight or branched saturated hydrocarbon group having 1 to about 24 carbon atoms.
  • a numerical range such as “C 1 -C 6 alkyl” generally refers to the number of carbon atoms in the alkyl group, which may contain only 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 6 carbon atoms. Unless otherwise specified, the number of carbon atoms added by further substitution of other atoms or groups in the general alkyl group is not included in the counting range, and the same description also exists in other counting methods herein.
  • alkyl groups include, but are not limited to, methyl, ethyl, propyl, butyl, isopropyl, n-hexyl, octyl, decyl, dodecyl, etc.
  • alkyl also includes the case where the numerical range of carbon atoms is not specified, for example, the term “alkyl” can refer to a sub-range of C 1 -C 10 (e.g., C 1 -C 6 ).
  • Substituted alkyl refers to an alkyl portion with a substituent.
  • lower alkyl refers to an alkyl portion having 1 to about 6 carbon atoms.
  • alkylene refers to an alkyl group in which another carbon atom is substituted, by itself or as part of another substituent, and refers to a divalent radical derived from an alkyl group, such as, but not limited to , -CH2CH2- .
  • alkenyl refers to a straight or branched hydrocarbon group of at least one carbon-carbon double bond.
  • alkenyl include, but are not limited to, vinyl, propenyl, butenyl, 1-methyl-2-butene-1-yl, diene, such as 1,3-butadiene, etc.
  • Alkenyl groups typically contain 2 to about 24 carbon atoms, more typically 2 to about 12 carbon atoms, with 2 to about 6 carbon atoms being more preferred.
  • Alkenyl groups as used herein may optionally contain one or more further substituted groups.
  • alkynyl refers to a straight or branched hydrocarbon group having at least one carbon-carbon triple bond.
  • alkynyl groups include, but are not limited to, ethynyl, 1-propynyl, 1-butynyl, etc.
  • Alkynyl groups typically contain 2 to about 24 carbon atoms, more typically 2 to about 12 carbon atoms, with 2 to about 6 carbon atoms being more preferred.
  • Alkynyl groups as used herein may optionally contain one or more further substituent groups.
  • cycloalkyl refers to a ring system in which the ring is aliphatic.
  • the ring system may contain one or more rings in which at least one ring is aliphatic.
  • Preferred alicyclic compounds contain rings having from about 5 to about 9 carbon atoms in the ring.
  • cycloalkyl groups may optionally contain further substituent groups.
  • alkoxy refers to a group formed between an alkyl group and an oxygen atom, wherein the oxygen atom is used to connect the alkoxy group to the parent molecule.
  • alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, neopentoxy, and n-hexoxy, etc.
  • Alkoxy groups as used herein may optionally contain further substituent groups.
  • aminoalkyl refers to a C 1 -C 12 alkyl group substituted with an amino group.
  • the alkyl portion of the group forms a covalent bond with the parent molecule.
  • the amino group may be located at any position and the aminoalkyl group may be substituted with further substituents at the alkyl and/or amino positions.
  • aryl and aromatic refer to monocyclic or polycyclic carbocyclic ring groups with one or more aromatic rings
  • aromatic group refers to a planar ring with a delocalized ⁇ electron system containing 4n+2 ⁇ electrons, where n is an integer.
  • the aromatic ring can be formed by 5, 6, 7, 8, 9 or more than 9 atoms.
  • aromatic is intended to include carbocyclic aryl (e.g., phenyl) and heterocyclic aryl (or “heteroaryl” or “heteroaromatic”) groups (e.g., pyridine).
  • aryl include, but are not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl (idenyl), etc.
  • Preferred aryl ring systems have about 5 to about 20 carbon atoms in one or more rings.
  • aryl may optionally include further substituent groups.
  • aralkyl and “arylalkyl” refer to an aromatic group covalently attached to a C1 - C12 alkyl group.
  • the alkyl portion of the resulting aralkyl (or arylalkyl) forms a covalent bond with the parent molecule. Examples include, but are not limited to, benzyl, phenethyl, etc.
  • Aralkyl as used herein may optionally contain further substituent groups attached to the alkyl, aryl, or both of the forming groups.
  • heteroaryl and “heteroaromatic” refer to groups comprising monocyclic or polycyclic aromatic rings, ring systems or fused ring systems, wherein at least one of these rings is aromatic and contains one and or more heteroatoms. Heteroaryl is also intended to include fused ring systems including one or more systems in which the fused rings do not contain heteroatoms. Heteroaryl typically contains a ring atom selected from sulfur, nitrogen or oxygen.
  • heteroaryl examples include, but are not limited to, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, thiadiazolyl, oxadiazolyl, phenylthio, furanyl, quinolyl, isoquinolyl, benzimidazolyl, benzoxazolyl, quinoxalinyl, etc.
  • Heteroaryl can be directly or connected to the parent molecule through a linking portion such as an aliphatic group or a heteroatom. As used herein, heteroaryl can optionally contain further substituent groups.
  • heteroarylalkyl refers to a heteroaryl group as defined previously further comprising a covalently linked C 1 -C 12 alkyl group.
  • the alkyl portion of the resulting heteroarylalkyl group is capable of forming a covalent bond with the parent molecule. Examples include, but are not limited to, pyridylmethyl, pyridylethyl, naphthyridinylpropyl, and the like.
  • Heteroarylalkyl groups as used herein may optionally contain further substituent groups on one or both of the heteroaryl or alkyl portions.
  • halo or halogen as used herein refers to an atom selected from fluorine, chlorine, bromine and iodine.
  • heterocyclic group refers to a monocyclic or polycyclic ring system containing at least one and heteroatom and being unsaturated, partially saturated or fully saturated, thus including heteroaryl groups.
  • Heterocyclic rings are also intended to include fused ring systems wherein one or more of the fused rings contain at least one heteroatom and the other rings may contain one or more heteroatoms or optionally contain no heteroatoms.
  • Heterocyclic groups typically contain at least one atom selected from sulfur, nitrogen or oxygen.
  • heterocyclic groups include [1,3] dioxolanyl, pyrrolidinyl, pyrazolyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, pyrazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, etc.
  • an "n" membered heterocyclic group is the sum of n atoms contained in the ring system, without protecting atoms or groups unexpected to the ring system.
  • a heterocyclic group may optionally contain further substituent groups.
  • the term "monocyclic or polycyclic structure” includes all ring systems selected from monocyclic ring systems or polycyclic ring systems in which the rings are fused or connected and is intended to include single and mixed ring systems selected from aliphatic, alicyclic, aryl, heteroaryl, aralkyl, arylalkyl, heterocyclic, heteroaryl, heteroaromatic and heteroarylalkyl.
  • Such monocyclic and polycyclic structures may contain rings each having the same degree of saturation or each independently having a different degree of saturation (including fully saturated, partially saturated or fully unsaturated).
  • Each ring may contain ring atoms selected from C, N, O and S to obtain heterocyclic rings as well as rings containing only C ring atoms. These rings may exist in mixed motifs such as, for example, benzimidazole, where one ring has only carbon ring atoms and the fused ring has two nitrogen atoms.
  • the monocyclic or polycyclic structures can be linked to the parent molecule using a variety of strategies such as direct linkage through a ring atom, through a substituent group or through a bifunctional linking moiety.
  • sulfonyl refers to a group of the formula RSO 2 —, wherein R is hydrogen, alkyl, substituted alkyl, aryl, or substituted aryl, CH 3 SO 2 — is referred to as methylsulfonyl.
  • sulfinyl refers to a group of the formula RSO—
  • sulfonamido refers to a group of the formula RSO 2- NH—, wherein R is hydrogen, alkyl, substituted alkyl, aryl, or substituted aryl.
  • R is hydrogen, alkyl, substituted alkyl, aryl, or substituted aryl.
  • alicyclic refers to a cyclic ring system, wherein the ring is an aliphatic ring.
  • the ring system may contain one or more rings, wherein at least one ring is an aliphatic ring.
  • Preferred alicyclic rings include rings having about 5 to about 9 carbon atoms in the ring.
  • the alicyclic rings used herein optionally include other substituent groups.
  • aliphatic used herein refers to a straight or branched hydrocarbon group containing up to twenty-four carbon atoms, wherein the degree of saturation between any two carbon atoms is a single, double or triple bond.
  • the aliphatic group preferably contains 1 to about 24 carbon atoms, more usually 1 to about 12 carbon atoms, and more preferably 1 to about 6 carbon atoms.
  • the straight or branched chain of the aliphatic group may be interrupted by one or more heteroatoms including nitrogen, oxygen, sulfur and phosphorus.
  • the aliphatic group interrupted by heteroatoms includes, but is not limited to, polyalkoxy groups, such as polyalkylene glycols, polyamines and polyimines.
  • the aliphatic group used herein optionally includes other substituent groups.
  • a spacer, to which the oligonucleotide is attached, is used to place the oligonucleotide and the synthesis process away from the substrate or carrier. This allows for greater flexibility and more room for compositing, making it easier to cut when the composition is complete.
  • Linking groups or bifunctional linking moieties such as those known in the art can be used to connect chemical functional groups, conjugated groups, reporter groups and other groups to selective sites in parent compounds such as, for example, oligonucleotides.
  • bifunctional linking moieties include a hydrocarbyl moiety with two functional groups. One of the functional groups is selected to be bonded to the parent molecule or the compound of interest and the other is selected to be bonded to substantially any selected group such as a chemical functional group or a conjugated group.
  • the linking group comprises a polymer of a chain structure or repeating units such as ethylene glycol or amino acid units.
  • bifunctional linking moieties examples include, but are not limited to, electrophiles for reacting with nucleophilic groups and nucleophiles for reacting with electrophilic groups.
  • the bifunctional linking moiety comprises amino, hydroxyl, carboxylic acid, thiol, unsaturation (e.g., double bond or triple bond), etc.
  • Some non-limiting examples of bifunctional linking moieties include 8-amino-3,6-dioxaoctanoic acid (ADO), 4-(N-maleimidomethyl)cyclohexane-1-carboxylic acid succinimide (SMCC), and 6-aminohexanoic acid (AHEX or AHA).
  • linking groups include, but are not limited to, substituted C 1 -C 10 alkyl, substituted or unsubstituted C 2 -C 10 alkenyl, or substituted or unsubstituted C 2 -C 10 alkynyl, wherein a non-limiting list of preferred substitution groups includes hydroxy, amino, alkoxy, carboxyl, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl, and alkynyl.
  • ether used in this article is a product in which the hydrogen in the hydroxyl group of an alcohol or phenol is replaced by a hydrocarbon group, and the general formula is RO-R', where R and R' can be the same or different.
  • Ethers that are the same are called symmetrical ethers, also called simple ethers or monoethers; ethers that are not the same are called asymmetrical ethers, also called mixed ethers or mixed ethers.
  • Terminology used in this article or It generally refers to the link between adjacent groups or parts.
  • middle L1 represents the link to the phosphine portion of T1
  • L2 represents the link to the nucleoside sugar portion or the surrogate.
  • protecting group refers to an unstable chemical moiety known in the art that protects reactive groups (including but not limited to hydroxyl, amino and thiol groups) from undesirable reactions during synthetic procedures. Protecting groups are often used selectively to protect sites during reactions at other reactive sites and can then be removed to leave unprotected groups as is or can be used for further reactions.
  • Examples of commonly used protecting groups for hydroxyl or thiol groups include, but are not limited to, methyl, ethyl, benzyl (Bn), phenyl, isopropyl, tert-butyl, acetyl, chloroacetyl, trichloroacetyl, trifluoroacetyl, pivaloyl, tert-butoxymethyl, methoxymethyl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 2-trimethylsilylethyl, allyl, cyclohexyl (cHex), 9-fluorenylmethyloxycarbonyl, methanesulfonyl, toluenesulfonyl, trifluoromethanesulfonyl , benzoyl, benzoylformate, p-phenylbenzoyl, 4-methoxybenzy
  • Examples of commonly used amino protecting groups include, but are not limited to, 2-trimethylsilylethoxycarbonyl (Teoc), 1-methyl-1-(4-biphenylyl)ethoxycarbonyl (Bpoc), tert-butoxycarbonyl (BOC), allyloxycarbonyl (Alloc), 9-fluorenylmethoxycarbonyl (Fmoc), benzyloxycarbonyl (Cbz), benzyl, formyl, acetyl, pivaloyl, trihaloacetyl, benzoyl, nitrophenyl, acetyl, 2-nitrobenzenesulfonyl, phthalimido (Pht), p-toluenesulfonyl (Tos), trityl (Trt), 2,4-dioxybenzyl (PMB) and dithiosuccinyl.
  • Teoc 2-trimethylsilylethoxycarbonyl
  • Bpoc 1-methyl
  • protected phosphine moiety refers to phosphonate moieties and modified phosphonate moieties, wherein the hydroxyl, sulfhydryl, amino group, etc. are protected by a protecting group.
  • phosphine moiety refers to a monovalent pV phosphorus-based group (pentavalent phosphorus). In one embodiment, the phosphine moiety has the following formula:
  • Ra and Rc are each independently selected from hydroxy or protected hydroxy, thiol or protected thiol, optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkoxy, amino or protected/substituted amino, natural or modified nucleoside; and R b is O, S or NR 12 , R 12 is hydrogen, C 1 -C 6 alkyl, amino protecting group;
  • the substituents in the substituted amino group are selected from the group consisting of an optionally substituted C 1 -C 6 alkyl group, an optionally substituted C 2 -C 6 alkenyl group, an optionally substituted C 2 -C 6 alkynyl group, a sulfinyl group, a sulfonyl group, and an acetyl group.
  • the sulfonyl group is preferably methylsulfonyl.
  • each optionally substituted group comprises one or more substituents independently selected from the group consisting of halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkanethio, and CN.
  • phosphine moiety can be located at either end of an oligonucleotide, but is preferably located at the 5'-terminal nucleoside.
  • the phosphine moiety has the following formula in certain embodiments:
  • the phosphine moiety in certain embodiments, when one of Ra and Rc is a natural or modified nucleoside, has the following list:
  • the natural base is selected from C, U, G, A, T.
  • the modified nucleobase can also be those conventionally used in this or the art, such as a nucleoside formed by replacing the 2'-hydroxyl of the ribose group with a methoxy group or a fluorine group.
  • one of the phosphine moieties Ra and Rc is a natural or modified nucleoside
  • a human overhang is formed, and the base or modified base replacement group does not form base pairing with the sense strand; even if the sense strand includes a 3' terminal overhang, it does not form base pairing with the overhang.
  • the synthesis method can be described in reference to Chinese patent publication CN 115819484 A, which is also fully incorporated herein.
  • the term "active phosphorus" group can be used to form internucleoside linkages including, for example, phosphodiester and phosphorothioate internucleoside linkages.
  • These active phosphorus groups are known in the art and contain phosphorus atoms in the P III (trivalent phosphorus) or P V (pentavalent phosphorus) valence states, and include, but are not limited to, phosphoramidites, H-phosphonates, phosphotriesters, and phosphorus-containing chiral auxiliaries.
  • reactive phosphorus groups that provide 5' or 3'-phosphite internucleoside linkages when reacted with free hydroxyl groups are included.
  • the active phosphorus group wherein M 4 is H, optionally substituted C 1 -C 6 alkyl, OH, OJ 7 , SH, SJ 7 or NJ 7 J 8 , M 5 is optionally substituted C 1 -C 6 alkyl, OH, OJ 7 , SH, SJ 7 or NJ 7 J 8 , each J 7 or J 8 is independently optionally substituted C 1 -C 6 alkyl, sulfonyl; and r is 0 or 1. Additional reactive phosphates and phosphites are disclosed in Beaucage and Iyer, Tetrahedron, 1992, 48(12), 2223-2311.
  • phosphoramidite refers to a nitrogen-containing trivalent phosphorus derivative and is a conventional reactive phosphorus. Examples of suitable phosphoramidites are described herein.
  • internucleoside linkage or “internucleoside linking group” is intended to include various types of internucleoside linking groups known in the art, and in such embodiments any internucleoside linkage may be used to link nucleosides or analogs together.
  • internucleoside linking groups are defined by the presence or absence of a phosphorus atom and include, but are not limited to, phosphodiester, phosphotriester, phosphorothioate, phosphorodithioate, alkylphosphonate, phosphonamidate, phosphonate, phosphinate, thiophosphoramidate, and phosphoramidate linking groups; and non-phosphorus-containing internucleoside linking groups such as thiodiester (—OC( ⁇ O)—S—), thionocarbamate (—OC( ⁇ O)(NH)—S—), siloxane (—O—Si(H) 2 —O—), N,N′-dimethylhydrazine (—CH 2 —N(CH 3 )—N(CH 3 )—), formacetyl, and methyleneimino (—CH 2 —N(CH 3 )—O—CH 2 — ).
  • Internucleoside linkages also include neutral nonionic internucleoside linkages, as used herein, the term "neutral internucleoside linkage" is intended to include nonionic internucleoside linkages.
  • Further neutral internucleoside linkages include nonionic linkages including siloxanes (dialkylsiloxanes), carboxylates, carboxamides, sulfides, sulfonates and amides (see, for example: "Carbohydrate Modifications in Antisense Research”; YS Shanghvi and PD Cook, eds., ACS Symposium Series 580; Chapters 3 and 4, pp. 40-65).
  • Further neutral internucleoside linkages include nonionic linkages containing mixed N, O, S and CH2 components, wherein phosphorus atoms are not always present.
  • the alkyl phosphonate linking group is selected from a C1 - C6 alkyl phosphonate linking group.
  • the phosphorus-containing internucleoside linking group has a structural fragment as shown below:
  • X represents H, optionally substituted C 1 -C 6 alkyl, OR 13 , SR 13 , OH, SH or NR 13 R 14
  • Y represents O or S
  • z may be 0 or 1
  • each R 13 or R 14 is independently hydrogen, optionally substituted C 1 -C 6 alkyl, sulfonyl, They independently represent the portion connected to the 5'-terminal nucleoside herein, and the portion connected to the adjacent nucleotide.
  • internucleoside bonds with chiral atoms can be prepared as racemic mixtures or separate enantiomers.
  • Representative chiral bonds include, but are not limited to, alkyl phosphonates and thiophosphates. Methods for preparing phosphorus-containing and non-phosphorus-containing internucleoside bonds are well known to those skilled in the art.
  • nucleoside refers to a compound in which a natural or modified nucleoside comprises a heterocyclic base moiety and a sugar moiety. Nucleosides include, but are not limited to, naturally occurring nucleosides (such as those present in DNA and RNA), abasic nucleosides, modified nucleosides, and nucleosides having mimetic bases and/or sugar groups. Nucleosides may be modified by any of a variety of substituents.
  • nucleotide refers to a nucleoside further comprising a phosphate linking group.
  • linked nucleosides may or may not be linked by a phosphate linkage and thus include “linked nucleotides.”
  • nucleotide position refers to the position of a nucleotide in an oligonucleotide or oligonucleotide, counting from the nucleotide at the 5' end.
  • nucleotide position 1 refers to the 5'-terminal nucleotide of an oligonucleotide.
  • sugar moiety refers to a natural or modified sugar ring or sugar substitute.
  • sugar substitute moiety or “sugar substitute” refers to a structure that can replace the 5-membered furanose ring of a naturally occurring nucleoside. And such nucleosides with sugar substitute groups generally still have the ability to maintain hybridization with a heterocyclic base moiety.
  • the sugar substitute is a non-furanose (or 4'-substituted furanose) ring or ring system or an open system.
  • Non-limiting, such structures contain simple changes such as six-membered rings relative to natural furanose rings, such as morpholinyls, tetrahydropyrans and cyclohexanehexols, and the six-membered substitution is further modified, such as tetrahydropyrans to replace the furanose of naturally occurring nucleosides, and modified tetrahydropyrans include but are not limited to what are referred to in the art as hexitol nucleic acids (HNA), anitol nucleic acids (ANA), and mannitol nucleic acids (MNA) (see Leumann, CJ., Bioorg. & Med. Chem.
  • HNA hexitol nucleic acids
  • ANA anitol nucleic acids
  • MNA mannitol nucleic acids
  • F-HNA fluoro-HNA
  • carbocyclic nucleosides are nucleoside analogs in which the oxygen atom of the furanose ring of the sugar portion is replaced by a carbon atom, so carbocyclic rings are also a common sugar substitute, see, for example, U.S. Patent No.
  • 6,001,840 which has a cyclopentane ring replacing the tetrahydrofuran ring of the nucleoside, and the like can also be cyclohexyl, cyclopentyl, cyclohexenyl (see PCT Application No. WO 2010/036696; Robeyns et al., J. Am. Chem.
  • the "sugar replacement part” can be a bicyclic or tricyclic structure (see, for example, Leumann, Jc, Bioorganic & Medicinal Chemistry, 2002, 10, 841-854, US7399845, International Patent Publication Nos.
  • WO2009006478, WO2008150150729, WO2011/139702 such as locked nucleic acids (“LNA”) (see, for example, Koshkin et al. (1998), Tetrahedron, 54, 3607-3630); bridged nucleic acids (“BNA”) (see, for example, U.S. Pat. No. 7,427,672 and Mitsuoka et al. (2009), Nucleic Acids Res., 37(4): 1225-38); the "sugar replacement part” can also be acyclic, such as unlocked nucleic acids ("UNA”) (see, for example, U.S. Pat. No. 8,314,227, Davis A. et al. "Locked vs.
  • Furanose refers to a carbohydrate having a five-membered ring structure, wherein the ring structure has 4 carbon atoms and 1 oxygen atom as represented by the following structure: In the structure, the numbers indicate the positions of the four carbon atoms in the five-membered ring structure.
  • nucleosides with a sugar moiety substituted with tetrahydropyranyl have the following structural representations: Wherein each variable can be consistent with the formula (I) herein, and it can be understood that the ring can be further substituted by any suitable group; certain nucleosides of the sugar part substituted by morpholino have the following structural schematics: The numbers represent the positions of the four carbon atoms in the five-membered ring structure, wherein the variables may be consistent with the formula (I) herein, and it is understood that the ring may be further substituted by any suitable group; certain nucleosides of the sugar moiety substituted by cyclohexenyl have the following structural representation: The variables may be consistent with the formula (I) herein, and it is understood that the ring may be further substituted by any suitable group.
  • Certain bicyclic substituted sugar moieties of nucleosides including but not limited to nucleosides formed by bridging the 4' and 2' sugar ring atoms, have the following structural representations: wherein Bx is a base moiety, and R is independently H, a protecting group or a C 1 -C 12 alkyl group.
  • Modified sugars include modified deoxyribose or ribose moieties, for example, wherein the modification occurs at the 2', 3', 4, or 5'-carbon position of the sugar.
  • nucleobase or “heterocyclic base moiety” refers to the heterocyclic base moiety of a nucleoside, a heterocyclic moiety located at the 1' position of the nucleotide sugar moiety in the modified nucleotide that can be incorporated into the nucleic acid double helix (or an equivalent position in the substitution of the nucleotide sugar moiety that can be incorporated into the nucleic acid double helix).
  • Nucleobase or “heterocyclic base moiety” can be naturally occurring or can be modified and universal nucleobases.
  • nucleobase or “heterocyclic base moiety” can include any atom or a group of atoms that can be hydrogen bonded to the base of another nucleic acid, and the heterocyclic base moiety of each nucleoside can be modified by one or more substituent groups to enhance one or more properties such as affinity for the target chain or to affect some other properties in a favorable manner.
  • Modified nucleobases include, but are not limited to, universal bases, hydrophobic bases, promiscuous bases, expanded bases, and fluorinated bases as defined herein. Wherein these nucleobases can be used to enhance the binding affinity of oligonucleotides as provided herein.
  • Suitable natural nucleobases include purine bases and pyrimidine bases, such as adenine (A), thymine (T), cytosine (C), guanine (G) or uracil (U).
  • Suitable modified nucleobases include diaminopurine and its derivatives, alkylated purines or pyrimidines, acylated purines or pyrimidines, thiolated purines or pyrimidines, etc.; such as 5-methylcytosine (5-me-C), 5-hydroxymethylcytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C ⁇ C-CH3) uracil and cytosine and other pyrimidine bases.
  • 5-methylcytosine (5-me-C)
  • 5-hydroxymethylcytosine 5-hydroxymethylcytosine
  • xanthine hypoxanthine
  • 2-aminoadenine
  • Alkynyl derivatives 6-azouracil, cytosine and thymine 5-uracil (pseudouracil), N1-methyl-pseudouracil, 4-thiouracil, 8-halogen, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxy and other 8-substituted adenine and guanine, 5-halogen, especially 5-bromo, 5-trifluoromethyl and other 5-substituted uracil and cytosine, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine, 3-deazaguanine and 3-deazaadenine.
  • 5-halogen especially 5-bromo, 5-trifluoromethyl and other 5-substituted uracil and cytosine, 7-methylguanine and 7
  • nucleobases include tricyclic pyrimidines such as phenoxazine cytosine ([5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytosine, nucleoside (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as substituted phenoxazine cytosine (e.g.
  • nucleobases may also include those in which purine or pyrimidine bases are replaced by other heterocycles, such as 7-deazaadenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone.
  • WO2022007986, published in international application U.S. patents 3,687,808, 4,845,205, 5,130,302, 5,134,066, 5,175,273, 5,367,066, 5,432,272, 5,457,187, 5,459,255, 5,484,908, 5,502,177, 5,525,711, 5,552,540, 5,587,469, 5,594,121, 5,596,091, 5,614,617, 5,645,985, 5,681,941, 5,750,692, 5,763,588, 5,830,653, and 6,005,096.
  • universal base refers to a heterocyclic moiety with the same properties of a natural base located at the 1' position of the nucleotide sugar moiety in a modified nucleotide or at an equivalent position in a nucleotide sugar moiety substitution, i.e., when present in a nucleic acid duplex, can be placed opposite more than one type of base without altering the duplex structure (e.g., the structure of the phosphate backbone).
  • Some universal bases can form hydrogen bonds between the universal base and all bases guanine (G), cytosine (C), adenine (A), thymine (T) and uracil (U) under the condition of forming base pairs for base pairing.
  • a universal base in a double helix, can form a hydrogen bond or more than one hydrogen bond with each of the G, C, A, T and U on the opposite strand of the double helix.
  • base pairing between universal bases occurs but does not change the double helix structure of the phosphate backbone.
  • Universal bases can also interact with bases in adjacent nucleotides on the same nucleic acid chain through stacking interactions. Such stacking interactions stabilize the double helix, especially when the universal base does not form any hydrogen bonds with the bases placed opposite to it on the opposite strand of the double helix. At some times, similar 2,4-difluorophenyl is also a commonly substituted heterocyclic base.
  • Universal binding nucleotides include inosine, 1-OD-ribofuranosyl-5-nitroindole, and/or 1- ⁇ -D-ribofuranosyl-3-nitropyrrole (U.S. Patent Application Publication No. 20070254362 to Quay et al.; Van Aerschot et al., An acyclic 5-nitroindazole nucleoside analogue as ambiguous nucleoside, NUCLEIC ACIDS RES. 1995 Nov 11; 23(21):4363-70; Loakes et al., 3-Nitropyrrole and 5-nitroindole as universal bases in primers for DNA sequencing and PCR, NUCLEIC ACIDS RES. 1995 Jul 11; 23(13):2361-2366).
  • modified nucleosides refer to nucleosides that contain at least one modification compared to naturally occurring RNA or DNA nucleosides. Such modifications may be located at the sugar moiety and/or at the nucleobase. Modified nucleotides include those that do not contain a nucleobase (abasic).
  • 2'-F refers to a nucleoside comprising a sugar which in turn comprises a fluorine group at the 2' position.
  • 2'-OMe refers to a nucleoside comprising a sugar which in turn comprises an -OCH 3 group at the 2' position of the sugar ring.
  • 2'-MOE or “2'-OCH 2 CH 2 OCH 3 " or “2'-O-methoxyethyl” refers to a nucleoside comprising a sugar which in turn comprises an -OCH 2 CH 2 OCH 3 group at the 2' position of the sugar ring.
  • 5'-terminal nucleotide or 3'-terminal nucleotide refers to a nucleotide or nucleotide derivative located at the 5'-terminus or 3'-terminus of an oligonucleotide or an oligonucleotide.
  • oligonucleotide refers to a polymeric form of nucleotides ranging from 2 to 2500 nucleotides. Oligonucleotides can be single-stranded or double-stranded; typically, for example, where the oligonucleotide is used in gene therapy, for example, where the oligonucleotide is a nucleic acid inhibitor molecule. In certain embodiments, one or more of these multiple nucleotides are modified.
  • the term "oligonucleotide” in the context of the present invention refers to a polymer having at least one region that can hybridize with a nucleic acid molecule.
  • an oligonucleotide comprises a main chain of connected monomer subunits, and the bonding of the connected monomer subunits, sugar moieties or substitutes and heterocyclic base moieties can be independently modified.
  • the bonded sugar units which may or may not contain heterocyclic bases, can be replaced with mimetics such as peptide nucleic acid monomers.
  • mimetics such as peptide nucleic acid monomers.
  • oligonucleotide includes oligonucleotide analogs and oligonucleosides as well as nucleotide mimetics and/or mixed polymers comprising nucleic acid and non-nucleic acid components.
  • oligonucleotide also includes polymers comprising connected monomer subunits, wherein the monomer subunits include nucleosides, modified nucleosides, nucleoside analogs, nucleoside mimetics, and non-nucleic acid components such as coupling groups.
  • mixtures of monomer subunits (such as, but not limited to, those listed) provide oligonucleotides having enhanced properties for applications such as treatment and diagnosis.
  • Oligonucleotides are usually prepared with conventional linearity, are also connected or otherwise prepared into a bad shape, and may also contain branches. Oligonucleotides can form double-stranded constructs, for example, double strands that hybridize to form double-stranded compositions. The double-stranded compositions can be connected or separated and may contain overhangs at the ends.
  • expression refers to the process by which a gene ultimately produces a protein. Expression includes, but is not limited to, transcription, splicing, post-transcriptional modification, and translation.
  • antisense oligonucleotide refers to an antisense compound that is an oligonucleotide.
  • target nucleic acid refers to any nucleic acid molecule whose expression or activity can be regulated by an antisense compound.
  • the target nucleic acid is DNA or RNA.
  • the target RNA is mRNA, pre-mRNA, non-coding RNA, pri-microRNA, pre-microRNA, mature microRNA, promoter regulatory RNA, or natural antisense transcript.
  • target mRNA refers to a pre-selected protein-encoding RNA molecule.
  • hybridization refers to the pairing of complementary oligonucleotides (e.g., antisense compounds) and their target nucleic acids.
  • nucleobases complementary nucleoside or nucleotide bases
  • the natural nucleobase adenine is complementary to the natural nucleobases thymidine and uracil as nucleobases, which pair by forming hydrogen bonds.
  • the natural base guanine is a nucleobase complementary to the natural bases cytosine and 5-methylcytosine.
  • the oligonucleotide provided is a single-stranded oligonucleotide.
  • the single-stranded oligonucleotide is a conventional antisense oligonucleotide (also known as ASO), ribozyme or aptamer.
  • the oligonucleotide provided is a double-stranded ribonucleic acid (dsRNA) reagent, a double-stranded nucleoside nucleic acid well known in the art of such compounds, wherein one or two chains are oligonucleotides as disclosed herein.
  • dsRNA double-stranded ribonucleic acid
  • antisense compound and “antisense strand” refer to an oligonucleotide, at least a portion of which is at least partially complementary to a target nucleic acid to which it hybridizes.
  • antisense compounds modulate (increase or decrease) the expression or amount of a target nucleic acid.
  • antisense compounds alter the splicing of a target pre-mRNA, thereby resulting in different splicing variants.
  • antisense compounds modulate the expression of one or more different target proteins.
  • Antisense mechanisms contemplated herein include, but are not limited to, RNase H mechanisms, RNA mechanisms, front-end regulation, translation blocking alters RNA processing, inhibits microRNA function, or mimics microRNA function.
  • siRNA refers to short interfering RNA or silencing RNA.
  • siRNA is a type of double-stranded siRNA RNA molecule, which can be 20 to 25 (or shorter) base pairs in length, similar to microRNA (miRNA) that works in the RNA interference (RNAi) pathway.
  • miRNA microRNA
  • RNAi RNA interference pathway.
  • siRNA interferes with the expression of a specific gene with a nucleotide sequence complementary to siRNA by degrading mRNA after transcription, thereby preventing translation.
  • siRNA silences gene expression in cells by inducing RNA-induced silencing complex (RISC) to cut messenger RNA (mRNA).
  • RISC RNA-induced silencing complex
  • single-stranded oligonucleotide refers to a single-stranded oligomeric compound having a sequence that is at least partially complementary to a target mRNA and can hybridize to a target mRNA through hydrogen bonds under mammalian physiological conditions (or similar in vitro conditions).
  • the single-stranded oligonucleotide is a single-stranded antisense oligonucleotide.
  • double-stranded refers to two separate oligonucleotides that hybridize to each other.
  • double-stranded compounds may have one or more non-hybridizing nucleosides (overhangs) and/or one or more internal non-hybridizing nucleosides (mismatches) at one or both ends of one or both strands, provided that there is sufficient complementarity to maintain hybridization under physiologically relevant conditions.
  • the terms "silencing”, “reducing”, “inhibiting”, “down-regulating” or “knockdown” when referring to the expression of a given gene mean that when a cell, cell mass, tissue, organ or subject is treated with an oligomeric compound such as an RNAi agent described herein, the expression of the gene is reduced compared to a second cell, cell mass, tissue, organ or subject that has not been treated in this way, as measured by the level of RNA transcribed from the gene or the level of polypeptide, protein or protein subunit translated from mRNA in the cell, cell mass, tissue, organ or subject in which the gene is transcribed.
  • self-complementary or “hairpin” refers to a single oligonucleotide comprising a duplex region formed by oligonucleotide self-hybridization.
  • single-stranded refers to an oligonucleotide that is not hybridized to its complementary sequence and does not have sufficient self-complementarity to form a hairpin structure under physiologically relevant conditions.
  • a single-stranded compound may be capable of binding to its complementary sequence thereby becoming a double-stranded or partially double-stranded compound.
  • target mRNA or “target nucleic acid” refers to any nucleic acid molecule whose expression, amount or activity can be regulated by an antisense compound.
  • the target nucleic acid is DNA or RNA.
  • the target RNA is mRNA, pre-mRNA, non-coding RNA, pri-microRNA, pre-microRNA, mature microRNA, promoter regulatory RNA or natural antisense transcript.
  • the target nucleic acid can be a cellular gene (or mRNA transcribed from a gene) whose expression is associated with a specific disease or disease state, or a nucleic acid molecule from an infectious agent.
  • the target nucleic acid is a viral or bacterial nucleic acid.
  • nucleobase complementarity refers to a nucleobase that is capable of base pairing with another nucleobase in terms of a nucleobase.
  • adenine (A) is complementary to thymine (T).
  • adenine (A) is complementary to uracil (U).
  • a complementary nucleobase refers to a nucleobase of an antisense compound that is capable of base pairing with a nucleobase of its target nucleic acid.
  • non-complementary refers to a pair of nucleobases that do not form hydrogen bonds with each other or, in other words, do not support hybridization in terms of a nucleobase oligonucleotide or nucleic acid that is linked. It refers to the ability of an oligonucleotide to hybridize with another oligonucleotide or nucleic acid through nucleobase complementarity.
  • the correlation of a first nucleotide sequence of a dsRNA agent, such as a sense strand or a target target gene mRNA, with a second nucleotide sequence refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize with an oligonucleotide or polynucleotide comprising the second nucleotide sequence [forming hydrogen bonds between base pairs under mammalian physiological conditions (or similar conditions in vitro)] and to form a double helix or double helix structure under certain conditions.
  • Complementary sequences include Watson-Crick base pairs or non-Watson-Crick base pairs, and include natural or modified nucleotides or nucleotide mimetics, as long as the above hybridization requirements are at least met. Sequence identity or complementarity is independent of modification.
  • At least a portion of the core base sequence of the oligonucleotide is complementary or completely complementary to a portion of the target nucleic acid. In certain embodiments, it is 100% complementary to the target nucleic acid. In certain embodiments, it is 90% complementary to the target nucleic acid. In certain embodiments, it is 80% complementary to the target nucleic acid. In certain embodiments, it is 90% complementary to the target nucleic acid. In certain embodiments, it is 70% complementary to the target nucleic acid. In certain embodiments, it is 90% complementary to the target nucleic acid. In certain embodiments, it is 60% complementary to the target nucleic acid.
  • the complementary sequence in the target gene dsRNA as described herein comprises an oligonucleotide or polynucleotide containing a first nucleotide sequence and an oligonucleotide or polynucleotide containing a second nucleotide sequence.
  • Such sequences may be referred to as "completely complementary" to each other in this article. It should be understood that in the embodiment in which two oligonucleotides are designed to form one or more single-stranded overhangs when hybridized, such overhangs are not considered as mismatches determined based on complementarity in this article.
  • a target gene dsRNA agent comprises an oligonucleotide of 19 nucleotides in length and another oligonucleotide of 20 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 19 nucleotides that is completely complementary to the shorter oligonucleotide, and for the purposes described herein, this situation can be referred to as "completely complementary”. Therefore, as used herein, "completely complementary” means that all (100%) bases in the continuous sequence of the first polynucleotide will hybridize with the same number of bases in the continuous sequence of the second polynucleotide.
  • the continuous sequence may comprise all or part of the first or second nucleotide sequence.
  • the term "substantially complementary” means that in a hybridization pair of nuclear base sequences, at least about 85% (but not all) of the bases in the continuous sequence of the first polynucleotide will hybridize with the same number of bases in the continuous sequence of the second polynucleotide.
  • the term "substantially complementary” may be used to refer to a first sequence that forms a duplex of up to 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 base pairs (bp) relative to a second sequence while retaining the ability to hybridize under conditions most relevant to its ultimate application, e.g., inhibition of target gene expression by a RISC pathway.
  • partially complementary may be used herein to refer to a hybridization pair of nucleobase sequences in which at least 75% (but not all) of the bases in the contiguous sequence of the first polynucleotide will hybridize to the same number of bases in the contiguous sequence of the second polynucleotide.
  • partial complementarity refers to at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of the bases in the continuous sequence of the first polynucleotide will hybridize with the same number of bases in the continuous sequence of the second polynucleotide.
  • complementary when used herein can be used to refer to base matching between the sense strand and antisense strand of a dsRNA agent, base matching between the antisense strand of a dsRNA agent and the sequence of a target mRNA, or base matching between a single-stranded antisense oligonucleotide and a target mRNA sequence.
  • antisense strand of a dsRNA agent can refer to the same sequence as an "antisense polynucleotide agent”.
  • mismatches are known to those skilled in the art, and for the efficacy of dsRNA, mismatches are tolerable, especially in the case of mismatches in the terminal regions of dsRNA. Certain mismatches are better tolerated, such as mismatches with wobble base pairs G:U and A:C, which are better tolerated for efficacy (Du et el., A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res. 2005 Mar 21; 33(5): 1671-7. Doi: 10.1093/nar/gki312. Nucleic Acids Res. 2005; 33(11): 3698).
  • motif or “sequence” as used herein refers to the order or sequence of nucleobases or nucleotides, expressed in alphabetical order using standard nucleotide nomenclature.
  • the present invention provides oligonucleotides comprising any multiple length ranges.
  • any strand of single-stranded, sense strand and/or antisense strand comprises 8-40 nucleotide lengths respectively.
  • any strand of single-stranded, sense strand and/or antisense strand comprises 15-30 nucleotide lengths respectively.
  • the oligonucleotide nucleotide length is selected from 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 and 40.
  • the invention provides oligonucleotides having a nucleotide length range of 8 to 9, 8 to 10, 8 to 11, 8 to 12, 8 to 13, 8 to 14, 8 to 15, 8 to 16, 8 to 17, 8 to 18, 8 to 9, 8 to 20, 8 to 21, 8 to 22, 8 to 23, 8 to 24, 8 to 25, 8 to 26, 8 to 27, 8 to 28, 8 to 29, 8 to 30, 9 to 10, 9 to 11, 9 to 12, 9 to 13, 9 to 14, 9 to 15, 9 to 16, 9 to 17, 9 to 18, 9 to 19, 9 to 20, to 20, 9 to 21, 9 to 22, 9 to 23, 9 to 24, 9 to 25, 9 to 26, 9 to 27, 9 to 28, 9 to 29, 9 to 30, 10 to 11, 10 to 12, 10 to 13, 10 to 14, 10 to 15, 10 to 16, 10 to 17, 10 to 18, 10 to 19, 10 to 20, 10 to 21, 10 to 22, 10 to 23, 10 to 24, 10 to 25, 10 to 26, 10 to 27, 10 to 28, 10 to 29, 10 to 30, 11 to 12, 11 to 13, 11 to 14, 11 to 15, 11 to 16, 11 to 17, 11 to 18, 11 to 19, 11 to 20, 11 to 21, 11 to 22, 11 to 22, 11 to 24, 10 to
  • the oligonucleotide or oligonucleotide may further comprise additional other substituents.
  • an oligonucleotide comprising 8-30 nucleosides does not include an oligonucleotide with 31 nucleosides, but unless otherwise specified, such an oligonucleotide may further comprise, for example, one or more conjugates, terminal groups or other substituents, and monomers herein are generally considered to be terminal groups that the oligonucleotide further comprises.
  • the terminal groups include, but are not limited to, terminal group nucleosides. In such embodiments, the terminal groups are modified differently from the terminal nucleosides of the oligonucleotide so that such terminal groups are distinguished from the nucleosides of the oligonucleotide.
  • At least one or each of the targeting groups is selected from a ligand that can bind to a receptor on the surface of a mammalian hepatocyte.
  • each of the targeting groups is independently a ligand that is affinity-containing with an asialoglycoprotein receptor (ASGPR) on the surface of a mammalian hepatocyte.
  • each of the targeting groups is independently a ligand that comprises an asialoglycoprotein or sugar.
  • each of the targeting groups is independently a ligand that comprises an asialoglycoprotein, such as an asialo serum globulin (ASOR) or an asialo globulin (ASF).
  • each of the targeting groups independently comprises a D-mannopyranose, L-mannopyranose, D-arabinose, D-xylofuranose, L-xylofuranose, D-glucose, L-glucose, D-galactose, L-galactose, ⁇ -D-mannofuranose, ⁇ -D-mannofuranose, ⁇ -D-mannopyranose, ⁇ -D-mannopyranose, ⁇ -D-glucose-pyranose, ⁇ -D-glucose-pyranose.
  • At least one or each of the targeting groups is a ligand comprising galactose or N-acetylgalactosamine.
  • the targeting group comprises one or more "GalNAc” (N-acetylgalactosamine) derivatives attached via a suitable tether via a bivalent or trivalent branched linker.
  • GalNAc N-acetylgalactosamine
  • q2A , q2B , q3A , q3B , q4A , q4B , q5A , q5B , q5C , q6A , q6B and q6C each independently represent 0-20, and the repeating units therein may be the same or different;
  • Q 2A , Q 2B , Q 3A , Q 3B , Q 4A , Q 4B , Q 5A , Q 5B , Q 5C , Q 6A , Q 6B , Q 6C each occurrence independently represents: absent, alkylene, substituted alkylene wherein one or more methylene groups may be interrupted or terminated by one or more of the following groups: O, S, S( ⁇ O), SO 2 , NH, C(R′) ⁇ C(R′′), C ⁇ C or C( ⁇ O);
  • Each occurrence of L2A , L2B , L3A , L3B , L4A , L4B , L5A , L5B , L5C , L6A , L6B , and L6C independently represents: a monosaccharide (such as GalNAc), a disaccharide, a trisaccharide, a tetrasaccharide, an oligosaccharide, or a polysaccharide.
  • a monosaccharide such as GalNAc
  • the targeting group is selected from one of the following compound fragments:
  • the antisense strand of the double-stranded RNA comprises a 5'-terminal compound (or terminal nucleotide) having the formula (IX-1) or (IX-2):
  • the 5'-phosphonate modified nucleoside analog when in the form of a phosphoramidite compound as described herein, it can be used to connect the 5'-phosphonate modified nucleoside analog using a phosphoramidite synthesis method of nucleotides known in the art.
  • the 5'-phosphonate modified nucleoside analog can be prepared as a phosphoramidite compound by connecting the phosphorus atoms of the phosphoramidite forming agent through a coupling (e.g., phosphorylation) reaction to form a phosphoramidite compound.
  • the 5'-phosphonate modified nucleoside analog-phosphoramidite compound is used to connect the 5'-phosphonate modified nucleoside analog to the 5' end of the antisense strand of the double-stranded RNA.
  • oligonucleotides described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric configurations which can be defined in terms of absolute stereochemistry as (R) or (S), ⁇ or ⁇ such as for sugar anomers, or as (D) or (L) such as for amino acids, etc. All such possible isomers as well as their racemic and optionally pure forms are included in the oligonucleotides provided herein.
  • a method for inhibiting gene expression comprising: contacting a cell with an oligonucleotide or double-stranded ribonucleic acid (dsRNA) reagent provided above, wherein the sense strand and the antisense strand in the oligonucleotide and the double-stranded ribonucleic acid (dsRNA) reagent both comprise 8-40 nucleotides in length, and the antisense strand in the oligonucleotide or double-stranded ribonucleic acid (dsRNA) reagent is complementary to the target RNA.
  • the cell is in an animal.
  • the cell is in a human.
  • the target RNA is selected from mRNA, pre-mRNA and micro RNA.
  • the target RNA is mRNA.
  • the target RNA is human mRNA.
  • the target RNA is cleaved, thereby inhibiting its function.
  • the method further comprises detecting the level of the target RNA.
  • a method for inhibiting gene expression comprising: contacting one or more cells or tissues with an oligonucleotide or double-stranded ribonucleic acid (dsRNA) comprising a 5'-terminal nucleotide represented by (V), formula (V-1), formula (V-2), formula (VI), formula (VI-1), formula (VI-2), formula (VI-3), formula (VII), formula (VII-1), formula (VII-2), formula (VIII), formula (VIII-1) or their stereoisomers.
  • dsRNA oligonucleotide or double-stranded ribonucleic acid
  • Therapeutic formulations of dsRNA agents or target gene antisense polynucleotide agents can be prepared for storage by mixing the molecule or compound with the desired purity with an optional pharmaceutically acceptable carrier, excipient or stabilizer [Remington's Pharmaceutical Sciences 21st edition, (2006)] in the form of a lyophilized formulation or an aqueous solution.
  • Acceptable carriers, excipients or stabilizers are non-toxic to recipients at the doses and concentrations employed, and include buffers such as phosphates, citrates and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (e.g., octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl alcohol or benzyl alcohol; parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers, such as polyvinylpyrrolidone; amino acids, such as glycine, glutamine, asparagine, his
  • the tissue to which the compound is administered is a tissue in which a target gene-related disease or condition exists or may occur, and its non-limiting example is the liver or kidney.
  • Direct tissue administration can be achieved by direct injection or other means.
  • Many compounds delivered orally naturally enter and pass through the liver and kidney, and some embodiments of the method of the present invention include oral administration of one or more target gene dsRNA reagents to the subject.
  • dsRNA reagents or target gene antisense polynucleotide agents alone or in combination with other therapeutic agents, can be administered once, or they can be administered multiple times.
  • target gene dsRNA reagents or target gene antisense polynucleotide agents can be administered by different routes.
  • first (or first few) administration can be performed subcutaneously, and one or more additional administrations can be oral and/or systemic administration.
  • the target gene dsRNA agent or the target gene antisense polynucleotide agent can be formulated for parenteral administration by injection, for example, by bolus injection or continuous infusion.
  • injectable formulations can be present in unit dosage form, such as ampoules or multi-dose containers, with or without added preservatives.
  • Target gene dsRNA agent formulations can be in the form of suspensions, solutions or emulsions in oily or aqueous carriers, and can contain preparatants, such as suspending agents, stabilizers and/or dispersants.
  • Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions and emulsions.
  • non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil and injectable organic esters such as ethyl oleate.
  • Aqueous carriers include water, alcohol/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • Parenteral carriers include sodium chloride solution, Ringer's dextrose solution, glucose and sodium chloride solution, lactated Ringer's solution or fixed oil.
  • Intravenous excipients include fluid and nutritional supplements, electrolyte supplements (such as those based on Ringer's dextrose solution), etc. Preservatives and other additives, such as antimicrobial agents, antioxidants, chelating agents and inert gases, etc., may also be present. Other forms of administration, such as intravenous administration, will result in lower dosages. If the subject is not sufficiently responsive at the initial dose, a higher dose (or a different, more localized delivery route effectively increases the dose) can be used within the range allowed by patient tolerance. Multiple doses per day may be used as needed to achieve appropriate systemic or local levels of one or more target gene dsRNA agents or target gene antisense polynucleotide agents, and to achieve appropriate reduction in target gene activity.
  • the methods of the invention include the use of a delivery vehicle, such as a biocompatible microparticle, nanoparticle, or an implant suitable for implantation into a recipient, such as a subject.
  • a delivery vehicle such as a biocompatible microparticle, nanoparticle, or an implant suitable for implantation into a recipient, such as a subject.
  • exemplary biodegradable implants that can be used according to the method are described in PCT Publication WO 95/24929 (incorporated herein by reference), which describes a biocompatible, biodegradable polymer matrix for containing biomacromolecules.
  • both non-biodegradable and biodegradable polymer matrices can be used in the methods of the present invention to deliver one or more target gene dsRNA agents or target gene antisense polynucleotide agents to a subject.
  • the matrix can be biodegradable.
  • the matrix polymer can be a natural or synthetic polymer.
  • the polymer can be selected based on the time period of the desired release, usually on the order of a few hours to a year or more. Typically, release within a period of time between a few hours and three to twelve months can be used.
  • the polymer is optionally in the form of a hydrogel, which can absorb up to about 90% of its weight of water, and is also optionally cross-linked with multivalent ions or other polymers.
  • target gene dsRNA reagents or target gene antisense polynucleotide reagents can be delivered by diffusion or by degradation of a polymer matrix using a biodegradable implant in some embodiments of the present invention.
  • Exemplary synthetic polymers for this purpose are well known in the art.
  • biodegradable polymers and non-biodegradable polymers can be used to deliver target gene dsRNA reagents or target gene antisense polynucleotide reagents.
  • Bioadhesive polymers such as bioerodible hydrogels (HS Sawhney, CP Pathak and JA Hubell in Macromolecules, 1993, 26, 581-587) can also be used to deliver target gene sRNA reagents or target gene antisense polynucleotide reagents to treat target gene related diseases or illnesses.
  • Other suitable delivery systems may include timed release, delayed release or sustained release delivery systems. Such systems can avoid repeated administration of target gene dsRNA reagents or target gene antisense polynucleotide agents, thereby improving the convenience of objects and health care professionals.
  • Many types of release delivery systems are available and known to those of ordinary skill in the art. See, e.g., U.S. Patent Nos. 5,075,109, 4,452,775, 4,675,189, 5,736,152, 3,854,480, 5,133,974, and 5,407,686.
  • pump-based hardware delivery systems may be used, some of which are also suitable for implantation.
  • long-term sustained release implants can be applicable to the preventive treatment of objects and objects with the risk of recurrent target gene) related diseases or illnesses.
  • long-term release refers to implant construction and arrangement to deliver target gene dsRNA reagents or target gene antisense polynucleotide reagents at least up to 10 days, 20 days, 30 days, 60 days, 90 days, six months, one year or longer time treatment levels.
  • Long-term sustained release implants are well known to those of ordinary skill in the art and include some of the above-mentioned release systems.
  • the methods of the present invention include contacting cells with an effective amount of a dsRNA agent or an antisense polynucleotide agent to reduce gene expression in the contacted cells.
  • Certain embodiments of the methods of the present invention include administering a dsRNA agent or an antisense polynucleotide agent to a subject in an amount that effectively reduces gene expression and treats a relevant disease or condition of the subject.
  • the "effective amount" used is the amount necessary or sufficient to achieve the desired biological effect.
  • the effective amount of a dsRNA agent or an antisense polynucleotide agent for treating a relevant disease or condition can be: (i) the amount required to slow down or stop the progression of a disease or condition; (ii) reversing, reducing or eliminating one or more symptoms of a disease or condition.
  • an effective amount is the amount of a dsRNA agent or an antisense polynucleotide agent that causes a therapeutic response of prevention and/or treatment of a disease or condition when applied to a subject in need of treating a relevant disease or condition.
  • an effective amount is an amount of a dsRNA agent or antisense polynucleotide agent of the present invention that, when combined or co-administered with another therapeutic treatment for a related disease or condition, results in a therapeutic response that prevents and/or treats the disease or condition.
  • the biological effect of treating a subject with a dsRNA agent or antisense polynucleotide agent of the present invention may be an improvement and/or complete elimination of symptoms caused by a related disease or condition.
  • the biological effect is the complete elimination of a related disease or condition, as demonstrated, for example, by a diagnostic test indicating that the subject does not have a related disease or condition.
  • an effective amount is an amount that results in a desired response, such as a reduction in the amount of a related disease or condition in a cell, tissue, and/or subject with a disease or condition.
  • Some embodiments of the present invention include methods for determining the efficacy of a target gene dsRNA agent or a target gene antisense polynucleotide agent of the present invention administered to a subject to treat a target gene-related disease or condition, which is performed by evaluating and/or monitoring one or more "physiological characteristics" of a target gene-related disease or condition in a subject.
  • physiological characteristics of a target gene-related disease or condition are that many patients
  • gene silencing can be performed constitutively or by genome engineering in any cell expressing and determined by any suitable assay.
  • target gene expression is reduced by at least 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100%.
  • target gene expression is reduced by 5% to 10%, 5% to 25%, 10% to 50%, 10% to 75%, 25% to 75%, 25% to 100% or 50% to 100%.
  • dsRNA agents and antisense polynucleotide agents are delivered in a pharmaceutical composition with a dosage sufficient for target gene expression.
  • the dosage of dsRNA agents or antisense polynucleotide agents is 0.01 to 200.0 mg per kilogram of recipient body weight per day, generally 1 to 50 mg/kg body weight, 5 to 40 mg/kg body weight, 10 to 30 mg/kg body weight, 1 to 20 mg/kg body weight, 1 to 10 mg/kg body weight, 4 to 15 mg/kg body weight, including end values.
  • dsRNA reagent [Corrected 06.05.2024 in accordance with Article 91]
  • the absolute amount of the dsRNA reagent or antisense polynucleotide agent delivered will depend on various factors, including co-treatment, dosage number and individual object parameters, including age, physical condition, physique size and body weight. These are factors well known to those of ordinary skill in the art, and can be solved by routine experiments.
  • a maximum dose can be used, i.e., the highest safe dose according to reasonable medical judgment.
  • the methods of the present invention may include administering 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more doses of an agent or antisense polynucleotide agent to a subject.
  • a dose of a drug compound may be administered to a subject at least daily, every other day, weekly, every other week, monthly, etc., and may be administered once a day or more than once a day, for example, 2, 3, 4, 5 or more times within a 24-hour cycle.
  • the pharmaceutical composition of the present invention may be administered once a day; or a dsRNA agent or antisense polynucleotide agent may be administered in two, three or more sub-doses at appropriate intervals throughout the day, or even delivered using continuous infusion or by a controlled release formulation.
  • the pharmaceutical composition of the present invention is administered to a subject once a day or more, once a week or more, once a month or more, or once a year or more.
  • Certain embodiments of the present invention include the use of a pharmaceutical composition containing a dsRNA agent or an antisense polynucleotide agent and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition comprising a dsRNA agent or an antisense polynucleotide agent can be used in the method of the present invention to reduce gene expression and activity in cells, and can be used to treat related diseases or conditions.
  • Such pharmaceutical compositions can be formulated based on the mode of delivery.
  • Non-limiting examples of formulations for delivery modes are: compositions formulated for subcutaneous delivery, compositions formulated for systemic administration by parenteral delivery, compositions formulated for intravenous (IV) delivery, compositions formulated for intrathecal delivery, compositions formulated for direct delivery to the brain, etc.
  • the pharmaceutical composition of the present invention can be administered in one or more ways to deliver dsRNA agents or antisense polynucleotide agents to cells, for example: surface (e.g., by transdermal patch); lungs, for example, by inhalation or blowing into powder or aerosol, including by a nebulizer; intra-airway, intranasal, epidermal and transdermal, oral or parenteral.
  • Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subcutaneous, such as by implantation; or intracranial, such as by intraparenchymal; intrathecal or intraventricular administration.
  • dsRNA agents or antisense polynucleotide agents can also be delivered directly to target tissues, such as directly to the liver, directly to the kidneys, etc.
  • delivering dsRNA agents" or “antisense polynucleotide agents” to cells includes delivering dsRNA agents or antisense polynucleotide agents, expressing dsRNA agents directly in cells, and expressing dsRNA agents from encoding vectors delivered to cells, or any suitable manner that causes dsRNA or antisense polynucleotide agents to appear in cells.
  • the preparation and use of formulations and means for delivering inhibitory RNA are well known in the art and commonly used.
  • the composition also includes one or more other therapeutic agents.
  • the composition of the present invention may include one or more dsRNA agents and optional one or more pharmaceutically acceptable carriers, delivery agents, targeting agents, detectable labels, etc., and the non-limiting example of the available targeting agent according to some embodiments of the inventive method is to guide the dsRNA agent of the present invention to and/or enter the reagent of the cell to be treated.
  • the selection of the targeting agent will depend on the following elements: the nature of the relevant disease or illness, and the target cell type. In a non-limiting example, in some embodiments of the present invention, it may be necessary to target the dsRNA agent to and/or enter the hepatocyte.
  • the therapeutic agent includes only a dsRNA agent with a delivery agent, such as a delivery agent including N-acetylgalactosamine (GalNAc), without any additional connecting elements.
  • a delivery agent such as a delivery agent including N-acetylgalactosamine (GalNAc)
  • the dsRNA agent can be connected to the delivery compound including GalNAc, and is included in the composition containing a pharmaceutically acceptable carrier, and is administered to cells or objects without any detectable label or targeting agent connected to the dsRNA agent, etc.
  • Labeling agents can be used to determine the position of dsRNA agents in cells and tissues in certain methods of the present invention, and can be used to determine the cell, tissue or organ position of the therapeutic composition containing dsRNA agents that has been administered in the methods of the present invention.
  • the means of attaching and using labeling agents such as enzyme labels, dyes, radioactive labels, etc. are well known in the art. It should be understood that in some embodiments of the compositions and methods of the present invention, the labeling agent is connected to one or both of the sense polynucleotides and antisense polynucleotides contained in the dsRNA agent.
  • the composition is packaged in a medicine box, a container, a wrapper, a dispenser, a prefilled syringe or a vial.
  • a medicine box containing one or more target gene dsRNA reagents and/or target gene antisense polynucleotide reagents and instructions for use in the method of the present invention is also within the scope of the present invention.
  • the medicine box of the present invention may include one or more of the target gene dsRNA reagents, target gene sense polynucleotides and target gene antisense polynucleotide reagents that can be used to treat target gene related diseases or conditions.
  • a medicine box containing one or more target gene dsRNA reagents, target gene sense polynucleotides and target gene antisense polynucleotide reagents can be prepared for the treatment method of the present invention.
  • the components of the medicine box of the present invention can be packaged in aqueous medium or lyophilized form.
  • the medicine box of the present invention can include a carrier that is separated to contain one or more container devices or a series of container devices (e.g., test tubes, vials, flasks, bottles, syringes, etc.) in a closed manner therein.
  • the first container device or a series of container devices may include one or more compounds, such as target gene) dsRNA reagents and/or target gene sense or antisense polynucleotide reagents.
  • the second container means or series of container means may contain a targeting agent, a labeling agent, a delivery agent, etc., which may be included as part of the target gene) dsRNA agent and/or the target gene antisense polynucleotide administered in embodiments of the treatment methods of the present invention.
  • the kit of the invention may also include instructions.
  • the instructions are generally in written form and will provide guidance for carrying out the treatment embodied by the kit and making decisions based on the treatment.
  • the methods of the present invention can be used in conjunction with cells, tissues, organs and/or objects.
  • the object is a human or vertebrate mammal, including but not limited to dogs, cats, horses, cows, goats, mice, rats and primates, such as monkeys. Therefore, the present invention can be used to treat target gene-related diseases or conditions in humans and non-human subjects.
  • the subject can be a farm animal, a zoo animal, a domesticated animal or a non-domesticated animal, and the methods of the invention can be used in veterinary prevention and treatment programs.
  • the subject is a human and the methods of the invention can be used in human prevention and treatment programs.
  • Non-limiting examples of subjects to which the present invention can be applied are subjects diagnosed with, suspected of having, or at risk of having a disease or condition associated with: higher than desired target gene expression and/or activity, also referred to as "elevated target gene expression levels".
  • higher than desired target gene expression and/or activity also referred to as "elevated target gene expression levels”.
  • diseases and conditions associated with target gene expression and/or activity higher than desired levels are described elsewhere herein.
  • the methods of the present invention can be applied to subjects who have been diagnosed with the disease or condition at the time of treatment, subjects associated with higher than desired target gene expression and/or activity, or subjects who are believed to be at risk of having or developing a disease or condition associated with higher than desired target gene expression and/or activity.
  • a disease or condition associated with higher than desired target gene expression and/or activity levels is an acute disease or condition; in certain aspects of the present invention, a disease or condition associated with higher than desired target gene expression and/or activity levels is a chronic disease or condition.
  • the target gene dsRNA agent of the present invention is administered to treat a disease or disorder caused by or associated with the activation of the target gene, or a disease or disorder whose symptoms or progression respond to the inactivation of the target gene.
  • target gene-related disease includes diseases, disorders or conditions that benefit from reduced expression of the target gene.
  • Cells to which the method of the present invention can be applied include in vitro, in vivo, and ex vivo cells.
  • Cells can be in an object, in a culture and/or in a suspension, or in any other suitable state or condition.
  • Cells to which the method of the present invention can be applied can be: liver cells, hepatocytes, heart cells, pancreatic cells, cardiovascular cells, kidney cells, or other types of vertebrate cells, including human and non-human mammalian cells.
  • cells to which the method of the present invention can be applied are healthy normal cells, which are unknown to be disease cells.
  • control cells are normal cells, but it should be understood that cells with diseases or disorders can also be used as control cells in certain cases, such as when comparing the results of treated cells with diseases or disorders with untreated cells with diseases or disorders.
  • the level of target gene polypeptide activity can be determined and compared with the control level of target gene polypeptide activity.
  • the control can be a predetermined value, which can take a variety of forms. It can be a single cutoff value, such as a median or mean value. It can be established based on a comparison group, such as a group with a normal level of target gene polypeptide and/or target gene polypeptide activity and a group with an increased target gene polypeptide and/or target gene polypeptide activity level.
  • a comparison group can be a group with one or more symptoms or diagnoses of a target gene-related disease or condition and a group without one or more symptoms or diagnoses of a disease or condition; a group of subjects to which the siRNA treatment of the present invention has been applied and a group of subjects to which the siRNA treatment of the present invention has not been applied.
  • the control can be based on a normal individual or a cell that is obviously healthy in an appropriate age group. It should be understood that, in addition to the predetermined value, the control according to the present invention can be a material sample tested in parallel with the experimental material. Examples include samples from a control population or control samples produced by manufacturing for parallel testing with the experimental sample.
  • a control may include cells or objects that have not been contacted or treated with a target gene dsRNA agent of the present invention, in which case the control level of the target gene polypeptide and/or target gene polypeptide activity and the level of the target gene polypeptide and/or target gene polypeptide activity in cells or objects contacted with a target gene dsRNA agent or a target gene antisense polynucleotide agent of the present invention can be compared.
  • the control level can be a target gene polypeptide level determined for the object, wherein the target gene polypeptide level determined for the same object at different times is compared with the control level.
  • the level of the target gene is determined in a biological sample obtained from an object that has never received the target gene therapy of the present invention.
  • the biological sample is a serum sample. The target gene polypeptide level measured in the sample obtained from the object can be used as the baseline or control value of the object.
  • one or more additional serum samples can be obtained from the object, and the target gene polypeptide level in the subsequent one or more samples can be compared with the control/baseline level of the object. Such comparisons can be used to assess the onset, progression or regression of target gene) related diseases or conditions in the object.
  • the level of target gene) polypeptide in the baseline sample obtained from the object is higher than the level obtained from the same object after the target gene dsRNA agent of the present invention or the target gene) antisense polynucleotide agent is given to the object, then the regression of the target gene related disease or condition and the efficacy of the target gene dsRNA agent of the present invention used to treat the target gene related disease or condition.
  • one or more values of the target gene polypeptide and/or target gene polypeptide activity level determined for a subject can be used as a control value and used to compare the target gene polypeptide and/or target gene activity level in the same subject later, thereby allowing the assessment of changes in the "baseline" target gene polypeptide activity in the subject. Therefore, where the initial level is used as the control level for the subject, the initial target gene polypeptide level and/or the initial target gene polypeptide activity level can be used to show and/or determine that the methods and compounds of the present invention are able to reduce the level of the target gene polypeptide and/or target gene polypeptide activity in the subject in the subject.
  • the target gene dsRNA agents and/or target gene antisense polynucleotide agents of the present invention can be administered to a subject.
  • dsRNAi agents include the efficacy of the administration and treatment of the present invention can be assessed as follows: the level of the target gene polypeptide in a serum sample obtained from the subject after administration and treatment is reduced by at least 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or more compared to the pre-administration level of the target gene) polypeptide in a serum sample obtained from the subject at a previous time point, or compared to the non-contact control level (e.g., the target gene polypeptide level in a control serum sample).
  • the non-contact control level e.g., the target gene polypeptide level in a control serum sample.
  • the level of the target gene polypeptide and the level of target gene polypeptide activity are both related to the level of target gene expression.
  • Certain embodiments of the methods of the present invention include administering to the subject a target gene dsRNA and/or a target gene antisense agent of the present invention in an amount effective to inhibit the expression of the target gene, thereby reducing the level of the target gene polypeptide in the subject and reducing the level of the target gene polypeptide activity.
  • contacting a cell with an siRNA agent of the present invention results in at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 9%,10%,11%,12%,13%,14%,15%,16%,17%,18%,19%,20%,21%,22%,23%,24%,25%,26%,27%,
  • Some embodiments of the present invention include determining the presence, absence and/or amount (also referred to herein as level) of a target gene polypeptide in one or more biological samples obtained from one or more subjects.
  • the assay can be used to evaluate the efficacy of the therapeutic methods of the present invention.
  • the methods and compositions of the present invention can be used to determine the level of a target gene polypeptide in a biological sample obtained from a subject previously treated with a target gene dsNA reagent and/or a target gene antisense agent of the present invention.
  • the level of the target gene polypeptide in the serum sample obtained from the subject is reduced by at least 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or more, indicating the efficacy level of the treatment given to the subject.
  • the physiological characteristics of the target gene-related disease or condition determined for the object can be used as a control result, and the determination results of the physiological characteristics of the same object at different times are compared with the control results.
  • the pathological feature hemolysis is measured from an object that has never been treated with the target gene of the present invention, which can be used as a baseline or control value for the object. After the target gene dsRNA agent is applied to the object once or more in the treatment method of the present invention, the blood cells are compared with the control/baseline level of the object respectively.
  • Such comparisons can be used to assess the onset, progression or regression of the target gene-related disease or condition in the object.
  • the baseline blood cells obtained from the object are higher than the thrombus measured from the same object after the target gene dsRNA agent or target gene antisense polynucleotide agent of the present invention is applied to the object, indicating the regression of the target gene-related disease or condition and indicating the efficacy of the target gene dsRNA agent of the present invention for treating the target gene-related disease or condition.
  • Some embodiments of the present invention include determining the presence, absence and/or change of physiological characteristics of a target gene-related disease or condition using methods such as, but not limited to, the following: (1) measuring blood cells of a subject; (2) evaluating physiological characteristics of one or more biological samples obtained from one or more subjects; (3) or performing a physical examination on a subject. This determination can be used to evaluate the efficacy of the treatment methods of the present invention.
  • the RNA of the gene RNAi agent is chemically modified to obtain enhanced stability and/or one or more other beneficial properties.
  • the nucleic acid in certain embodiments of the present invention can be synthesized and/or modified by methods known in the art, for example, see “Current protocols in Nucleic Acid Chemistry,” Beaucage, SL et al. (Eds.), John Wiley & Sons, Inc., New York, NY, USA, which is incorporated herein by reference.
  • the modifications that may be present in certain embodiments of the dsRNA agent of the present invention include, for example: (a) terminal modifications, such as 5' end modifications (phosphorylation, conjugation, reverse connection, etc.), 3' end modifications (conjugation, DNA nucleotides, reverse connection, etc.); (b) base modifications, such as base replacement, deletion of bases (abasic nucleotides) or conjugation of bases with stable bases, destabilizing bases or base pairing with an extended partner library; (c) sugar modifications (e.g., at the 2' position or the 4' position) or replacement of sugars; and (d) backbone modifications, including modification or replacement of phosphodiester bonds.
  • terminal modifications such as 5' end modifications (phosphorylation, conjugation, reverse connection, etc.), 3' end modifications (conjugation, DNA nucleotides, reverse connection, etc.
  • base modifications such as base replacement, deletion of bases (abasic nucleotides) or conjugation of bases with stable bases, destabilizing bases or base pairing with an
  • RNA compounds available in certain embodiments of the dsRNA reagents, antisense polynucleotides and sense polynucleotides of the present invention include but are not limited to RNAs comprising modified backbones or without natural internucleoside linkages.
  • RNAs with backbone modifications may not have phosphorus atoms in the backbone.
  • RNAs without phosphorus atoms in their internucleoside backbones may be referred to as oligonucleosides.
  • modified RNAs have phosphorus atoms in their internucleoside backbones.
  • RNA molecule or “RNA” or “ribonucleic acid molecule” includes not only RNA molecules expressed or found in nature, but also analogs and derivatives of RNA, which include one or more ribonucleotides/ribonucleoside analogs or derivatives as described herein or known in the art.
  • ribonucleoside and “ribonucleotide” are used interchangeably herein.
  • RNA molecules can be modified in the core base structure or the ribose-phosphate backbone structure (e.g., as described below), and molecules containing ribonucleoside analogs or derivatives must retain the ability to form duplexes.
  • the term “about” or “approximately” as applied to one or more values of interest refers to a value similar to the reference value. In certain embodiments, unless otherwise specified or otherwise apparent from the context, the term “about” or “approximately” refers to a range of values falling within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1% or less of the reference value in either direction (greater than or less than) (unless such a numerical value will exceed 100% of the possible value).
  • Figure 1 is a single crystal X-ray diffraction pattern of Phos-15-1E-2 (((((1R,2R,4R)-4-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2-hydroxycyclopentyl)thio)methyl)phosphonic acid diethyl ester).
  • the reaction solution was poured into a saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate, and the ethyl acetate phase was washed with brine and dried over anhydrous sodium sulfate. After filtering to remove the desiccant, the filtrate was concentrated to dryness under reduced pressure.
  • reaction solution was cooled to 5°C and continued to stir for 20 minutes, then potassium iodide (1.66g, 0.01mol, 0.05eq.) was added to the mixture, and (2-bromoethoxy)(tert-butyl)dimethylsilane (57.41g, 0.24mol, 1.2eq.) was added.
  • the reaction solution was heated to 50°C and stirred overnight under nitrogen protection. TLC showed that the raw material was converted into a new major product.
  • the reaction mixture was quenched with saturated ammonium chloride solution (250mL) and stirred at 0-25°C for 0.5 hours.
  • Tetrahydrofuran 100 mL was added to a 500 mL flask and cooled to 0 ° C under nitrogen protection, and then lithium aluminum tetrahydride (0.077 mol, 1.5 eq.) was added.
  • reaction mixture was slowly quenched with 100 mL of ethyl acetate and stirred at 5-25 ° C for 0.5 hours.
  • the mixture was filtered through a thin layer of silica gel with diatomaceous earth.
  • the filtrate was concentrated to obtain a crude product, which was further purified by silica gel column, and the eluent (0%-10% MeOH in DCM) was used to wash out the product. Vacuum concentration gave 4.8 g of yellow oil Phos-03-3A, with a yield of 39.8%.
  • the reaction mixture was cooled to 0-5°C and carefully added dropwise to a stirred saturated ammonium chloride solution (80 mL) (keeping the temperature below 0-5°C), then extracted with ethyl acetate (80 mL*2), the organic phases were combined, washed with brine (80 mL), dried over anhydrous sodium bisulfate, and concentrated under reduced pressure to obtain a residue.
  • the residue was purified by silica gel column chromatography (100-200 mesh silica gel) eluting with methanol: dichloromethane (1:100:1:30) to give Phos-13-1B (6.0 g, 76.7% yield) as a brown oil.
  • the resulting reaction mixture was diluted with water (20 mL), extracted with 30% CF 3 CH 2 OH/DCM (30 mL*5), and the combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to obtain a residue.
  • the residue was purified by silica gel column chromatography (100-200 mesh silica gel) eluting with methanol: dichloromethane (1:30-1:8) to give Phos-13-1E (570 mg, 33.77% yield) as a white solid.
  • Triphenylphosphine (11.5 g, 43.9 mmol) and diethyl azodicarboxylate (7.64 g, 43.9 mmol, 7.98 mL) were added to a tetrahydrofuran (80 mL) solution of Phos-15-SM2 (4.0 g, 47.6 mmol) and compound Phos-15-1A (7.91 g, 36.6 mmol), and the mixture was stirred at 20-25 ° C for 16 hours. LC-MS showed that compound Phos-15-1A was completely consumed. The reaction mixture was concentrated under reduced pressure to remove tetrahydrofuran.
  • phosphoramidite-15 (350 mg, 0.6 mmol, 57.2 % yield, 1:1 mixture of enantiomeric phosphoramidite-15-1 and enantiomeric phosphoramidite-15-2) as a colorless oil.
  • Enantiomeric phosphoramidite-15-1 or enantiomeric phosphoramidite-15-2 can be obtained by using the corresponding Phos-15-1E-1 or Phos-15-1E-2 separated and purified by SFC as the starting material in the same manner as above.
  • the preparation method of enantiomeric phosphoramidite-42-1 and enantiomeric phosphoramidite-42-2 is the same as the preparation method of enantiomeric phosphoramidite-15-1 and enantiomeric phosphoramidite-15-2, except that different stereoisomeric intermediate phos12-2C is used.
  • Enantiomeric phosphoramidite-11-1 or enantiomeric phosphoramidite-11-2 can be obtained by using the corresponding Phos-15-1E-1 or Phos-15-1E-2 separated and purified by SFC as the starting material according to the above two steps.
  • Citric acid 150 mL, 10% aqueous solution was added dropwise to the reaction mixture at -10°C, and extracted with ethyl acetate (100 mL*3). The combined organic layer was washed with saturated brine (100 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain Phos-19-1A (11 g, 95% yield) as a brown oil.
  • the product was concentrated in vacuo to obtain Phos-43-1G as a white solid 3.5 g, with a yield of 70.5%.
  • the product was concentrated in vacuo to obtain Phos-43-1H as a white solid of 1.3 g, with a yield of 60%.
  • Phosphoramidite-47 was prepared in the same manner as phosphoramidite-43, except that 5-methyluracil was used as the starting material as the nucleobase.
  • the product is concentrated in vacuo to obtain 0.13 g of Phos-45-1A as a light yellow oil, with a yield of 29%.
  • Oligonucleotide used according to the present invention can be conveniently and routinely made by the solid phase synthesis technique known.
  • the equipment used for this synthesis includes, for example, Mermade 12 (LGC) sold by multiple suppliers.
  • LGC Mermade 12
  • any other device known in the art for this synthesis can be adopted. It is well known that similar techniques are used to prepare oligonucleotides such as alkylated derivatives and those with thiophosphate linkages.
  • Oligonucleotides can be synthesized using standard phosphoramidite chemistry by iodine oxidation on an automated DNA synthesizer Mermade 12 (LGC).
  • phosphorothioate internucleoside linkages are synthesized in a manner similar to phosphodiester internucleoside linkages, except that thiolation is achieved by oxidation of the phosphite linkage using 10% w/v 3,H-1,2-benzodithiol-3-one-1,1-dioxide in acetonitrile.
  • the time for the thiolation step is increased to 180 seconds and continued through the normal capping step.
  • the oligonucleotide is recovered by precipitation from 1M NH4OAc solution with 3 volumes more of ethanol.
  • Phosphinate internucleoside linkages can be prepared as described in US5,508,270.
  • Alkyl phosphate internucleoside linkages can be prepared as described in US4,469,863, or by the phosphoramidite method described herein.
  • 3'-deoxy-3'-methylenephosphonate internucleoside linkages can be prepared as described in US5,610,289 or 5,625,050.
  • Phosphoramidite internucleoside linkages can be prepared as described in US5,256,775 or US5,366,878.
  • Alkyl thiophosphate internucleoside linkages can be prepared as described in published WO 94/17093 and WO94/02499 publications.
  • 3'-deoxy-3'-aminophosphoramidate internucleoside linkages can be prepared as described in US5,476,925.
  • Phosphotriester internucleoside linkages were prepared as described in US5,023,243, and methods for preparing some phosphate internucleoside linkages can be found in Beilstein J Org Chem. 2017; 13: 1368–1387.
  • Oligonucleotides having one or more non-phosphorus-free internucleoside linkages including, but not limited to, methylenemethylimino-linked oligonucleosides, methylenedimethylhydrazine-linked oligonucleosides, methylenecarbonylamino-linked oligonucleosides, and methyleneaminocarbonyl-linked oligonucleosides, as well as mixed backbone oligonucleotides having, for example, alternating O or S linkages, can be prepared as described in US5,378,825, US5,386,023, US5,489,677, US5,602,240, and US5,610,289.
  • Double-stranded ribonucleic acid (dsRNA) reagents are obtained by mixing each of the two complementary strands (sense strand and antisense strand) at a 1:1 molar ratio to form a duplex.
  • the duplexes in Table 2 are typically synthesized on an oligonucleotide synthesizer using a well-established solid-phase synthesis method based on phosphoramidite chemistry to synthesize the sense and antisense strands of dsRNA. Oligonucleotide chain growth is achieved through a 4-step cycle: deprotection, condensation, capping, and an oxidation or sulfurization step for each nucleotide added. The synthesis is performed on a controlled pore glass (CPG) ) was carried out on a solid support made of .
  • CPG controlled pore glass
  • the thick single-stranded product is further purified by ion pair reversed phase HPLC (IP-RP-HPLC).
  • IP-RP-HPLC ion pair reversed phase HPLC
  • IP-RP-HPLC ion pair reversed phase HPLC
  • the phosphoramidite compound described in Example 1 is coupled to the 5′ end of the oligonucleotide to produce a 5′-terminal nucleotide, and the method is as described in CN110072530A and CN103154014A.
  • the atoms of the hydroxyl protecting group of the phosphonate group such as the oxygen atom containing two methyl or ethyl protections, are removed according to the deprotection step used.
  • One or two of the methyl or ethyl groups are removed.
  • the oligonucleotide comprising the 5′-terminal nucleotide of the present invention is obtained by the method described herein or known to those skilled in the art.
  • the oligonucleotide sequence structure of the dsRNA duplex targeting FXII is shown in Table 2.
  • the duplex contains a sense strand and an antisense strand; chemical modifications are represented as follows: uppercase: 2'-fluorine modified nucleotides; lowercase: 2'-methoxy modified nucleotides; the superscript "*" between two nucleosides indicates a phosphorothioate internuclear bond, and the absence of a superscript between two nucleosides indicates a phosphodiester internuclear bond; Invab: reverse abasic, GLS-15 is the targeting group described in this article.
  • the duplexes are composed of the same sense strand, and the difference between the duplexes is only that the 5′-end of the antisense strand contains different uridine derivatives.
  • mice (C57BL/6, female, 6 weeks) were given subcutaneous injections on day 1 after a 6-day acclimatization period as described above.
  • mice were bled through the submandibular vein to collect plasma for the detection of FXII protein levels.
  • ELISA kit was used to detect the level of FXII protein in mouse plasma.
  • the ELISA kit (Molecular Innovations, IMSFXIIKTT) was used to detect the level of FXII protein in mouse plasma.
  • the plasma sample collected by EDTA-K2 was diluted 30,000 times and added to the detection plate coated with the capture antibody for incubation, and then the detection antibody and HRP-coupled secondary antibody were added in sequence, and finally TMB was used for color development, and the absorbance at 450nm was read.
  • the standard curve was fitted using the four-parameter method, and the OD value of the test sample was substituted to calculate the FXII protein content of each sample, and the FXII protein concentration in the original plasma was multiplied by the dilution factor.
  • Table 4 The data results are shown in Table 4.
  • mice (C57BL/6, female, 6 weeks) were given subcutaneous injections on day 1 after a 6-day acclimatization period as described above.
  • mice were bled through the submandibular vein to collect plasma for the detection of FXII protein levels.
  • ELISA kit was used to detect the level of FXII protein in mouse plasma.
  • the ELISA kit (Molecular Innovations, IMSFXIIKTT) was used to detect the level of FXII protein in mouse plasma.
  • the plasma sample collected by EDTA-K2 was diluted 30,000 times and added to the detection plate coated with the capture antibody for incubation, and then the detection antibody and HRP-coupled secondary antibody were added in sequence, and finally TMB was used for color development, and the absorbance at 450nm was read.
  • the standard curve was fitted using the four-parameter method, and the OD value of the test sample was substituted to calculate the FXII protein content of each sample, and the FXII protein concentration in the original plasma was multiplied by the dilution factor.
  • Table 5 The data results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Saccharide Compounds (AREA)

Abstract

涉及可用于5'修饰的核苷类似物以及由它们制备的寡核苷酸,更具体涉及可用于并入到寡核苷酸末端的修饰核苷及其类似物,可以结合到双链寡核苷酸(短干扰RNA)或单链寡核苷酸(例如反义寡核苷酸)中。预期提供的所述寡核苷酸与靶RNA的一部分杂交,从而导致所述靶RNA正常功能的丧失。

Description

[根据细则91更正 06.05.2024]5′-膦酸酯修饰的核苷类似物及其制备的寡核苷酸 [根据细则91更正 06.05.2024]技术领域
[根据细则91更正 06.05.2024]
本发明涉及可用于5'-膦酸酯修饰的核苷类似物以及由它们制备的寡核苷酸,更具体涉及可用于并入到寡核苷酸末端的修饰核苷及其类似物,此类寡核苷酸也可包含在双链组合物中。
[根据细则91更正 06.05.2024]背景技术
[根据细则91更正 06.05.2024]
近些年包含与靶RNA至少部分互补的核苷酸序列的寡核苷酸在体外和体内均可改变所述靶标的功能和活性。已证明,当被递送至含有靶RNA(例如信使RNA(mRNA)的细胞时,这类寡核苷酸作为反义化合物可调节所述靶标的表达,这会导致所述靶RNA的转录或翻译的改变,通常认为这样的技术为反义技术。反义技术背后的原理是反义化合物与靶RNA杂交并调节基因表达活性或功能,诸如转录或翻译。基因表达的调节能可通过例如靶降解或占位型抑制而实现。通过降解调节RNA靶功能的一个实例是与DNA反义化合物杂交后靶RNA的基于RNA酶H的降解。通过靶降解调节基因表达的另一个实例是RNA干扰(RNAi)。RNAi是RNA或RNA样分子(例如化学修饰的RNA分子)得以通过降解使基因表达沉默的一种生物过程。RNAi机制是由Dicer酶介导的来自更长的非编码RNA的产生来启动,将这些RNA分子加载到RNA诱导的沉默复合体(RISC)中,其中将正义链丢弃,并且将反义链或引导链与完全或部分互补的mRNA序列杂交,然后经由Ago2介导的降解或翻译抑制来诱导mRNA的沉默。在RNAi技术和递送方法的进展已经给予基于RNAi的疗法越来越多的积极结果,这类疗法代表一类有前途的疾病的治疗方向,然而这类技术由于天然寡核苷酸易被体内细胞和细胞外核酸酶降解,导致靶向性和体内稳定性等天然RNA的固有代谢问题原因导致无法得到广泛应用。因此,现有技术中对围绕核苷酸修饰,特别是这些修饰以帮助改进核酸酶抗性、结合亲和力、靶向性和体内稳定性。
[根据细则91更正 06.05.2024]
已经通过开发出各种化学修饰应用于RNAi寡核苷酸,在克服天然RNA的固有代谢问题等方面取得了极大进展,这种RNAi寡核苷酸的化学修饰对于完全利用这类的治疗方案潜力具有至关重要促进作用,其可改善其药代动力学和药效学特性。例如,Choung(庄)等人使用了2′-OMe(2'-O甲基)、2′F(2′-氟)和硫代磷酸酯修饰的核苷酸以及他们之间不同组合在血清中的获得稳定;此外,已经描述了一类5'-修饰的膦酸酯单体及其在制备用于寡核苷酸合成的中的用途,以位于反义链的5'末端的膦酸酯修饰核苷酸可提高寡核苷酸的5'末端被磷酸化并且维持磷酸化的可能性,这可提高将特定的链载入RISC的可能性,从而让RNAi药剂进入RNAi通路,带来改善和提高的基因敲减和基因沉默活性。例如:在WO2011139702中针对反义链5′端并入乙烯基的膦酸酯呋喃糖单体,或WO2017214112中环烷基的膦酸酯呋喃糖单体,也是近年的研究方向。
[根据细则91更正 06.05.2024]
尽管已经通过化学修饰发展和改进的递送方法在克服天然寡核苷酸的固有代谢问题方面取得了极大进展,但是在本领域中仍然需要适用于治疗目的施用的具有提高表达抑制持续时间和/或活性的寡核苷酸。
[根据细则91更正 06.05.2024]
发明内容
[根据细则91更正 06.05.2024]
本发明提供5'-膦酸酯修饰的核苷类似物以及由它们制备的寡核苷酸,更进一步提供一种5'-膦酸酯修饰的核苷类似物,可用于并入到寡核苷酸的末端,特别是寡核苷酸5'-末端,得到双链寡核苷酸(例如dsRNA)或单链寡核苷酸(例如反义寡核苷酸)中,带来改善和提高基因沉默活性和/或持续时间。包含一个或多个5'-膦酸酯修饰的核苷类似物的RNAi药剂之类的寡核苷酸,也可进一步与连接的N-乙酰基半乳糖胺或肽之类的靶向性配体,也可以进一步与连接的聚乙二醇(PEG)部分或脂质之类的药代动力学调节剂。
[根据细则91更正 06.05.2024]
根据本发明的一个方面,提供具有式(I)、式(II)和式(III)或它们的立体异构体所示的化合物:
[根据细则91更正 06.05.2024]
其中,
[根据细则91更正 06.05.2024]
每个T1独立地为任选保护的膦部分;
[根据细则91更正 06.05.2024]
每个T2独立地为活性磷基团;
[根据细则91更正 06.05.2024]
每个X1独立地为化学键、O、S、NJ1或CJ1J2,其中J1和J2各自独立地是氢、卤素、磺酰基、亚磺酰基、任选取代的C1-C6烷基、任选取代的C3-C6环烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、任选取代的C5-C12芳基、任选取代的5-12元杂芳基、任选取代的5-12元杂环;
[根据细则91更正 06.05.2024]
每个X2独立地为CR15或者N;
[根据细则91更正 06.05.2024]
每个X3独立地为化学键、任选取代的C1-C3亚烷基、SO、SO2、C(=O)、P(=O)R;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
每个Bx独立地为杂环碱基部分;
[根据细则91更正 06.05.2024]
每个R1和R2分别独立地为H、卤素、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
[根据细则91更正 06.05.2024]
每个R3和R15分别独立地为H、卤素、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基;
[根据细则91更正 06.05.2024]
每个A独立地具有下式之一:
[根据细则91更正 06.05.2024]
每个Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基或NR4R5
[根据细则91更正 06.05.2024]
Q3为O、S、NR6或CR7R8
[根据细则91更正 06.05.2024]
Q4、Q5、Q6、Q7、Q9、Q10、Q11和Q12各自独立地为H、卤素、任选保护的羟基、乙酰氧基、叠氮基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、NR9R10
[根据细则91更正 06.05.2024]
Q8为O、S、SO、SO2、PR16R17或NR11
[根据细则91更正 06.05.2024]
R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
[根据细则91更正 06.05.2024]
每个R4、R5、R6、R7、R8、R9、R10、R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);
[根据细则91更正 06.05.2024]
M1为C(Rd)(Re)、C(Rd)(Re)C(Rf)(Rg),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6);
[根据细则91更正 06.05.2024]
每个J3、J4、J5和J6独立地为H或C1-C6烷基;
[根据细则91更正 06.05.2024]
每个n独立地为0、1或者2。
[根据细则91更正 06.05.2024]
在某些实施方式中,所述的化合物,每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些实施方式中,每个T1独立地为任选保护的膦部分具有下式:
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基;
[根据细则91更正 06.05.2024]
取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,磺酰基优选为甲磺酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
常用于保护磷羟基或者磷巯基的保护基团的实例包括但不限于甲基、乙基、苄基(Bn)、苯基、异丙基、叔丁基、乙酰基、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、叔丁氧基甲基、甲氧基甲基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、烯丙基、环己基(cHex)、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、苯甲酰基、苯甲酰基甲酸酯、对苯基苯甲酰基、4-甲氧基苄基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基、4-氯苄基、4-硝基苄基、2,4-二硝基苯基、4-酰氧基苄基、2-甲基苯基、2,6-二甲基苯基、2-氯苯基、2,6-二氯苄基、二苯基甲基、三苯基甲基、4-甲硫基-1-丁基、2-(S-乙酰硫基)乙基(SATE)、2-氰乙基、2-氰基-1,1-二甲基乙基(CDM)、4-氰基-2-丁烯基、2-(三甲基硅基)乙基(TSE)、2-(苯硫基)乙基、2-(三苯基硅基)乙基、2-(苄磺酰基)乙基、2,2,2-三氯乙基、2,2,2-三溴乙基、2,3-二溴丙基、2,2,2-三氟乙基、苯硫基、2-氯-4-三苯甲基苯基、2-溴苯基、2-[N-异丙基-N-(4-甲氧基苯甲酰基)氨基]乙基、4-(N-三氟乙酰基氨基)丁基、4-氧代戊基、4-三苯甲基氨基苯基、4-苄基氨基苯基、四氢吡喃基、吗啉代、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、特戊酸酯甲醚基(POM)和9-苯基黄嘌呤-9-基。
[根据细则91更正 06.05.2024]
常用于氨基保护基的实例包括但不限于2-三甲基硅基乙氧基羰基(Teoc)、1-甲基-1-(4-联苯基)乙氧基羰基(Bpoc)、叔丁氧基羰基(BOC)、烯丙氧基羰基(Alloc)、9-芴基甲氧基羰基(Fmoc)、苄氧基羰基(Cbz)、苄基、甲酰基、乙酰基、特戊酰基、三卤乙酰基、苯甲酰基、硝基苯基、乙酰基、2-硝基苯磺酰基、邻苯二甲酰亚胺基(Pht)、对甲苯磺酰基(Tos)、三苯甲基(Trt)、2,4-二氧基苄基(PMB)和二硫代丁二酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,每个T1独立地为任选保护的膦部分具有下式:
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自保护的羟基或者保护的巯基;并且Rb为O或S。
[根据细则91更正 06.05.2024]
在一个实施方式中,所述羟基保护基各自独立地选自乙酰基、叔丁基、叔丁氧基甲基、甲氧基甲基、四氢吡喃基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、对氯苯基、2,4-二硝基苯基、苄基、苯甲酰基、对苯基苯甲酰基、2,6-二氯苄基、二苯基甲基、对硝基苄基、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、苯甲酰基甲酸酯、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、三苯甲基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基、特戊酸酯甲醚基(POM)或取代的9-苯基黄嘌呤-9-基。在一个实施方式中,优选的羟基保护基各自独立地选自乙酰基、苄基、叔丁基二甲基甲硅烷基、特戊酸酯甲醚基(POM)、叔丁基二苯基甲硅烷基以及4,4’-二甲氧三苯甲基。
[根据细则91更正 06.05.2024]
在一个实施方式中,所述巯基保护基各自独立地选自甲基、乙基、乙酰基、叔丁基、叔丁氧基甲基、甲氧基甲基、四氢吡喃基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、对氯苯基、2,4-二硝基苯基、苄基、苯甲酰基、对苯基苯甲酰基、2,6-二氯苄基、二苯基甲基、对硝基苄基、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、苯甲酰基甲酸酯、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、三苯甲基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基或取代的9-苯基黄嘌呤-9-基。在一个实施方式中,优选的巯基保护基各自独立地选自苄基、4,4’-二甲氧三苯甲基、三苯甲基。
[根据细则91更正 06.05.2024]
在某些实施方式中,Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
[根据细则91更正 06.05.2024]
在某些实施方式中,Rb为O,Ra和Rc各自独立地选自OH、SH、OCH3、OCH2CH3、OCH(CH3)2、OCH2OC(=O)C(CH3)3、OCH2CH2CN、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些实施方式中,Ra和Rc其中一者为羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基,另一者天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基。更优选地Ra和Rc其中一者为羟基或者保护的羟基,另一者天然的核苷,更优选Rb为O。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个T2独立地为活性磷基团,所述的活性磷基团具有如下结构:其中M4为H、任选取代的C1-C6烷基、OH、OJ7、SH、SJ7或NJ7J8,M5为任选取代的C1-C6烷基、OH、OJ7、SH、SJ7或NJ7J8,每个J7或J8独立地为任选取代的C1-C6烷基、磺酰基;r为0或者1。
[根据细则91更正 06.05.2024]
在某些实施方式中,所述的活性磷基团每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个J7或J8独立地为取代的C1-C6烷基中,所述的取代基选自氰基、卤素。
[根据细则91更正 06.05.2024]
在某些的实施方式中,M4选自甲基、异基、丙基、异丙基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,M4选自甲磺酰胺基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,M4为OJ7,其中J7为取代的C1-C6烷基,取代基选自氰基、卤素。
[根据细则91更正 06.05.2024]
在某些的实施方式中,M5选自N(CH(CH3)2)2
[根据细则91更正 06.05.2024]
在某些的实施方式中,其中M4为O(CH2)2CN,M5为N(CH(CH3)2)2,r为0。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个T2活性磷基团独立地是亚磷酰胺。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个T2活性磷基团独立地选自二异丙基氰基乙氧基亚磷酰胺、二异丙基乙基亚磷酰胺和H-膦酸酯。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个X1独立地为O。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个BX杂环碱基部分独立地选自天然核碱基、修饰的核碱基、通用碱基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个BX杂环碱基部分独立地为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
[根据细则91更正 06.05.2024]
在某些的实施方案中,每个BX杂环碱基部分独立地为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。在某些的实施方案中,每个BX杂环碱基部分独立地为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个R15和R3分别独立地为H。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个R1和R2分别独立地为H、甲磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个X2分别独立地为N,每个R1和R2分别独立地为H、甲磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方案中,式(I)、(II)或式(III)中的A具有下式之一:
[根据细则91更正 06.05.2024]
其中Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
[根据细则91更正 06.05.2024]
R11、R18和R19分别独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个Q1和Q2各自独立地为H、F、-CN、甲基;更优选地为H。
[根据细则91更正 06.05.2024]
在某些的实施方式中,Q8为S、SO、SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,条件是M1为C(Rd)(Re),X2为C,X3为化学键、A为时,Q8为S、SO、SO2、PR16R17或NR11,Q1、Q2、R11、R16和R17如本文式(I)所定义。
[根据细则91更正 06.05.2024]
在某些实施方案中,X2为N,X3为化学键、-CH2-、-CH2CH2-、SO、SO2
[根据细则91更正 06.05.2024]
在某些实施方案中,X2为CH,X3为化学键。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(II)或(III)中,n为0或者1。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物具有式(I-1)所示的化合物或其立体异构体:
[根据细则91更正 06.05.2024]
其中T1、T2、A、R3以及Bx各自如上文的式(I)以及实施方式中所定义;X3为化学键、C(=O)、P(=O)R、SO或SO2;M1为C(Rd)(Re)、C(Rd)(Re)C(Rg)(Rf),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地式(I-1)为H或C1-C6烷基;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-1),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、氟、羟基、C1-C6烷氧基、O(CH2)2-OCH3。更优选地为氢。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-1),R3为氢。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-1),其中X3为SO2或者化学键。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-1),A具有下式之一:
[根据细则91更正 06.05.2024]
Q1和Q2各自独立地为H、卤素、任选取代的C1-C6烷基;
[根据细则91更正 06.05.2024]
Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物具有式(I-2)所示的化合物或其立体异构体:
[根据细则91更正 06.05.2024]
其中T1、T2、A、R3以及Bx各自如上文的式(I)以及实施方式中所定义;M1为C(Rd)(Re)、C(Rd)(Re)C(Rg)(Rg),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-2),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、氟、羟基、C1-C6烷氧基、O(CH2)2-OCH3
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-2),M1为CH2或CH2CH2
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-2),R3为氢。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-2),A具有下式之一:
[根据细则91更正 06.05.2024]
Q1和Q2各自独立地为H、卤素、任选取代的C1-C6烷基;
[根据细则91更正 06.05.2024]
Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些实施方式中,本文提供的化合物式(I-1)或式(I-2),其中T1为任选保护的膦部分具有下式:
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、胺基或者保护/取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基。
[根据细则91更正 06.05.2024]
在某些实施方式中,取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,磺酰基优选为甲磺酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
[根据细则91更正 06.05.2024]
在某些实施方式中,Rb为O,Ra和Rc各自独立地选自OH、OCH3、OCH2CH3、OCH(CH3)2、OCH2OC(=O)C(CH3)3、OCH2CH2CN、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(I-1)或式(I-2)中,T2为活性磷基团,所述的活性磷基团是亚磷酰胺。在某些的实施方式中,T2活性磷基团选自二异丙基氰基乙氧基亚磷酰胺、二异丙基乙基亚磷酰胺和H-膦酸酯。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(I-1)或式(I-2)中,BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(I-1)或式(I-2)中,BX杂环碱基部分为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
[根据细则91更正 06.05.2024]
在某些实施方案中,BX杂环碱基部分为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。在某些的实施方案中,每个BX杂环碱基部分独立地为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(I-2)中,具有1S,2S,4S或1R,2R,4R立体构型。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物具有式(II-1)所示或其立体异构体:
[根据细则91更正 06.05.2024]
其中T1、T2、X1、X3、A、R3、Bx以及n各自如上文的式(II)以及实施方式中所定义;R1和R2分别独立地为H、甲磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(II-1),n为0或者1。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物式(II-1),X3为CH2或者CH2CH2
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物具有式(II-2)或式(II-3)所示或其立体异构体:
[根据细则91更正 06.05.2024]
其中T1、T2、X1、A以及Bx各自如上文的式(II)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的化合物具有式(III-1)或式(III-2)所示或其立体异构体:
[根据细则91更正 06.05.2024]
其中T1、T2、X1、A以及Bx各自如上文的式(III)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些实施方案中,式(II-1)、式(II-2)、式(II-3)、式(III-1)或式(III-2)中的A具有下式之一:
[根据细则91更正 06.05.2024]
其中Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物具有式(II-1)、式(II-2)、式(II-3)、式(III-1)或式(III-2),其中每个Q1和Q2各自独立地为H、F、-CN、甲基;更优选地为H。
[根据细则91更正 06.05.2024]
在某些实施方式中,本文提供的化合物具有式(II-1)、式(II-2)、式(II-3)、式(III-1)或式(III-2),其中T1为任选保护的膦部分具有下式:
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、胺基或者保护/取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基。
[根据细则91更正 06.05.2024]
在某些实施方式中,取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,磺酰基优选为甲磺酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
[根据细则91更正 06.05.2024]
在某些实施方式中,Rb为O,Ra和Rc各自独立地选自OH、OCH3、OCH2CH3、OCH(CH3)2、OCH2OC(=O)C(CH3)3、OCH2CH2CN、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(II-1)、式(II-2)、式(II-3)、式(III-1)或式(III-2)中,T2为活性磷基团,所述的活性磷基团是亚磷酰胺。在某些的实施方式中,T2活性磷基团选自二异丙基氰基乙氧基亚磷酰胺、二异丙基乙基亚磷酰胺和H-膦酸酯。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(II-1)、式(II-2)、式(II-3)、式(III-1)或式(III-2)中,BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(II-1)、式(II-2)、式(II-3)、式(III-1)或式(III-2)中,BX杂环碱基部分为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。在某些实施方案中,BX杂环碱基部分为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。在某些的实施方案中,每个BX杂环碱基部分独立地为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)。
[根据细则91更正 06.05.2024]
在另一方面,本文提供的化合物具有式(IV)所示的化合物或其立体异构体:
[根据细则91更正 06.05.2024]
其中:Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、保护的或者任选取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基;
[根据细则91更正 06.05.2024]
取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
[根据细则91更正 06.05.2024]
Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基或NR4R5
[根据细则91更正 06.05.2024]
每个R4、R5、R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基;
[根据细则91更正 06.05.2024]
Z是包含亚磷酰胺、糖或糖替代性部分的核苷。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),每个取代的基团包含一个或多个任选独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
羟基、巯基以及氨基保护基可以任选得来自本文所描述的那些常用的保护基,例如但是非限制性的式(I)所描述的那些。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),其中Q8为SO或SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),其中Q8为S。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),Q1和Q2各自独立地为H。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),所述糖或糖替代性部分的核苷中,糖或糖替代性部分包括5元呋喃糖环、非呋喃糖环或5-6元碳环体系或开放体系。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),所述糖或糖替代性部分的核苷中,糖替代性取代部分是吗啉基、环己烯基、环己基、环戊基、吡喃基、环己六醇基。在某些的实施方式中,所述糖或糖替代性部分的核苷中,糖部分是呋喃糖。在某些的实施方式中,所述糖或糖替代性部分的核苷中,包含非锁核碱基类似物(UNA),或甘油核酸碱基类似物(GNA)。在某些的实施方式中,所述糖或糖替代性部分的核苷中,包括锁核酸(LNA)或桥联核酸(BNA)。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),其中Q8与糖或糖替代性部分的4'-碳或者5'-碳键合。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),其中糖或糖替代性部分的核苷具有以下结构示意:
[根据细则91更正 06.05.2024]
其中,M2分别独立地为C(q3)(q4)、C(q3)(q4)C(q5)(q6);
[根据细则91更正 06.05.2024]
M3分别独立地为O、S、NR13、C(q7)(q8)、C(q7)(q8)C(q9)(q10)、C(q7)=C(q8)、OC(q7)(q8);
[根据细则91更正 06.05.2024]
X1分别独立地为化学键、O、S、NJ1或CJ1J2,其中J1和J2各自独立地是氢、卤素、磺酰基、亚磺酰基、任选取代的C1-C6烷基、任选取代的C3-C6环烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、任选取代的C5-C12芳基、任选取代的5-12元杂芳基、任选取代的5-12元杂环;
[根据细则91更正 06.05.2024]
X2分别独立地为CR15或者N;
[根据细则91更正 06.05.2024]
X3分别独立地为化学键、任选取代的C1-C3亚烷基、SO、SO2、C(=O)、P(=O)R;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
Bx分别独立地为杂环碱基部分;
[根据细则91更正 06.05.2024]
R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10分别独立地为氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基;
[根据细则91更正 06.05.2024]
R13分别独立地为氢、C1-C6烷基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10分别独立地选自以下的基团:氢、氟、羟基、C1-C6烷基、C1-C6烷氧基、O(CH2)2-OCH3
[根据细则91更正 06.05.2024]
在某些的实施方式中,每个R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10分别独立地选自以下的基团:氢。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),其中糖或糖替代性部分的核苷具有以下结构示意:
[根据细则91更正 06.05.2024]
其中,M2、M3、X1、X2、X3、q1、q2和Bx,各自如上文的式(IV)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV),其中糖或糖替代性部分的核苷具有以下呋喃糖结构示意:
[根据细则91更正 06.05.2024]
其中,X1、q1、q2、q3、q4和Bx,各自如上文的式(IV)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物具有式(IV-1)所示的化合物或其立体异构体:
[根据细则91更正 06.05.2024]
其中,Q8、Ra、Rc、Rb、M2、M3、X1、X2、X3、q1、q2和Bx,各自如上文的式(IV)以及实施方式中所定义,Y为亚磷酰胺。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV-1),R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10各自独立的选自氢、氟、羟基、甲基、甲氧基、O(CH2)2-OCH3。在某些的实施方式中,本文提供的化合物式(IV-1),R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10各自独立的选自氢。
[根据细则91更正 06.05.2024]
在某些的实施方式中,M3为O、S、C(q7)(q8),M2为C(q3)(q4),X2为CR15或者N,X3为化学键、SO、SO2,R15、q1、q2、q3、q4、q7和q8,如本文所定义,如下结构示意在某些的优选实施方式中,M3为O、S、CH2,M2为CH2,X2为CH,X3为化学键。在某些的优选实施方式中,M3为CH2,M2为CH2,X2为N,X3为化学键、SO或SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,M3为C(q7)(q8),M2为C(q3)(q4)C(q5)(q6),X2为CR15或者N,X3为化学键、SO、SO2、R15、q1、q2、q3、q4、q5、q6、q7和q8,如本文所定义,如下结构示意在某些的优选实施方式中,M3为CH2,M2为CH2CH2,X2为CH,X3为化学键。在某些的优选实施方式中,M3为CH2,M2为CH2CH2,X2为N,X3为化学键、SO或SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV-1),其中Q8为SO或SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV-1),其中Q8为S。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV-1),Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV-1),Ra和Rc各自独立地选自羟基、OCH3、OCH2CH3、OCH(CH3)2OCH3、OCH2CH2CN、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV)或(IV-1),中BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV)或(IV-1),BX杂环碱基部分分别独立地为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。在某些实施方案中,BX杂环碱基部分分别独立地为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。在某些的实施方案中,每个BX杂环碱基部分分别独立地为为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物式(IV)或(IV-1),所述的亚磷酰胺选自二异丙基氰基乙氧基亚磷酰胺、二异丙基乙基亚磷酰胺和H-膦酸酯。
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物具有如下具体结构以及他们的立体异构体:
[根据细则91更正 06.05.2024]
在某些的实施方式中,本文提供的化合物具有如下具体结构以及他们的立体异构体:
[根据细则91更正 06.05.2024]
本发明更详细的对变量进行单独定义,需要理解的是,本发明所述的化合物包括本文所公开的实施方案和所定义的变量的所有组合,例如式(I)、式(I-1)、式(I-2)、式(II)、式(II-1)、(II-2)、(II-3)、式(III)、式(III-1)、式(III-2)、式(IV)、式(IV-1)或它们的立体异构体,更多个此类化合物的技术特征可以任何组合成化合物,并且这类化合物应用于寡核苷酸中,进一步应用于的5'-末端形成寡核苷酸。所述的寡核苷酸包括但是不具限于单链反义寡核苷酸(ASO)、miRNA、双链核糖核苷酸(dsRNA)。在一些实施例中,应用于双链核糖核苷酸(dsRNA)中的反义链的5'-末端。
[根据细则91更正 06.05.2024]
根据本发明的另一个方面,一种寡核苷酸包含由式(V)、式(VI)或式(VII)及它们的立体异构体之一表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中,每个T1独立地为任选保护的膦部分;
[根据细则91更正 06.05.2024]
每个T3独立地为将使所述5'-末端核苷酸连接到寡核苷酸的核苷间连接基团;
[根据细则91更正 06.05.2024]
每个X1独立地为化学键、O、S、NJ1或CJ1J2,其中J1和J2各自独立地是氢、卤素、磺酰基、亚磺酰基、任选取代的C1-C6烷基、任选取代的C3-C6环烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、任选取代的C5-C12芳基、任选取代的5-12元杂芳基、任选取代的5-12元杂环;
[根据细则91更正 06.05.2024]
每个X2独立地为CR15或者N;
[根据细则91更正 06.05.2024]
每个X3独立地为化学键、任选取代的C1-C3亚烷基、SO、SO2、C(=O)、P(=O)R;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
每个Bx独立地为杂环碱基部分;
[根据细则91更正 06.05.2024]
每个R1和R2分别独立地为H、卤素、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
[根据细则91更正 06.05.2024]
每个R3和R15分别独立地为H、卤素、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基;
[根据细则91更正 06.05.2024]
每个A独立地为具有下式之一:
[根据细则91更正 06.05.2024]
Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基或NR4R5
[根据细则91更正 06.05.2024]
每个Q3独立地为O、S、NR6或CR7R8
[根据细则91更正 06.05.2024]
每个Q4、Q5、Q6、Q7、Q9、Q10、Q11和Q12各自独立地为H、卤素、任选保护的羟基、乙酰氧基、叠氮基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、NR9R10
[根据细则91更正 06.05.2024]
每个Q8独立地为O、S、SO、SO2、PR16R17或NR11
[根据细则91更正 06.05.2024]
每个R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
[根据细则91更正 06.05.2024]
每个R4、R5、R6、R7、R8、R9、R10、R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);
[根据细则91更正 06.05.2024]
M1为C(Rd)(Re)、C(Rd)(Re)C(Rf)(Rg),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6);
[根据细则91更正 06.05.2024]
每个J3、J4、J5和J6独立地为H或C1-C6烷基;
[根据细则91更正 06.05.2024]
n为0、1或者2。
[根据细则91更正 06.05.2024]
在某些实施方式中,所述的寡核苷酸,每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些实施方式中,提供的寡核苷酸,T1为任选保护的膦部分具有下式:
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基;
[根据细则91更正 06.05.2024]
取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
常用于保护的磷羟基或者磷巯基的保护基团的实例包括但不限于甲基、乙基、苄基(Bn)、苯基、异丙基、叔丁基、乙酰基、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、叔丁氧基甲基、甲氧基甲基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、烯丙基、环己基(cHex)、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、苯甲酰基、苯甲酰基甲酸酯、对苯基苯甲酰基、4-甲氧基苄基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基、4-氯苄基、4-硝基苄基、2,4-二硝基苯基、4-酰氧基苄基、2-甲基苯基、2,6-二甲基苯基、2-氯苯基、2,6-二氯苄基、二苯基甲基、三苯基甲基、4-甲硫基-1-丁基、2-(S-乙酰硫基)乙基(SATE)、2-氰乙基、2-氰基-1,1-二甲基乙基(CDM)、4-氰基-2-丁烯基、2-(三甲基硅基)乙基(TSE)、2-(苯硫基)乙基、2-(三苯基硅基)乙基、2-(苄磺酰基)乙基、2,2,2-三氯乙基、2,2,2-三溴乙基、2,3-二溴丙基、2,2,2-三氟乙基、苯硫基、2-氯-4-三苯甲基苯基、2-溴苯基、2-[N-异丙基-N-(4-甲氧基苯甲酰基)氨基]乙基、4-(N-三氟乙酰基氨基)丁基、4-氧代戊基、4-三苯甲基氨基苯基、4-苄基氨基苯基、四氢吡喃基、吗啉代、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、特戊酸酯甲醚基(POM)和9-苯基黄嘌呤-9-基。
[根据细则91更正 06.05.2024]
常用于氨基保护基的实例包括但不限于2-三甲基硅基乙氧基羰基(Teoc)、1-甲基-1-(4-联苯基)乙氧基羰基(Bpoc)、叔丁氧基羰基(BOC)、烯丙氧基羰基(Alloc)、9-芴基甲氧基羰基(Fmoc)、苄氧基羰基(Cbz)、苄基、甲酰基、乙酰基、特戊酰基、三卤乙酰基、苯甲酰基、硝基苯基、乙酰基、2-硝基苯磺酰基、邻苯二甲酰亚胺基(Pht)、对甲苯磺酰基(Tos)、三苯甲基(Trt)、2,4-二氧基苄基(PMB)和二硫代丁二酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,提供的寡核苷酸,Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,Ra和Rc各自为OH、SH、OCH3、OCH2CH3、OCH(CH3)2、OCH2OC(=O)C(CH3)3、NH2、OCH2CH2CN、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,Ra和Rc各自为OH,Rb为O。
[根据细则91更正 06.05.2024]
在某些实施方式中,Ra和Rc其中一者为OH,另一者天然的核苷,Rb为O。
[根据细则91更正 06.05.2024]
在某些实施方式中,提供的寡核苷酸,T3为将有式(V)、式(VI)或式(VII)及他们的立体异构体所示的5′-核苷酸连接到寡核苷酸5′-末端的核苷间连接基团,所述的核苷间连接基团选自含磷的链接基团或者不含磷的链接基团。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,含磷核苷间连接基团独立地为:磷酸二酯连接基团、磷酸三酯连接基团、硫代磷酸酯连接基团、二硫代磷酸酯键连接基团、烷基膦酸酯连接基团、氨基膦酸酯连接基团、膦酸酯连接基团、次膦酸酯连接基团、硫代氨基磷酸酯连接基团和氨基磷酸酯连接基团。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,所述的核苷间连接基团独立地为烷基膦酸酯连接基团、磷酸二酯核苷间连接基团或硫代磷酸酯核苷间连接基团。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,BX杂环碱基部分为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,BX杂环碱基部分为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。在某些的实施方案中,每个BX杂环碱基部分独立地为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,R15和R3为H。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,X1为O。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,每个R1和R2分别独立地为H、甲磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,每个X2分别独立地为N,每个R1和R2分别独立地为H、甲磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,式(V)、(VI)或式(VII)中的A具有下式之一:
[根据细则91更正 06.05.2024]
其中Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,Q1和Q2各自独立地为H、F、-CN、甲基;更优选地为H。
[根据细则91更正 06.05.2024]
在某些的实施方式中,Q8为S、SO、SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,条件是当M1为C(Rd)(Re),X2为C,X3为化学键、A为时,Q8为S、SO、SO2、PR16R17或NR11,Q1、Q2、R11、R16和R17如本文式(V)所定义。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,X2为N,X3为化学键、-CH2-、-CH2CH2-、SO、SO2
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,X2为CH,X3为化学键。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,本文提供的式(VI)或(VII)表示的5'-末端核苷酸中,n为0或者1。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(V-1)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中T1、T3、A、R3以及Bx各自如上文的式(V)以及实施方式中所定义;X3为化学键、C(=O)、P(=O)R、SO或SO2;M1为C(Rd)(Re)、C(Rd)(Re)C(Rg)(Rf),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地式(I-1)为H或C1-C6烷基;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(V-1)或其立体异构体的5'-末端核苷酸中,X3为SO2或化学键;R3氢。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(V-1)或其立体异构体中的5'-末端核苷酸中,Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、氟、羟基、C1-C6烷氧基、O(CH2)2-OCH3。更优选地为氢。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(V-1)或其立体异构体中的5'-末端核苷酸中,A具有下式之一:
[根据细则91更正 06.05.2024]
Q1和Q2各自独立地为H、卤素、任选取代的C1-C6烷基;
[根据细则91更正 06.05.2024]
Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
[根据细则91更正 06.05.2024]
R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(V-2)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中T1、T3、A、R3以及Bx各自如上文的式(V)以及实施方式中所定义;M1为C(Rd)(Re)、C(Rd)(Re)C(Rg)(Rg),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的寡核苷酸,包含具有式(V-2)或其立体异构体的5'-末端核苷酸中,每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、氟、羟基、C1-C6烷氧基、O(CH2)2-OCH3。更优选地为氢。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的寡核苷酸,包含具有式(V-2)或其立体异构体的5'-末端核苷酸中,M1为CH2或CH2CH2
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的寡核苷酸,包含具有式(V-2)或其立体异构体的5'-末端核苷酸中,R3为氢。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的寡核苷酸,包含具有式(V-2)或其立体异构体中的A具有下式之一:
[根据细则91更正 06.05.2024]
Q1和Q2各自独立地为H、卤素、任选取代的C1-C6烷基;
[根据细则91更正 06.05.2024]
Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供的寡核苷酸,包含具有式(V-1)、式(V-2)或其立体异构体的5'-末端核苷酸中,所述的每个Q1和Q2各自独立地为H、F、-CN、甲基。更优选地为H。
[根据细则91更正 06.05.2024]
在某些实施方式中,提供的寡核苷酸,包含由式(V-1)或式(V-2)表示的5'-末端核苷酸中,T1为任选保护的膦部分具有下式:
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基。
[根据细则91更正 06.05.2024]
在某些实施方式中,取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,磺酰基优选为甲磺酰基。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,Rb为O。在某些实施方案中,提供的寡核苷酸,Rb为S。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,Ra和Rc各自为OH、SH、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,Ra和Rc各自为OH,Rb为O。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,包含由式(V-1)或式(V-2)表示的5'-末端核苷酸中,T3为核苷酸间链接基团。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,核苷酸间链接基团选自烷基膦酸酯连接基团、磷酸二酯核苷间连接基团或硫代磷酸酯核苷间连接基团。
[根据细则91更正 06.05.2024]
在一些优选实施方案中,提供的寡核苷酸,包含由式(V-1)或式(V-2)表示的5'-末端核苷酸中,Q8为SO2
[根据细则91更正 06.05.2024]
在一些优选实施方案中,提供的寡核苷酸,包含由式(V-1)或式(V-2)表示的5'-末端核苷酸中,Q8为S。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,包含由式(V-1)或式(V-2)表示的5'-末端核苷酸中,每个BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,包含由式(V-1)或式(V-2)表示的5'-末端核苷酸中,每个BX杂环碱基部分独立地为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
[根据细则91更正 06.05.2024]
在某些实施方案中,BX杂环碱基部分为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。在某些的实施方案中,每个BX杂环碱基部分独立地为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)。
[根据细则91更正 06.05.2024]
在某些实施方案中,本文提供式(V-2)中的5'-末端核苷酸,具体1S,2S,4S或1R,2R,4R立体构型。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(VI-1)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中T1、T3、X1、X3、A、R3、Bx以及n各自如上文的式(VI)以及实施方式中所定义;R1和R2分别独立地为H、甲磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,n为0或者1。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,X3为CH2或者CH2CH2
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(VI-2)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中T1、T3、X1、A、Bx各自如上文的式(VI)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(VI-3)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中T1、T3、X1、A、Bx各自如上文的式(VI)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(VII-1)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中T1、T3、X1、A、Bx各自如上文的式(VII)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(VII-2)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中T1、T3、X1、A、Bx各自如上文的式(VII)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,A独立地具有下式之一:
[根据细则91更正 06.05.2024]
其中Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
[根据细则91更正 06.05.2024]
每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在一些优选实施方案中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,每个Q1和Q2各自独立地为H、F、-CN、甲基。更优选地为H。
[根据细则91更正 06.05.2024]
在一些优选实施方案中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体中的,Q8独立地为NR11,R11独立地为甲基、甲磺酰基。
[根据细则91更正 06.05.2024]
在一些优选实施方案中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,Q8为SO2
[根据细则91更正 06.05.2024]
在一些优选实施方案中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,Q8为S。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,每个BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,每个BX杂环碱基部分独立地为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
[根据细则91更正 06.05.2024]
在某些实施方案中,BX杂环碱基部分为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。在某些的实施方案中,每个BX杂环碱基部分独立地为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)。
[根据细则91更正 06.05.2024]
某些实施方式中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,T1为任选保护的膦部分具有下式:
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基。
[根据细则91更正 06.05.2024]
在某些实施方式中,取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,磺酰基优选为甲磺酰基。
[根据细则91更正 06.05.2024]
在某些实施方案中,Rb为O。在某些实施方案中,Rb为S。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,Ra和Rc各自为OH、SH、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,Ra和Rc各自为OH,Rb为O。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,T3为核苷酸间链接基团。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,核苷酸间链接基团选自烷基膦酸酯连接基团、磷酸二酯核苷间连接基团或硫代磷酸酯核苷间连接基团。
[根据细则91更正 06.05.2024]
在另一方面,提供的寡核苷酸,包含由式(VIII)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中:Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、保护的或者任选取代的氨基、天然的或修饰的核苷;并且Rb为O或S或NR12,R12为氢、C1-C6烷基、氨基保护基;
[根据细则91更正 06.05.2024]
Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;
[根据细则91更正 06.05.2024]
取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
[根据细则91更正 06.05.2024]
R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基;
[根据细则91更正 06.05.2024]
Z是包含糖或糖替代性部分的核苷;
[根据细则91更正 06.05.2024]
T3是为将式(VIII)或其立体异构体的5'-末端核苷酸连接到寡核苷酸的核苷间连接基团;
[根据细则91更正 06.05.2024]
每个取代的基团包含一个或多个任选独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中Q8为SO、SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中Q8为S。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中,Q1和Q2各自独立地为H。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中,所述糖或糖替代性部分的核苷中,糖或糖替代性部包括5元呋喃糖环、非呋喃糖环或5-6元碳环体系或开放体系。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中,所述糖或糖替代性部分的核苷中,糖替代性取代部分是吗啉基、环己烯基、环己基、环戊基、吡喃基、环己六醇基。在某些的实施方式中,所述糖或糖替代性部分的核苷中,糖部分是呋喃糖。在某些的实施方式中,所述糖或糖替代性部分的核苷中,包含非锁核碱基类似物(UNA),或甘油核酸碱基类似物(GNA)。在某些的实施方式中,所述糖或糖替代性部分的核苷中,包括锁核酸(LNA)或桥联核酸(BNA)。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中,其中Q8与糖或糖替代性部分的4'-碳或者5'-碳键合。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中,其中糖或糖替代性部分的核苷具有以下结构示意:
[根据细则91更正 06.05.2024]
其中,M2为C(q3)(q4)、C(q3)(q4)C(q5)(q6);
[根据细则91更正 06.05.2024]
M3为O、S、NR13、C(q7)(q8)、C(q7)(q8)C(q9)(q10)、C(q7)=C(q8)、OC(q7)(q8);
[根据细则91更正 06.05.2024]
每个X1独立地为化学键、O、S、NJ1或CJ1J2,其中J1和J2各自独立地是氢、卤素、磺酰基、亚磺酰基、任选取代的C1-C6烷基、任选取代的C3-C6环烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、任选取代的C5-C12芳基、任选取代的5-12元杂芳基、任选取代的5-12元杂环;
[根据细则91更正 06.05.2024]
每个X2独立地为CR15或者N;
[根据细则91更正 06.05.2024]
每个X3独立地为化学键、任选取代的C1-C3亚烷基、SO、SO2、C(=O)、P(=O)R;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
每个Bx独立地为杂环碱基部分;
[根据细则91更正 06.05.2024]
每个R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10分别独立地为氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、CN、OC(=O)J5、C(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基;
[根据细则91更正 06.05.2024]
每个R13独立地为氢、C1-C6烷基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,每个R15、q1、q2、q3、q4、q5、q6、q7、q8和q9分别独立地选自以下的基团:氢、氟、羟基、C1-C6烷基、C1-C6烷氧基、O(CH2)2-OCH3。更优选的为氢。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中,其中糖或糖替代性部分的核苷具有以下结构示意:
[根据细则91更正 06.05.2024]
其中,M2、M3、X1、X2、X3、q1、q2和Bx,各自如上文的式(VIII)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些的实施方式中,M3为O、S、C(q7)(q8)、C(q7)(q8)C(q9)(q10)。
[根据细则91更正 06.05.2024]
在某些的实施方式中,q1、q2、q7、q8、q9、q10各自独立的选自氢、氟、羟基、甲基、甲氧基、O(CH2)2-OCH3
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII)中,其中糖或糖替代性部分的核苷具有以下呋喃糖结构示意:
[根据细则91更正 06.05.2024]
其中,X1、q1、q2、q3、q4和Bx,各自如上文的式(VIII)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,包含由式(VIII-1)或其立体异构体所表示的5'-末端核苷酸:
[根据细则91更正 06.05.2024]
其中,Q8、Ra、Rc、Rb、M2、M3、X1、X2、X3、q1、q2、T3和Bx,各自如上文的式(VIII)以及实施方式中所定义。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10各自独立的选自氢、氟、羟基、甲基、甲氧基、O(CH2)2-OCH3。在某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10各自独立的选自氢。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,M3为O、S、C(q7)(q8),M2为C(q3)(q4),X2为R15或者N,X3为化学键、SO、SO2、R15、q1、q2、q3、q4、q7和q8,如本文所定义,如下结构示意:在某些的优选实施方式中,M3为O、S、CH2,M2为CH2,X2为CH,X3为化学键。在某些的优选实施方式中,M3为CH2,M2为CH2,X2为N,X3为化学键、SO或SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,M3为C(q7)(q8),M2为C(q3)(q4)C(q5)(q6),X2为CR15或者N,X3为化学键、SO、SO2、R15、q1、q2、q3、q4、q5、q6、q7和q8,如本文所定义,如下结构示意在某些的优选实施方式中,M3为CH2,M2为CH2CH2,X2为CH,X3为化学键。在某些的优选实施方式中,M3为CH2,M2为CH2CH2,X2为N,X3为化学键、SO或SO2
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,其中Q8为SO或SO2。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,其中Q8为S。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,其中Rb为氧。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,其中Q8为SO或SO2,Ra和Rc各自独立地选自OH、SH、NH2、NHSO2CH3
[根据细则91更正 06.05.2024]
某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,其中Q8为SO或SO2,Rb为氧,Ra和Rc各自独立地选自OH。
[根据细则91更正 06.05.2024]
某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,其中Q8为SO或SO2,X1为氧。
[根据细则91更正 06.05.2024]
某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,其中Q8为S,X1为氧。
[根据细则91更正 06.05.2024]
某些的实施方式中,提供的寡核苷酸,式(VIII-1)中,其中Q8为S,Rb为氧,Ra和Rc各自独立地选自OH。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,在式(VIII)或式(VIII-1)中,中BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,在式(VIII)或式(VIII-1)中,BX杂环碱基部分为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
[根据细则91更正 06.05.2024]
在某些实施方案中,BX杂环碱基部分为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。在某些的实施方案中,每个BX杂环碱基部分独立地为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,在式(VIII)或式(VIII-1)中,提供包含连接的单体亚单位的寡核苷酸,其中每个核苷间连接基团独立地为烷基膦酸酯连接基团、磷酸二酯核苷间连接基团或硫代磷酸酯核苷连接基团。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的单独使用寡核苷酸中,其在5'-末端核苷酸具有下式的化合物片段:
[根据细则91更正 06.05.2024]
其中:Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、保护的或者任选取代的氨基、天然的或修饰的核苷;并且Rb为O或S或NR12,R12为氢、C1-C6烷基、氨基保护基;
[根据细则91更正 06.05.2024]
取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
[根据细则91更正 06.05.2024]
R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基;
[根据细则91更正 06.05.2024]
每个取代的基团包含一个或多个任选独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN;
[根据细则91更正 06.05.2024]
表示与5'-末端核苷酸剩余部分的链接处。
[根据细则91更正 06.05.2024]
在某些实施方案中,可以理解的是,其在5'-末端核苷酸具有下式的化合物片段:
[根据细则91更正 06.05.2024]
其中Q8、Ra、Rb和Rc的定义各自如本文所述的寡核苷酸的5'-末端核苷酸式(V)(VI)或式(VII)及其以及实施方式中所定义是一致的。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含以下之一具体结构或其立体异构体表示的5'-末端核苷:
[根据细则91更正 06.05.2024]
表示与寡核苷酸5′-末端的核苷间连接基团的相链接部分。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸,包含以下之一具体结构或其立体异构体表示的5'-末端核苷:
[根据细则91更正 06.05.2024]
表示与寡核苷酸5′-末端的核苷间连接基团的相链接部分。
[根据细则91更正 06.05.2024]
本文所述的寡核苷酸包括但是不具限于单链反义寡核苷酸(ASO)、miRNA、双链核糖核苷酸(dsRNA)。在某些实施方案中,提供的寡核苷酸是单链寡核苷酸。在某些实施方案中,所述单链寡核苷酸是常规的反义寡核苷酸(又称ASO)、核糖酶或适体。在某些实施方案中,提供的寡核苷酸是双链核糖核酸(dsRNA)试剂,这类化合物本领域所熟知的双链核苷核酸,其中一条或两条链为如本文所公开的寡核苷酸。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸是双链核糖核酸(dsRNA)试剂,它们均包含:正义链和反义链,其中所述正义链和反义链完全或者部分互补,并且所述反义链与核酸靶基因部分或者完全互补;所述正义链和反义链的至少一者为如前文所提供的寡核苷酸,包含至少一种具有(V)、式(V-1)、式(V-2)、式(VI)、式(VI-1)、式(VI-2)、式(VI-3)、式(VII)、式(VII-1)、式(VII-2)、式(VIII)、式(VIII-1)或其立体异构体所表示的5'-末端核苷酸;并且其中所述双链核糖核酸(dsRNA)试剂任选地进一步包含独立的靶向基团。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸是双链核糖核酸(dsRNA)试剂,其中反义链包含至少一种具有式(V)、式(V-1)、式(V-2)、式(VI)、式(VI-1)、式(VI-2)、式(VI-3)、式(VII)、式(VII-1)、式(VII-2)、式(VIII)、式(VIII-1)或其立体异构体所表示的5'-末端核苷酸。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的单独使用寡核苷酸或双链核糖核酸(dsRNA)中,每一条链均分别包含8-40核苷酸。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供了双链核糖核酸(dsRNA)试剂,任选地进一步包含独立的靶向基团,在双链核糖核酸(dsRNA)试剂中任意一条链的5′-末端和/或3′-末端核苷酸上还包含一种或更多种靶向基团。所述靶向基团可以是包含siRNA给药领域常规使用的配体。
[根据细则91更正 06.05.2024]
在一些实施方式中,提供的双链核糖核酸(dsRNA)试剂中,所述靶向基团可以选自包含以下靶向分子或其衍生物形成的配体中的一种或多种:聚合物、糖类、肝实质细胞表达的受体配体、抗体、量子点、多肽,或小分子配体。
[根据细则91更正 06.05.2024]
在一些实施方式中,提供的双链核糖核酸(dsRNA)试剂中,至少一个或每个所述靶向基团选自包含能够和哺乳动物肝实质细胞表面受体结合的配体。
[根据细则91更正 06.05.2024]
在一些实施方式中,提供的双链核糖核酸(dsRNA)试剂中,每个所述靶向基团独立地为包含与哺乳动物肝细胞表面的去唾液酸糖蛋白受体(ASGPR)亲和的配体。
[根据细则91更正 06.05.2024]
在一些实施方式中,提供的双链核糖核酸(dsRNA)试剂中,至少一个或每个所述靶向基团为包含半乳糖或N-乙酰半乳糖胺的配体。
[根据细则91更正 06.05.2024]
在一些实施方式中,提供的双链核糖核酸(dsRNA)试剂中,至少一个或每个所述靶向基团为具有如下结构片段:
[根据细则91更正 06.05.2024]
p为1或者2。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸或双链核糖核酸(dsRNA)试剂在药物制备中的用途,所述药物用于抑制基因表达。在某些实施方案中,其中所述抑制基因表达包括用所述寡核苷酸或双链核糖核酸(dsRNA)接触一种或多种细胞、组织或动物。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供了抑制基因表达的方法,该方法包括:使细胞与包括具有本文所述的寡核苷酸或双链核糖核酸(dsRNA)试剂接触,其中该寡核苷酸每一条链均分别包含8-40核苷酸,并且该寡核苷酸试剂的反义链与靶RNA互补。
[根据细则91更正 06.05.2024]
在某些实施方案中,细胞在动物中。在某些实施方案中,细胞在人中。在某些实施方案中,靶RNA选自mRNA、pre-mRNA和micro RNA。在某些实施方案中,靶RNA为mRNA。在某些实施方案中,靶RNA为人mRNA。在某些实施方案中,靶RNA被裂解,从而抑制其功能。在某些实施方案中,该方法进一步包括检测靶RNA的水平。在某些实施方案中,提供了抑制基因表达的方法,该方法包括:使一种或多种细胞或组织与包括具有(V)、式(V-1)、式(V-2)、式(VI)、式(VI-1)、式(VI-2)、式(VI-3)、式(VII)、式(VII-1)、式(VII-2)、式(VIII)、式(VIII-1)或其立体异构体所表示的5'-末端核苷酸提供的寡核苷酸或双链核糖核酸(dsRNA)试剂接触。
[根据细则91更正 06.05.2024]
发明详述
[根据细则91更正 06.05.2024]
在某些实施方案中,提供了5'-膦酸酯修饰的核苷类似物,并且作为核苷酸单体化合物可用于并入到寡核苷酸的末端,特别是作为反义链的5'-末端。本文还提供了用于制备这些寡核苷酸的中间体和方法。本文提供的修饰的5'-膦酸酯修饰的核苷类似物可用于提高寡核苷酸表达抑制持续时间和/或活性。在某些实施方案中,本文提供的寡核苷酸和组合物预期与靶RNA的一部分杂交以使该靶RNA丧失正常功能。所述寡核苷酸预期还可在诊断应用中用作为引物和探针。
[根据细则91更正 06.05.2024]
除非提供明确的定义,否则结合本文所述的分析化学、有机合成化学和药物化学所用的命名以及其程序和技术均为本领域所熟知和常用的那些。标准技术可用于化学合成和化学分析。它们据此为任何目的以引用方式并入。在允许的情况下,在整篇公开中所参考的所有专利、专利申请、已公布的专利申请和其它出版物及其它数据均整体以引用方式并入。
[根据细则91更正 06.05.2024]
如本文所用的术语“未取代的”或“取代的”是指母体化合物中氢原子未被其他取代基取代,或者一个或者多个氢原子被取代基所代替。如本文所用的术语“取代基”和“取代基团”意在包括通常添加至其他基团或母体化合物来增强期望特性或提供其他期望效应的基团。取代基团可以被保护或者不被保护,并且可以被加至母体化合物中的一个可用位点或许多可用位点。取代基团也可以进一步被其他取代基团取代,并且可以与母体化合物直接相连或通过连接基团诸如烷基或烃基基团与母体化合物相连。除有特别说明,本文的取代基可以是本领域熟知的常规合适的取代基,本文适合的取代基团包括但不限于:卤素、羟基、烷基、烯基、炔基、酰基(-C(=O)Raa)、羧基(-C(=O)O-Raa)、脂肪族基团、脂环族基团、烷氧基、取代的氧(-O-Raa)、芳基、芳烷基、杂环基、杂芳基、杂芳基烷基、氨基(-N(Rbb)(Rcc))、亚氨基(=NRbb)、酰氨基(-C(=O)N(Rbb)(Rcc)或一N(Rbb)C(=O)Raa、叠氮基(-N3)、硝基(-NO2)、氰基(-CN)、脲基(ureido)(-N(Rbb)C(=O)N(Rbb)(Rcc))、硫脲基(-N(Rbb)C(S)N(Rbb)(Rcc))、胍基(-N(Rbb)C(=NRbb)N(Rbb)(Rcc))、脒基(-C(=NRbb)N(Rbb)(Rcc)或一N(Rbb)C(=NRbb)(Raa))、硫羟基或巯基(-SRbb)、亚磺酰基(-S(=O)Rbb)、磺酰基(-S(=O)2Rbb)以及磺酰氨基(sulfonamidyl)(-S(=O)2N(Rbb)(Rcc)或-N(Rbb)S(=O)2Rbb)。其中每个Raa、Rbb和Rcc独立地是H、任选地连接的化学官能团或另外的取代基团,优选列表包括但不限于H、烷基、烯基、炔基、脂肪族、烷氧基、酰基、芳基、芳烷基、杂芳基、脂环族、杂环和杂芳基烷基。在一些未特别说明的取代基团,优选实施方式中,取代基团选自卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基。如本文所用“取代基”是本发明的预期方面,在药物化学和有机化学领域的普通技术人员将理解此类取代基的通用性,在“取代基”应满足于本发明中其总数将符合与其附着原子或者基团可形成化学键存在的原理。例如,Q8为PR16R17,R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19时,为满足五价磷的化学形式,R16或R17至少一者为(=O)或(=S),另外一者为OH、SH、C1-C6烷基、NR18R19
[根据细则91更正 06.05.2024]
如本文所用的术语术语“任选地保护的”、“任选地被取代”、“任选的被取代”意指取代或者保护为任选存在,因此包括未被取代(保护)与被取代(保护)的原子及部分。
[根据细则91更正 06.05.2024]
如本文所用的术语“烷基”是指具有1个至约24个碳原子的直链或支链饱和的烃基。当它在本文出现时,诸如“C1-C6烷基”的数量范围意一般是指烷基中碳原子的数目,可以仅包含1个碳原子、2个碳原子、3个碳原子等,直至并且包括6个碳原子,除另有说明,一般烷基中进一步被其他原子或者基团取代所增加的碳原子的数目不在计数范围内,本文其他计数方式也存在同样的描述。烷基的实例包括但不限于甲基、乙基、丙基、丁基、异丙基、正己基、辛基、癸基、十二烷基等。尽管术语“烷基”还包括其中没有指定碳原子的数量范围的情况,举例来说,术语“烷基”可以是指C1-C10的子范围(例如C1-C6)。“取代的烷基”是指带有取代基的烷基部分。如本文所用的“低级烷基”是指具有1个至约6个碳原子的烷基部分。如本文所用的术语“亚烷基”是烷基的另一碳原子被取代,本身或作为另一取代基的一部分是指衍生自烷基的二价自由基,例如但不限于-CH2CH2-。
[根据细则91更正 06.05.2024]
如本文所用的术语“烯基”是指至少一个碳-碳双键的直链或支链烃基。烯基的实例包括但不限于乙烯基、丙烯基、丁烯基、1-甲基-2-丁烯-1-基、二烯,诸如1,3-丁二烯等。烯基通常包含2至约24个碳原子,更通常包含2至约12个碳原子,其中2至约6个碳原子是更优选的。如本文所用的烯基可任选地包含一个或更多个进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“炔基”是指至少一个碳-碳三键的直链或支链烃基。炔基的实例包括但不限于乙炔基、1-丙炔基、1-丁炔基等。炔基通常包含2至约24个碳原子更通常包含2至约12个碳原子,其中2至约6个碳原子是更优选的。如本文所用的炔基可任选地包含一个或更多个进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“酰基”是指通过从有机酸中移除羟基而形成的基团并具有通式-C(=O)-X其中X通常为脂族、脂环族或族的。实例包括脂族羰基、芳族羰基、脂族磺酰基、芳族亚磺酰基、脂族亚磺酰基、芳族磷酸酯、脂族磷酸酯等。如本文所用的酰基可任选地包含进一步的取代基团。
[根据细则91更正 06.05.2024]
术语“环烷基”是指其中环为脂族的环体系。该环体系可包含一个或多个环其中至少一个环是脂族的。优选的脂环族化合物包含环中具有约5至约9个碳原子的环。如本文所用环烷基可任选地包含进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用术语“烷氧基”是指在烷基和氧原子之间形成的基团,其中氧原子用于将烷氧基连接到母体分子。烷氧基的实例包括但不限于:甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基、新戊氧基和正己氧基等。如本文所用的烷氧基可任选地包含进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“氨基烷基”是指氨基取代的C1-C12烷基。该基团的烷基部分与母体分子形成共价键。氨基可位于任何位置并且氨基烷基可在烷基和/或氨基部位被进一步的取代基团取代。
[根据细则91更正 06.05.2024]
如本文所用的术语“芳基”和“芳族”是指具有一个或多个芳环的单环或多环的碳环系基团,如本文所用的术语“芳族基团”是指具有含有4n+2π电子的离域π电子体系的平面环,其中n是整数。芳环可以由5个、6个、7个、8个、9个或多于9个原子形成。术语“芳族”意图包括碳环芳基(例如苯基)和杂环芳基(或“杂芳基”或“杂芳族”)基团(例如吡啶)。所述术语包括单环或稠环多环,即共用相邻碳原子对的环。“取代的芳族基”是指进一步带有一个或多个取代基的芳族基团。芳基的实例包括但不限于苯基、萘基、四氢萘基、茚满基、茚基(idenyl)等。优选的芳基环体系在一个或多个环中具有约5至约20个碳原子。如本文所用的芳基可任选地包含进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“芳烷基”和“芳基烷基”是指共价连接到C1-C12烷基的芳族基团。所得的芳烷基(或芳基烷基)的烷基部分与母体分子形成共价键。实例包括但不限于苄基、苯乙基等。如本文所用的芳烷基可任选地包含连接到烷基、芳基或形成基团的两者的进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“杂芳基”和“杂芳族”是指包含单环或多环芳环、环体系或稠合环体系的基团其中这些环的至少一个为芳族的并包含一和或多个杂原子。杂芳基还意在包括稠合环体系包括其中稠环的一个或多个不含杂原子的体系。杂芳基通常包含一个选自硫、氮或氧的环原子。杂芳基的实例包括但不限于:吡啶基、吡嗪基、嘧啶基、吡咯基、吡唑基、咪唑基、噻唑基、噁唑基、异噁唑基、噻二唑基、噁二唑基、苯硫基、呋喃基、喹啉基、异喹啉基、苯并咪唑基、苯并噁唑基、喹噁啉基等。杂芳基可直接地或通过连接部分诸如脂族基团或杂原子连接到母体分子上。如本文所用的杂芳基可任选地包含进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“杂芳基烷基”是指进一步包含共价连接的C1-C12烷基的如之前定义的杂芳基。所得杂芳基烷基的烷基部分能够与母体分子形成共价键。实例包括但不限于吡啶基甲基、吡啶基乙基、萘啶基丙基(napthyridinylpropyl)等。如本文所用的杂芳基烷基可在杂芳基或烷基部分的一者或两者上任选地包含进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“卤”或“卤素”是指选自氟、氯、溴和碘的原子。
[根据细则91更正 06.05.2024]
如本文所用的术语“杂环基团”是指包含至少一个和杂原子并为不饱和的、部分饱和的或完全饱和的单环或多环环体系因而包括杂芳基基团。杂环还意在包括稠合环体系其中稠合环的一个或多个包含至少一个杂原子并且其它环可包含一个或多个杂原子或任选地不含杂原子。杂环基团通常包含至少一个选自硫、氮或氧的原子。杂环基团的实例包括[1,3]二氧戊环基、吡咯烷基、吡唑啉基、吡唑烷基、咪唑啉基、咪唑烷基、哌啶基、吡嗪基、噁唑烷基、异噁唑烷基、吗啉基、噻唑烷基、异噻唑烷基、喹噁啉基、哒嗪基(pyridazinonyl)、四氢呋喃基等。如本文所用“n”元的杂环基团是只环系中含有n个原子的总和,不保护环系意外的原子或者基团。如本文所用的杂环基团可任选地包含进一步的取代基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“单环或多环结构”包括选自单环环体系或其中环为稠合的或相连的多环环体系的所有环体系并意在包括单独地选自脂基、脂环基、芳基、杂芳基、芳烷基、芳基烷基、杂环基、杂芳基、杂芳族基和杂芳基烷基的单个和混合环体系。此类单环和多环结构可包含每一个都具有相同饱和度或每一个独立地具有不同饱和度(包括完全饱和、部分饱和或完全不饱和)的环。每个环可包含选自C、N、O和S的环原子以得到杂环以及只含C环原子的环这些环可以混合基序存在诸如例如苯并咪唑其中一个环只具有碳环原子而稠合的环具有两个氮原子。单环或多环结构可进一步被取代基团取代诸如例如邻苯二甲酰亚胺其具有连接到其中一个环上的两个=O基团。单环或多环结构可使用多种策略连接到母体分子上诸如通过环原子直接连接、通过取代基团或通过双官能连接部分连接。
[根据细则91更正 06.05.2024]
术语“氧代”是指基团(=O)。
[根据细则91更正 06.05.2024]
本文中使用的术语“磺酰基”(单独或作为另一基团的一部分)是指式RSO2—的基团,其中R是氢、烷基、经取代烷基、芳基、或经取代芳基,CH3SO2—称为甲磺酰基。本文中使用的术语“亚磺酰基”(单独或作为另一基团的一部分)是指式RSO—的基团,本文中使用的术语“磺酰胺基”(单独或作为另一基团的一部分)是指式RSO2-NH-的基团,其中R是氢、烷基、经取代烷基、芳基、或经取代芳基。一些非限制性示例性磺酰胺基包CH3-SO2-N(H)-。
[根据细则91更正 06.05.2024]
术语“脂环族的”或“脂环基”指环状的环系缔,其中该环为脂肪族环。该环系缔可包含一个或多个环,其中至少一个环为脂肪族环。优选的脂肪环包括环中具有约5至约9个碳原子的环。此处所用的脂肪环任选地包括其它取代基团。此处所用的术语“脂肪族”指最多包含二十四个碳原子的直链或支链烃基,其中任意两个碳原子之间的饱和度为单、双或三键。脂肪族基团优选包含1至约24个碳原子,更通常包含1至约12个碳原子,更优选包含1至约6个碳原子脂肪基团的直链或支链可被一个或多个杂原子包括氮、氧、硫和磷等所中断。所述被杂原子中断的脂肪族基团包括但不限于聚烷氧基,例如聚亚烷基二醇、聚胺和聚亚胺。此处所用的脂肪族基团任选地包括其它取代基团。间隔物,将寡核苷酸系连到其上,用于将所述寡核苷酸和合成过程放置得远离所述底物或者载体。这种方式允许更大的灵活性和更多的用于合成的空间,在完成合成时方便于切割。
[根据细则91更正 06.05.2024]
本文中使用的术语“羧基”(单独或作为另一基团的一部分)是指式-COOH的基团。
[根据细则91更正 06.05.2024]
连接基团或双官能连接部分诸如本领域已知的那些可用于将化学官能团、共轭基团、报告基团和其它基团连接到母体化合物诸如例如寡核苷酸中的选择性位点上。一般来讲双官能连接部分包括具有两个官能团的烃基部分。选择其中一个官能团以结合到母体分子或所关注的化合物上而选择另一个以结合到基本上任何选定的基团诸如化学官能团或共轭基团上。在一些实施方案中连接基包含链结构或重复单元诸如乙二醇或氨基酸单元的聚合物。通常用于双官能连接部分的官能团的实例包括但不限于用于与亲核基团反应的亲电体以及用于与亲电基团反应的亲核体。在一些实施方案中双官能连接部分包含氨基、羟基、羧酸、硫醇、不饱和度(例如双键或三键)等。双官能连接部分的一些非限制实例包括8-氨基-3,6-二氧杂辛酸(ADO)、4-(N-马来酰亚胺基甲基)环己烷-1-羧酸琥珀酰亚胺(SMCC)和6-氨基己酸(AHEX或AHA)。其它连接基团包括但不限于取代的C1-C10烷基、取代的或未取代的C2-C10烯基或者取代的或未取代的C2-C10炔基其中优选取代基团的非限制性列表包括羟基、氨基、烷氧基、羧基、苄基、苯基、硝基、硫醇、硫代烷氧基、卤素、烷基、芳基、烯基和炔基。
[根据细则91更正 06.05.2024]
本文中使用的术语“醚”是醇或酚的羟基中的氢被烃基取代的产物,通式为R-O-R',R和R’可以相同,也可以不同。两者相同的醚称为对称醚,也叫简单醚或单醚;两者不相同的醚称为不对称醚,也叫混合醚或混醚。
[根据细则91更正 06.05.2024]
本文中使用的术语或者是一般是指于相邻基团或者部分的链接处。例如,如本文式A片段任意一结构, 中,L1处代表与T1的膦部分的链接处,L2处代表与核苷糖部分或者替代物的链接处。
[根据细则91更正 06.05.2024]
如本文所用的术语“保护基”是指本领域已知的在合成程序中保护反应性基团(包括但不限于羟基、氨基和硫羟基基团)免于不期望的反应的不稳定的化学部分。保护基通常被选择地使用以便在其他反应位点的反应过程中保护位点,然后能够被移除以照原样留下未保护的基团或者可用于进一步反应。
[根据细则91更正 06.05.2024]
常用于羟基或者巯基的保护基团的实例包括但不限于甲基、乙基、苄基(Bn)、苯基、异丙基、叔丁基、乙酰基、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、叔丁氧基甲基、甲氧基甲基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、烯丙基、环己基(cHex)、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、苯甲酰基、苯甲酰基甲酸酯、对苯基苯甲酰基、4-甲氧基苄基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基、4-氯苄基、4-硝基苄基、2,4-二硝基苯基、4-酰氧基苄基、2-甲基苯基、2,6-二甲基苯基、2-氯苯基、2,6-二氯苄基、二苯基甲基、三苯基甲基、4-甲硫基-1-丁基、2-(S-乙酰硫基)乙基(SATE)、2-氰乙基、2-氰基-1,1-二甲基乙基(CDM)、4-氰基-2-丁烯基、2-(三甲基硅基)乙基(TSE)、2-(苯硫基)乙基、2-(三苯基硅基)乙基、2-(苄磺酰基)乙基、2,2,2-三氯乙基、2,2,2-三溴乙基、2,3-二溴丙基、2,2,2-三氟乙基、苯硫基、2-氯-4-三苯甲基苯基、2-溴苯基、2-[N-异丙基-N-(4-甲氧基苯甲酰基)氨基]乙基、4-(N-三氟乙酰基氨基)丁基、4-氧代戊基、4-三苯甲基氨基苯基、4-苄基氨基苯基、四氢吡喃基、吗啉代、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、特戊酸酯甲醚基(POM)和9-苯基黄嘌呤-9-基。
[根据细则91更正 06.05.2024]
常用于氨基保护基实例包括但不限于2-三甲基硅基乙氧基羰基(Teoc)、1-甲基-1-(4-联苯基)乙氧基羰基(Bpoc)、叔丁氧基羰基(BOC)、烯丙氧基羰基(Alloc)、9-芴基甲氧基羰基(Fmoc)、苄氧基羰基(Cbz)、苄基、甲酰基、乙酰基、特戊酰基、三卤乙酰基、苯甲酰基、硝基苯基、乙酰基、2-硝基苯磺酰基、邻苯二甲酰亚胺基(Pht)、对甲苯磺酰基(Tos)、三苯甲基(Trt)、2,4-二氧基苄基(PMB)和二硫代丁二酰基。
[根据细则91更正 06.05.2024]
如本文所用的术语“膦部分”和“膦酸酯部分”是磷酸酯(-O-P(=O)(OH)OH)分子中包含磷的官能基或部分所述的磷原子与直接碳键合。如本文所用的术语“保护的膦部分”是指包括膦酸酯部分以及修饰膦酸酯部分中的羟基、巯基、氨基等被保护基保护。
[根据细则91更正 06.05.2024]
在如本文所用的术语“膦部分”是指单价pV磷基基团(五价磷)。在一个实施方式中,膦部分具有下式:
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基;
[根据细则91更正 06.05.2024]
取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,磺酰基优选为甲磺酰基。
[根据细则91更正 06.05.2024]
在某些实施方式中,每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
[根据细则91更正 06.05.2024]
如本文所用的术语“膦部分”可位于寡核苷酸任一末端,但优选位于5′-末端核苷。膦部分在某些实施方案中具有下式:
[根据细则91更正 06.05.2024]
在一个实施方式中,膦部分在某些实施方案中,当Ra和Rc其中一者为天然的或修饰的核苷时,具有以下示列:天然碱基选自C、U、G、A、T。修饰的核碱基还可以如本或本领域所常规使用那些,如核糖基的2'-羟基被甲氧基或者氟取代而形成的核苷。该膦部分Ra和Rc其中一者为天然的或修饰的核苷时,在位于双链寡核苷酸5’端时,如反义链5’端则形成一个人突出端,该碱基或修饰碱基替代基团,不与正义链的形成碱基配对;即使如果正义链包括3’末端突出端,也不与该突出端的形成碱基配对。其合成方法可以参考中国公开专利CN 115819484 A所描述的那样,在此也全部并入本文。
[根据细则91更正 06.05.2024]
如本文所用的术语“活性磷”基团,所述活性磷基团可用于形成包括例如磷酸二酯和硫代磷酸酯核苷间连接在内的核苷间连接。这些活性磷基团是本领域已知的并且包含PIII(三价磷)或pV(五价磷)价态的磷原子,所述活性磷基团包括但不限于亚磷酰胺、H-膦酸酷、磷三酯和含磷手性助剂。在某些实施方案中,包括了在与游离的羟基基团反应时提供5'或3'-亚膦酸酯核苷间连接的反应性磷基团。这些反应性磷基团包括但不限于-(P=Re)(ORd)2,其中每个Rd独立地是保护基、取代或者未取代的C1-C6烷基、取代或者未取代的芳基,并且Re是O或S。在某些的实施方式中活性磷基团,其中M4为H、任选取代的C1-C6烷基、OH、OJ7、SH、SJ7或NJ7J8,M5为任选取代的C1-C6烷基、OH、OJ7、SH、SJ7或NJ7J8,每个J7或J8独立地为任选取代的C1-C6烷基、磺酰基;r为0或者1。另外的活性磷酸盐和亚磷酸盐公开于Beaucage和Iyer,Tetrahedron,1992,48(12),2223-2311中。
[根据细则91更正 06.05.2024]
如本文所用的术语“亚磷酰胺”是指含氮的三价磷衍生物,是一种常规的活性磷。合适的亚磷酰胺的实例描述于本文中。
[根据细则91更正 06.05.2024]
如本文所用的术语“核苷间连接”或“核苷间连接基团”旨在包括本领域已知的各类核苷间连接基团,在此类实施方案中可使用任何核苷间键合将核苷或者类似物连接在一起。两类主要的核苷间连接基团由存在或不存在磷原子而定义,包括但不限于:磷酸二酯连接基团、磷酸三酯连接基团、硫代磷酸酯连接基团、二硫代磷酸酯键连接基团、烷基膦酸酯连接基团、氨基膦酸酯连接基团、膦酸酯连接基团、次膦酸酯连接基团、硫代氨基磷酸酯连接基团和氨基磷酸酯连接基团;以及不含磷核苷间连接基团诸如硫代二酯(-O-C(=O)-S-)、硫羰氨基甲酸酯(-O-C(=O)(NH)-S-)、硅氧烷(-O-Si(H)2-O-)、N,N′-二甲基肼(-CH2-N(CH3)-N(CH3)-)、甲酰基(formacetyl)和亚甲基亚氨基(-CH2-N(CH3)-O-CH2-)。核苷间连接还包括中性非离子核苷间连接,如本文所用术语“中性核苷间键合”旨在包括非离子的核苷间键合。中性核苷间键合包括但不限于磷酸三酯、甲基膦酸酯、MMI(3′-CH2-N(CH3)-O-5′)、酰胺-3(3′-CH2-C(=O)-N(H)-5′)、酰胺-4(3′-CH2-N(H)-C(=O)-5′)、亚甲基缩醛(formacetal)(3′-O-CH2-O-5′)和硫代亚甲基缩醛(thioformacetal)(3′-S-CH2-O-5′)。进一步的中性核苷间键合包括非离子键合包括硅氧烷(二烷基硅氧烷)、羧酸酯、甲酰胺、硫化物、磺酸酯和酰胺(参见例如:″Carbohydrate Modifications in Antisense Research″;Y.S.Sanghvi和P.D.Cook主编ACS SymposiumSeries 580;第3和4章第40-65页)。进一步的中性核苷间键合包括含有混合N、O、S和CH2组成部分的非离子键合,其中磷原子并非总是存在。在一些方案中,烷基膦酸酯连接基团选自C1-C6烷基膦酸酯连接基团。
[根据细则91更正 06.05.2024]
在某些的实施方式中,提供的寡核苷酸,所述的含磷核苷间连接基团具有如下所示的结构片段:X表示H、任选取代的C1-C6烷基、OR13、SR13、OH、SH或NR13R14,Y表示O或者S,z可以是0或者1,每个R13或R14独立地为氢、任选取代的C1-C6烷基、磺酰基,分别独立地表示与本文5'-末端核苷相连部分,以及与相邻核苷酸相连部分。
[根据细则91更正 06.05.2024]
与天然磷酸二酯键合相比的修饰键合可用于改变(通常增强)寡核苷酸的核酸酶抗性。在某些实施方案中可作为外消旋混合物或单独的对映体制备具有手性原子的核苷间键合。代表性的手性键合包括但不限于膦酸烷基酯和硫代磷酸酯。制备含磷和不含磷的核苷间键合的方法对本领域的技术人员而言是熟知的。
[根据细则91更正 06.05.2024]
如本文所用“核苷”是指天然的或修饰的核苷包含杂环碱基部分和糖部分的化合物。核苷包括但不限于天然存在的核苷(如存在于DNA和RNA中)、无碱基核苷、修饰的核苷以及具有拟态碱基(mimetic base)和/或糖基的核苷。核苷可由多种取代基的任何一种修饰。
[根据细则91更正 06.05.2024]
如本文所用“核苷酸”是指进一步包含磷酸酯连接基团的核苷。如本文所用“连接的核苷”可以由或可以不由磷酸酯键合连接并因而包括“连接的核苷酸”。
[根据细则91更正 06.05.2024]
如本文所用的术语“核苷酸位置”是指从5'末端处的核昔酸开始计数的核苷酸在寡核苷酸或者寡核苷酸中的位置。举例来说,核苷酸位置1是指寡核苷酸的5'-末端核苷酸。
[根据细则91更正 06.05.2024]
如本文所用“糖部分”是指包括天然的或修饰的糖环或糖替代物。“糖替代性部分”或者“糖替代物”是指能够代替天然存在的核苷的5元呋喃糖环的结构。而这类具有糖替代物基团的核苷通常仍具备杂环碱基部分保持杂交能力。在某些实施方案中糖替代物是非呋喃糖(或4′-取代的呋喃糖)环或环体系或开放体系。非限制性的,此类结构相对于天然呋喃糖环包含简单的变化诸如六元环,例如吗啉基类、四氢吡喃和环己六醇类,六元取代进一步被修饰,如四氢吡喃以代替天然存在核苷的呋喃糖,修饰的四氢吡喃包括但不限于在本领域中称为已糖醇核酸(HNA)、anitol核酸(ANA)、甘露醇核酸(MNA)(参见Leumann,CJ.,Bioorg.&Med.Chem.(2002)10:841-854)、氟代HNA(F-HNA)的那些结构,吗啉基类替代的一些核苷(参见国际申请公开WO200836127,WO2011150408);碳环核苷是其中糖部分的呋喃糖环的氧原子被碳原子取代的核苷类似物,因此碳环也是一种常见的糖替代物,参见例如美国专利号6,001,840,其具有代替核苷的四氢呋喃环的环戊烷环,诸如此类还可以是环己烷基类、环戊烷基、环己烯基类(参见PCT申请WO 2010/036696;Robeyns等,J.Am.Chem.Soc.,2008,130(6),1979-1984;Gu等,Nucleosides,Nucleotides&Nucleic Acids,2005,24(5-7),993-998;Nauwelaerts等,Nucleic AcidsResearch,2005,33(8),2452-2463;Gu等,0ligonucleotides,2003,13(6),479-489);“糖替代性部分”可以是双环或者三环结构(参见例如Leumann,J.c,Bioorganic&Medicinal Chemistry,2002,10,841-854,US7399845,国际专利公开WO2009006478,WO2008150150729,WO2011/139702所述的那些),例如锁核酸(“LNA”)(参见例如Koshkin等人(1998),Tetrahedron,54,3607-3630);桥联核酸(“BNA”)(参见例如美国专利号7,427,672和Mitsuoka等人(2009),Nucleic Acids Res.,37(4):1225-38);“糖替代性部分”还可以是无环的,例如解锁核酸(“UNA”)(参见例如美国专利第8,314,227号,Meghan A.et al.“Locked vs.unlocked nucleic acids(LNA vs.UNA):contrasting structures work towards common therapeutic goals”.Chem.Soc.Rev.,2011,40,5680–5689),甘油核酸结构(GNA)作为糖替代性取代部分(参见例如WO 2016/028649),或者可以更为复杂与用于肽核酸的非环体系一样;更多的一些“糖替代性部分”新的核苷可以键国际专利公开WO2011/139702所描述的那样。它们每一个都以引用方式全文并入本文。
[根据细则91更正 06.05.2024]
呋喃糖:如本文所用的术语“呋喃糖”是指具有五元环结构的碳水化合物,其中所述环结构具有4个碳原子和1个氧原子如下结构表示:在结构中,数字表示五元环结构中4个碳原子的位置。某些四氢吡喃基替代的糖部分的核苷具有如下结构示意:其中各变量可以同本文式(I)保持一致,其环可以理解的是可以进一步被任何合适的基团取代;某些吗啉基替代的糖部分的核苷具有如下结构示意:数字表示五元环结构中4个碳原子的位置,其中各变量可以同本文式(I)保持一致,其环可以理解的是可以进一步被任何合适的基团取代;某些环己烯基替代的糖部分的核苷具有如下结构示意:其中各变量可以同本文式(I)保持一致,其环可以理解的是可以进一步被任何合适的基团取代。
[根据细则91更正 06.05.2024]
某些双环替代的糖部分的核苷,包括但是不限于成4’与2’糖环原子的桥形成的核苷具有如下结构示意:其中Bx为碱基部分,而R独立地为H、保护基团或C1-C12烷基。
[根据细则91更正 06.05.2024]
修饰的糖(在本文也被称为“糖替代性部分”)包括修饰的脱氧核糖或核糖部分,例如其中在糖的2'、3'、4或5'-碳位置处发生修饰。
[根据细则91更正 06.05.2024]
如本文所用“核碱基”或“杂环碱基部分”是指核苷的杂环碱基部分,位于可并入核酸双螺旋内的修饰的核苷酸中的核苷酸糖部分的1'位置(或可并入核酸双螺旋内的核苷酸糖部分取代中的等效位置)的杂环部分。“核碱基”或“杂环碱基部分”可以为天然存在的或可以被修饰以及通用核碱基。在某些实施方案中“核碱基”或“杂环碱基部分”可以包含能够以氢键结合到另一核酸的碱基上的任何原子或一组原子,每一个核苷的杂环碱基部分可由一个或多个取代基团修饰以增强一种或多种性质诸如对于靶链的亲和力或以有利的方式影响一些其它性质。修饰核碱基包括但不限于如本文所定义的通用碱基、疏水碱基、混杂碱基、扩环碱基以及氟化碱基。其中这些核碱基的可用于增强如本文提供的寡聚核苷酸的结合亲和力。最常见的两种类别为嘌呤和嘧啶,例如:合适的天然核碱基包括嘌呤碱基和嘧啶碱基,例如腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)、鸟嘌呤(G)或尿嘧啶(U)。合适的修饰的核碱基包括二氨基嘌呤和它的衍生物、烷基化的嘌呤或嘧啶、酰化的嘌呤或嘧啶、硫醇化的嘌呤或嘧啶等;诸如5-甲基胞嘧啶(5-me-C)、5-羟甲基胞嘧啶、黄嘌呤、次黄嘌呤、2-氨基腺嘌呤、腺嘌呤和鸟嘌呤的6-甲基和其它烷基衍生物、腺嘌呤和鸟嘌呤的2-丙基和其它烷基衍生物、2-硫尿嘧啶、2-硫代胸腺嘧啶和2-巯基胞嘧啶、5-卤尿嘧啶和胞嘧啶、5-丙炔基(-C≡C-CH3)尿嘧啶和胞嘧啶以及嘧啶碱基的其它炔基衍生物、6-偶氮尿嘧啶、胞嘧啶和胸腺嘧啶5-尿嘧啶(假尿嘧啶)、N1-甲基-假尿嘧啶、4-硫尿嘧啶、8-卤,8-氨基,8-硫醇,8-硫代烷基,8-羟基和其它8-取代的腺嘌呤和鸟嘌呤、5-卤尤其是5-溴,5-三氟甲基和其它5-取代的尿嘧啶和胞嘧啶、7-甲基鸟嘌呤和7-甲基腺嘌呤、2-F-腺嘌呤、2-氨基-腺嘌呤、8-氮杂鸟嘌呤和8-氮杂腺嘌呤、7-去氮鸟嘌呤和7-去氮腺嘌呤、3-去氮鸟嘌呤和3-去氮腺嘌。进一步的修饰核碱基包括三环嘧啶诸如吩噁嗪胞嘧啶核苷([5,4-b][1,4]苯并噁嗪-2(3H)-酮)、吩噻嗪胞嘧啶、核苷(1H-嘧啶并[5,4-b][1,4]苯并噻嗪-2(3H)-酮)、G夹(G-clamp)诸如取代的吩噁嗪胞嘧啶核苷(例如9-(2-氨基乙氧基)-H-嘧啶并[5,4-b][1,4]苯并噁嗪-2(3H)-酮)、咔唑胞嘧啶核苷(2H-嘧啶并[4,5-b]吲哚-2-酮)、吡啶并吲哚胞嘧啶核苷(H-吡啶[3′,2′:4,5]吡咯并[2,3-d]嘧啶-2-酮)。修饰的核碱基还可以包括其中嘌呤或嘧啶碱基被其它杂环替代的那些例如7-去氮腺嘌呤、7-去氮鸟苷、2-氨基吡啶和2-吡啶酮。教导修饰核碱基以及其它修饰核碱基的制备的代表性包括但是不限于国际申请公开的WO2022007986、美国公开专利3,687,808、4,845,205、5,130,302、5,134,066、5,175,273、5,367,066、5,432,272、5,457,187、5,459,255、5,484,908、5,502,177、5,525,711、5,552,540、5,587,469、5,594,121、5,596,091、5,614,617、5,645,985、5,681,941、5,750,692、5,763,588、5,830,653和6,005,096中公开的那些。如本文所用,“通用碱基”是指位于修饰的核苷酸中核苷酸糖部分的1'位置或核苷酸糖部分取代中的等效位置的具有天然碱基相同性质的杂环部分,即当存在于核酸双螺旋中时,可放置于多于一种类型的碱基的对面而不改变双螺旋结构(例如,磷酸酯主链的结构)。一些通用碱基能够通过在所述通用碱基与所有碱基鸟嘌呤(G)、胞嘧啶(C)、腺嘌呤(A)、胸腺嘧啶(T)和尿嘧啶(U)之间在形成碱基对的条件下形成氢键进行碱基配对。在双螺旋中,通用碱基可与双螺旋的相对链上与其相对的G、C、A、T和U中的每一者形成一个氢键、或形成多于一个氢键。在双螺旋中,通用碱基之间的碱基配对发生但不改变磷酸酯主链的双螺旋结构。通用碱基还可通过堆叠相互作用与相同核酸链上的相邻核苷酸中的碱基相互作用。此类堆叠相互作用稳定所述双螺旋,尤其在所述通用碱基不与所述双螺旋的相对链上与其相对放置的碱基形成任何氢键的情况下。在一些时候,类似2,4-二氟苯基也是一种通常替代的杂环碱基。通用结合核苷酸的限制性实例包括肌苷、1-O-D-呋喃核糖基-5-硝基吲哚、和/或1-β-D-呋喃核糖基-3-硝基吡咯(Quay等人的美国专利申请公开号20070254362;Van Aerschot等人,An acyclic 5-nitroindazole nucleoside analogue as ambiguous nucleoside,NUCLEIC ACIDS RES.1995年11月11日;23(21):4363-70;Loakes等人,3-Nitropyrrole and5-nitroindole as universal bases in primers for DNA sequencing and PCR,NUCLEIC ACIDS RES.1995年7月11日;23(13):2361-2366)。
[根据细则91更正 06.05.2024]
其中某些与本申请共同拥有并且它们中的每一个都全文以引用方式并入本文,在一些非限制性结构示列如下:
[根据细则91更正 06.05.2024]
如本文所用“修饰核苷”是指与天然存在的RNA或DNA核苷相比包含至少一个修饰的核苷。此类修饰可以位于糖部分和/或位于核碱基上。修饰的核苷酸包括不含核碱基(无碱基)。
[根据细则91更正 06.05.2024]
如本文所用“2'-F”是指包含糖的核苷,该糖在2'位又包含氟基团。如本文所用,2'-OMe”都是指包含糖的核苷在糖环的2'位包含-OCH3基团。如本文所用,“2'-MOE”或”2'-OCH2CH2OCH3”或“2'-O-甲氧基乙基”都是指包含糖的核苷,该糖又在糖环的2'位包含-OCH2CH2OCH3基团。
[根据细则91更正 06.05.2024]
如本文所用的术语“5’-末端核苷酸或3’-末端核苷酸”是指位于寡核苷酸或者寡核苷酸的5’-末端或3’-末端的核苷酸或核苷酸衍生物。
[根据细则91更正 06.05.2024]
如本文所用“寡核苷酸”是指从2个到2500个核苷酸不等的核苷酸的聚合形式。寡核苷酸可以是单链的或双链的;通常例如其中所述寡核苷酸用于基因疗法中,例如其中所述寡核苷酸是核酸抑制剂分子。某些实施方案中这些多个核苷酸中的一个或多个被修饰。本发明的上下文中的术语“寡核苷酸”指至少具有一个区域能与核酸分子杂交的聚合物。通常,寡核苷酸包含连接的单体亚单位的主链,所述连接单体亚单位、糖部分或替代物和杂环碱基部分的键合可被独立地修饰。所述键合的糖单元,其可能包含或不包含杂环碱基,可以用模拟物例如肽核酸单体代替。在寡核苷酸每个单体进行修饰或取代部分或全部单体的能力可产生大量可能的基序。术语“寡核苷酸”包括寡核苷酸类似物和寡核苷以及核苷酸模拟物和/或包含核酸和非核酸成分的混合聚合物。术语“寡核苷酸”还包括包含连接的单体亚单位的聚合物,其中所述单体亚单位包括核苷、修饰的核苷、核苷类似物、核苷模拟物以及非核酸组分如偶联基团。在某些实施方案中,单体亚单位的混合物(例如但不限于所列的那些)提供下述寡核苷酸,所述寡核苷酸对于如治疗和诊断的应用具有增强的性质。
[根据细则91更正 06.05.2024]
寡核苷酸通常用常规线性制备,也被连接或以其它方式制备成坏状,并且还可包含分支。寡核苷酸可形成双链构建体,例如,杂交形成双链组合物的双链。该双链组合物可被连接或分离并可在末端包含突出(overhangs)。
[根据细则91更正 06.05.2024]
如本文所用“表达”是指基因借以最终产生蛋白质的过程。表达包括但不限于转录、剪接、转录后修饰和翻译。
[根据细则91更正 06.05.2024]
如本文所用“反义寡核苷酸”是指为寡核苷酸的反义化合物。
[根据细则91更正 06.05.2024]
如本文所用“靶核酸”是指其表达量或活性能够由反义化合物调节的任何核酸分子。在某些实施方案中靶核酸为DNA或RNA。在某些实施方案中靶RNA为mRNA、pre-mRNA、非编码RNA、pri-microRNA、pre-microRNA、成熟microRNA、启动子调控RNA或天然反义转录物。
[根据细则91更正 06.05.2024]
如本文所用“靶mRNA”是指预先选择的编码蛋白质的RNA分子。
[根据细则91更正 06.05.2024]
如本文所用“杂交”是指互补的寡核苷酸(例如,反义化合物及其靶核酸的配对。虽然不限于具体的机制,但最常见的配对机制涉及互补核苷或核苷酸碱基(核碱基)之间成氢键,其可以为Watson-Crick、Hoogsteen或反Hoogsteen氢键。例如天然核碱基腺嘌呤与天然核碱基胸腺嘧啶核苷和尿嘧啶为核碱基互补,它们通过形成氢键而配对。天然碱基鸟嘌呤是与天然碱基胞嘧啶和5-甲基胞嘧啶互补的核碱基。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供的寡核苷酸是单链寡核苷酸。在某些实施方案中,所述单链寡核苷酸是常规的反义寡核苷酸(又称ASO)、核糖酶或适体。在某些实施方案中,提供的寡核苷酸是双链核糖核酸(dsRNA)试剂,这类化合物本领域所熟知的双链核苷核酸,其中一条或两条链为如本文所公开的寡核苷酸。
[根据细则91更正 06.05.2024]
如本文所用,“反义化合物”“反义链”是指一种寡核苷酸,其至少一部分与和其杂交的靶核酸至少部分互补。在某些实施方案中,反义化合物调节(增加或减少)靶核酸的表达或量。在某些实施方案中,反义化合物改变靶pre-mRNA的剪接,从而导致不同的剪接变体。在某些实施方案中,反义化合物调节一种或多种不同靶蛋白的表达。本文设想的反义机制包括但不限于RNA酶H机制、RNA机制、前接调节、翻译阻断改变RNA加工、抑制microRNA功能或模拟microRNA功能。
[根据细则91更正 06.05.2024]
本文中使用的术语“siRNA”是指短干扰RNA或沉默RNA。siRNA是一类双链siRNA RNA分子,其长度可以是20至25(或更短)个碱基对,与在RNA干扰(RNAi)途径中起作用的微RNA(miRNA)类似。siRNA通过在转录之后降解mRNA来干扰具有与siRNA互补的核苷酸序列的特定基因的表达,从而防止翻译。siRNA在细胞中通过诱导RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)切割信使RNA(mRNA)来沉默基因表达。如本文所用,术语“单链寡核苷酸”是指具有与靶mRNA至少部分互补的序列、在哺乳动物生理条件下(或类似的体外条件下)能够通过氢键与靶mRNA杂交的单链低聚化合物。在一些实施方式中,单链寡核苷酸是单链反义寡核苷酸。
[根据细则91更正 06.05.2024]
如本文所,除非另外指明或修正否则术语“双链”是指彼此杂交的两种单独的寡核苷酸。此类双链化合物可具有一条或两条链的一端或两端处的一个或多个非杂交核苷(悬垂)和/或一个或多个内部非杂交核苷(错配),前提是存在足够的互补性以维持生理相关条件下的杂交。
[根据细则91更正 06.05.2024]
如本文所用,术语“沉默”、“减少”、“抑制”、“下调”或“敲减”在指代给定基因的表达时,是指当用本文所述的RNAi药剂之类的低聚化合物处理细胞、细胞团、组织、器官或对象时,与未经如此处理的第二细胞、细胞团、组织、器官或对象相比,基因的表达有所减少,所述基因的表达通过由该基因转录而来的RNA的水平或由发生了该基因的转录的细胞、细胞团、组织、器官或对象内的mRNA翻译而来的多肽、蛋白质或蛋白质亚基的水平来测定。
[根据细则91更正 06.05.2024]
如本文所用术语“自互补”或“发夹”是指包含通过寡核苷酸自我杂交而形成的双链体区域的单一寡核苷酸。
[根据细则91更正 06.05.2024]
如本文所用术语“单链的”是指未与其互补序列杂交并且不具有足够的自互补性以在生理相关条件下形成发夹结构的寡核苷酸。单链化合物可以能够结合到其互补序列从而变成双链的或部分双链的化合物。
[根据细则91更正 06.05.2024]
如本文所用,“靶mRNA”或“靶核酸”是指其表达、量或活性能够由反义化合物调节的任何核酸分子。在某些实施方案中,靶核酸为DNA或RNA。在某些实施方案中,靶RNA为mRNA.pre-mRNA、非编码RNA、pri-microRNA、pre-microRNA、成熟microRNA、启动子调控RNA或天然反义转录物。例如,靶核酸可以是其表达与特定疾病或疾病状态相关的细胞基因(或从基因转录的mRNA)、或为来自感染物的核酸分子。在某些实施方案中,靶核酸为病毒或细菌核酸。
[根据细则91更正 06.05.2024]
如本文所用“核碱基互补性”、“互补的”或“互补性”在就核碱基而言时是指能够与另一核碱基进行碱基配对的核碱基。例如在DNA中腺嘌呤(A)与胸腺嘧啶(T)互补。例如在RNA中腺嘌呤(A)与尿嘧啶(U)互补。在某些实施方案中互补的核碱基是指能够与其靶核酸的核碱基进行碱基配对的反义化合物的核碱基。如本文所用“非互补的”在就核碱基而言时是指彼此不形成氢键或换句话讲不支持杂交的一对核碱基。就连接的核苷寡核苷酸或核酸而言时是指寡核苷酸通过核碱基互补性与另一寡核苷酸或核酸杂交的能力。例如,dsRNA试剂第一核苷酸序列如正义链或靶标靶基因mRNA与第二核苷酸序列(例如,dsRNA试剂反义链或单链反义多核苷酸)的相关性时,是指包含第一核苷酸序列的寡核苷酸或多核苷酸与包含第二核苷酸序列的寡核苷酸或多核苷酸杂交[在哺乳动物生理条件(或体外类似条件)下形成碱基对间氢键]、并且在某些条件下形成双螺旋或双螺旋结构的能力。其中也可以应用其他条件,例如在生物体内可能遇到的生理相关条件。技术人员将能够根据杂交核苷酸的最终应用确定最适合测试两个序列互补性的条件集。互补序列包括沃森-克里克碱基对或非沃森-克里克碱基对,并且包括天然或修饰的核苷酸或核苷酸模拟物,只要至少达到上述杂交要求的程度即可。序列同一性或互补性与修饰无关。
[根据细则91更正 06.05.2024]
在某些实施方案中寡核苷酸的核碱基序列的至少一部分与靶核酸的一部分互补或者完全互补。在某些实施方案中与靶核酸100%互补。在某些实施方案中与靶核酸90%互补。在某些实施方案中与靶核酸80%互补。在某些实施方案中与靶核酸90%互补。在某些实施方案中与靶核酸70%互补。在某些实施方案中与靶核酸90%互补。在某些实施方案中与靶核酸60%互补。例如,在如本文所述的靶基因dsRNA内的互补序列包含含有第一核苷酸序列的寡核苷酸或多核苷酸与含有第二核苷酸序列的寡核苷酸或多核苷酸在一个或两个核苷酸序列的全长上的碱基配对。此类序列在本文中可被称为彼此“完全互补”。应当理解,在设计两个寡核苷酸以在杂交时形成一个或更多个单链突出端的实施方案中,这种突出端在本文中不被视为基于互补性确定的错配。例如,靶基因dsRNA试剂包含一个长度为19个核苷酸的寡核苷酸和另一个长度为20个核苷酸的寡核苷酸,其中较长的寡核苷酸包含与较短的寡核苷酸完全互补的19个核苷酸的序列,出于本文所述的目的,此种情况可以称为“完全互补”。因此,如本文所用,“完全互补”是指第一多核苷酸的连续序列中的所有(100%)碱基会与第二多核苷酸的连续序列中的相同数目的碱基杂交。连续序列可以包含第一或第二核苷酸序列的全部或部分。如本文所用,术语“基本互补”是指在核碱基序列的杂交对中,第一多核苷酸的连续序列中的碱基的至少约85%(但不是全部)会与第二多核苷酸的连续序列中相同数目的碱基杂交。如果两个序列在杂交时包含一个或更多个错配碱基对,例如至少1、2、3、4或5个错配碱基对,则可以使用术语“基本上互补”来指第一序列相对于第二序列形成多达15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30个碱基对(bp)的双链体,同时保留在与其最终应用最相关的条件下杂交的能力,例如,通过RISC途径抑制靶基因基因表达。术语“部分互补”在本文中可用于指核碱基序列的杂交对中,第一多核苷酸的连续序列中碱基的至少75%(但不是全部)会与第二多核苷酸的连续序列中相同数目的碱基杂交。在一些实施方案中,“部分互补”是指第一多核苷酸的连续序列中至少76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的碱基会与第二多核苷酸的连续序列中相同数量的碱基杂交。术语“互补”、“完全互补”、“基本互补”和“部分互补”在本文中使用时可用于指dsRNA试剂的正义链与反义链之间的碱基匹配、dsRNA试剂的反义链与靶mRNA的序列之间的碱基匹配,或单链反义寡核苷酸与靶mRNA序列之间的碱基匹配。应当理解,术语“dsRNA试剂的反义链”可以指与“反义多核苷酸试剂”相同的序列。
[根据细则91更正 06.05.2024]
如本文所用“错配”,本领域技术人员已知,对于dsRNA的功效而言,错配是可以容忍的,尤其是错配在dsRNA的末端区域内的情况。某些错配具有更好的耐受性,例如具有摆动碱基对G:U和A:C的错配对功效的耐受性更好(Du et el.,A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites.Nucleic Acids Res.2005Mar 21;33(5):1671-7.Doi:10.1093/nar/gki312.Nucleic Acids Res.2005;33(11):3698)。
[根据细则91更正 06.05.2024]
如本文所用“基序”“序列”是如本文所用,是指核碱基或核苷酸的顺序或次序,使用标准核苷酸命名法以字母顺序表示。
[根据细则91更正 06.05.2024]
在某些实施方案中,本发明提供包含任何多种长度范围的寡核苷酸。在某些实施方案中,寡核苷酸或双链核糖核酸(dsRNA)中,单链、正义链和/或反义链任意一条链均分别包含8-40核苷酸长度。在某些实施方案中,寡核苷酸或双链核糖核酸(dsRNA)中,单链、正义链和/或反义链任意一条链均分别包含15-30核苷酸长度。例如在某些实施方案中,寡核苷酸核苷酸长度选自8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39和40。例如在某些实施方案中本发明提供寡核苷酸核苷酸长度范围其包含由8至9、8至10、8至11、8至12、8至13、8至14、8至15、8至16、8至17、8至18、8至9、8至20、8至21、8至22、8至23、8至24、8至25、8至26、8至27、8至28、8至29、8至30、9至10、9至11、9至12、9至13、9至14、9至15、9至16、9至17、9至18、9至19、9至20、9至21、9至22、9至23、9至24、9至25、9至26、9至27、9至28、9至29、9至30、10至11、10至12、10至13、10至14、10至15、10至16、10至17、10至18、10至19、10至20、10至21、10至22、10至23、10至24、10至25、10至26、10至27、10至28、10至29、10至30、11至12、11至13、11至14、11至15、11至16、11至17、11至18、11至19、11至20、11至21、11至22、11至23、11至24、11至25、11至26、11至27、11至28、11至29、11至30、12至13、12至14、12至15、12至16、12至17、12至18、12至19、12至20、12至21、12至22、12至23、12至24、12至25、12至26、12至27、12至28、12至29、12至30、13至14、13至15、13至16、13至17、13至18、13至19、13至20、13至21、13至22、13至23、13至24、13至25、13至26、13至27、13至28、13至29、13至30、14至15、14至16、14至17、14至18、14至19、14至20、14至21、14至22、14至23、14至24、14至25、14至26、14至27、14至28、14至29、14至30、15至16、15至17、15至18、15至19、15至20、15至21、15至22、15至23、15至24、15至25、15至26、15至27、15至28、15至29、15至30、16至17、16至18、16至19、16至20、16至21、16至22、16至23、16至24、16至25、16至26、16至27、16至28、16至29、16至30、17至18、17至19、17至20、17至21、17至22、17至23、17至24、17至25、17至26、17至27、17至28、17至29、17至30、18至19、18至20、18至21、18至22、18至23、18至24、18至25、18至26、18至27、18至28、18至29、18至30、19至20、19至21、19至22、19至23、19至24、19至25、19至26、19至29、19至28、19至29、19至30、20至21、20至22、20至23、20至24、20至25、20至26、20至27、20至28、20至29、20至30、21至22、21至23、21至24、21至25、21至26、21至27、21至28、21至29、21至30、22至23、22至24、22至25、22至26、22至27、22至28、22至29、22至30、23至24、23至25、23至26、23至27、23至28、23至29、23至30、24至25、24至26、24至27、24至28、24至29、24至30、25至26、25至27、25至28、25至29、25至30、26至27、26至28、26至29、26至30、27至28、27至29、27至30、28至29、28至30或9至30个连接的核苷组成的寡核苷酸。在其中限制寡核苷酸或寡核苷酸的核苷数的实施方案无论是针对某一范围还是针对具体的数值寡核苷酸或寡核苷酸都可进一步包含另外的其它取代基。例如包含8-30个核苷的寡核苷酸不包括具有31个核苷的寡核苷酸,但是除非另外指明否则这种寡核苷酸可进一步包含例如一个或多个共轭物、末端基团或其它取代基,本文中的单体一般认为是寡核苷酸进一步包含的末端基团。在某些实施方案中末端基团包括但不限于末端基团核苷。在此类实施方案中末端基团与寡核苷酸的末端核苷不同地修饰从而将此类末端基团与寡核苷酸的核苷区别开来。
[根据细则91更正 06.05.2024]
一些实施方式中,至少一个或每个所述靶向基团选自包含能够和哺乳动物肝实质细胞表面受体结合的配体。在一些实施方式中,每个所述靶向基团独立地为包含与哺乳动物肝细胞表面的去唾液酸糖蛋白受体(ASGPR)亲和的配体。在一些实施方式中,每个所述靶向基团独立地为包含去唾液酸糖蛋白或糖的配体。在一些实施方式中,每个所述靶向基团独立地为包含去唾液酸糖蛋白的配体,例如去唾液酸血清类枯蛋白(asialoorosomucoid,ASOR)或去唾液酸始球蛋白(asialofetuin,ASF)。在一些实施方式中,每个所述靶向基团独立地包含选自D-吡喃甘露糖、L-吡喃甘露糖、D-阿拉伯糖、D-呋喃木糖、L-呋喃木糖、D-葡萄糖、L-葡萄糖、D-半乳糖、L-半乳糖、α-D-呋喃甘露糖、β-D-呋喃甘露糖、α-D-吡喃甘露糖、β-D吡喃甘露糖、α-D-吡喃葡萄-糖、β-D-吡喃葡萄糖、α-D-呋喃葡萄糖、β-D-呋喃葡萄糖、α-D-呋喃果糖、α-D-吡喃果糖、α-D-吡喃半乳糖、β-D-吡喃半乳糖、α-D-呋喃半乳糖、β-D-呋喃半乳糖、葡糖胺、唾液酸、半乳-糖胺、N-乙酰半乳糖胺、N-三氟乙酰半乳糖胺、N-丙酰半乳糖胺、N-正丁酰半乳胺、N-异丁-36酰半乳糖胺、2-氨基-3-O-[(R)-1-羧乙基]-2-脱氧-β-D-吡喃葡萄糖、2-脱氧-2-甲基氨基-L-吡喃葡萄糖、4,6-二脱氧-4-甲酰胺基-2,3-二-O-甲基-D-吡喃甘露糖、2-脱氧-2-磺氨基-D-吡喃葡萄糖、N-乙醇酰基-α-神经氨酸、5-硫代-β-D-吡喃葡萄糖、2,3,4-三-O-乙酰基-1-硫代-6O-三苯甲基-α-D吡喃葡萄糖苷甲酯、4-硫代-β-D-吡喃半乳糖、3,4,6,7-四-O-乙酰基-2-脱氧-1,5-二硫代-α-D-吡喃葡庚糖苷乙酯、2,5-脱水-D-阿洛糖腈、核糖、D-核糖、D-4-硫代核糖、L-核糖、L-4-硫代核糖中的一种的配体。
[根据细则91更正 06.05.2024]
在一些实施方式中,至少一个或每个所述靶向基团为包含半乳糖或N-乙酰半乳糖胺的配体。
[根据细则91更正 06.05.2024]
在一些实施方式中,靶向基团包括通过二价或三价分支接头经合适的系链结合的一个或多个“GalNAc”(N-乙酰半乳糖胺)衍生物。
[根据细则91更正 06.05.2024]
其中:
[根据细则91更正 06.05.2024]
q2A、q2B、q3A、q3B、q4A、q4B、q5A、q5B、q5C、q6A、q6B和q6C每次出现独立地表示0-20,并且其中的重复单元可以相同或不同;
[根据细则91更正 06.05.2024]
2A、P2B、P3A、P3B、P4A、P4B、P5A、P5B、P5C、P6A、P6B、P6C、T2A、T2B、T3A、T3B、T4A、T4B、T4A、T5B、T5C、T6A、T6B、T6C每次出现各自独立地表示:不存在、CO、NH、O、S、OC(=O)、NHC(=O)、CH2、CH2NH或CH2 O;
[根据细则91更正 06.05.2024]
2A、Q2B、Q3A、Q3B、Q4A、Q4B、Q5A、Q5B、Q5C、Q6A、Q6B、Q6C每次出现独立地表示:不存在、亚烷基、取代的亚烷基,其中一个或多个亚甲基可以被如下一个或多个基团所中断或终止,O、S、S(=O)、SO2、NH、C(R’)=C(R”)、C≡C or C(=O);
[根据细则91更正 06.05.2024]
2A、R2B、R3A、R3B、R4A、R4B、R5A、R5B、R5C、R6A、R6B、R6C每次出现各自独立地表示:不存在、NH、O、S、CH2、C(O)O、C(O)NH、NHCH(Ra)C(O)、-C(O)-CH(Ra)-NH-、CO、CH=N-O或杂环基;
[根据细则91更正 06.05.2024]
2A、L2B、L3A、L3B、L4A、L4B、L5A、L5B、L5C、L6A、L6B和L6C每次出现各自独立地表示:单糖(诸如GalNAc)、二糖、三糖、四糖、寡糖、或多糖。
[根据细则91更正 06.05.2024]
在一些非限制性实施例中,本文所述的寡核苷酸,靶向基团选自以下化合物片段之一:
[根据细则91更正 06.05.2024]
在一些非限制性实施例中,本文所述的寡核苷酸,双链RNA(dsRNA)中反义链包含5'-末端化合物(或末端核苷酸)具有式(IX-1)或(IX-2)所表示:
[根据细则91更正 06.05.2024]
表示双链RNA(dsRNA)其余部分,Rb如前文所述。
[根据细则91更正 06.05.2024]
当5'-膦酸酯修饰的核苷类似物是本文所述的亚磷酰胺化合物的形式时,可以采用本领域公知的核苷酸的亚磷酰胺合成方法将其用于连接5'-膦酸酯修饰的核苷类似物。5'-膦酸酯修饰的核苷类似物可以通过如下方式制备成亚磷酰胺化合物:将亚磷酰胺形成剂的磷原子通过偶联(例如磷酸化)反应进行连接,从而形成亚磷酰胺化合物。在一些实施方式中,5'-膦酸酯修饰的核苷类似物-亚磷酰胺化合物用于将5'-膦酸酯修饰的核苷类似物与双链RNA的反义链的5’末端连接。
[根据细则91更正 06.05.2024]
本文所述的寡核苷酸包含一个或多个不对称中心并且因而产生对映体、非对映体和其它立体异构构型就绝对立体化学而言这些构型可被定义为(R)或(S)、α或β诸如针对糖异头物或定义为(D)或(L)诸如针对氨基酸等。在本文提供的寡核苷酸中包括所有此类可能的同分异构体以及它们的外消旋形式和任选纯的形式。
[根据细则91更正 06.05.2024]
在某些实施方案中,提供了抑制基因表达的方法,该方法包括:使细胞与包括具有上文所提供的寡核苷酸或双链核糖核酸(dsRNA)试剂接触,其中该寡核苷酸以及该双链核糖核酸(dsRNA)试剂中的正义链和反义链均包含8-40核苷酸长度,并且该寡核苷酸或双链核糖核酸(dsRNA)试剂中的反义链与靶RNA互补。在某些实施方案中,细胞在动物中。在某些实施方案中,细胞在人中。在某些实施方案中,靶RNA选自mRNA、pre-mRNA和micro RNA。在某些实施方案中,靶RNA为mRNA。在某些实施方案中,靶RNA为人mRNA。在某些实施方案中,靶RNA被裂解,从而抑制其功能。在某些实施方案中,该方法进一步包括检测靶RNA的水平。在某些实施方案中,提供了抑制基因表达的方法,该方法包括:使一种或多种细胞或组织与包括具有(V)、式(V-1)、式(V-2)、式(VI)、式(VI-1)、式(VI-2)、式(VI-3)、式(VII)、式(VII-1)、式(VII-2)、式(VIII)、式(VIII-1)或其立体异构体所表示的5'-末端核苷酸的寡核苷酸或者双链核糖核酸(dsRNA)接触。
[根据细则91更正 06.05.2024]
dsRNA试剂或靶基因反义多核苷酸试剂的治疗制剂可以通过将具有所需纯度的分子或化合物与任选的药学上可接受的载体、赋形剂或稳定剂[Remington's Pharmaceutical Sciences 21st edition,(2006)]以冻干制剂或水溶液的形式混合来制备用于储存。可接受的载体、赋形剂或稳定剂在所采用的剂量和浓度下对接受者是无毒的,并且包括缓冲剂,例如磷酸盐、柠檬酸盐和其他有机酸;抗氧化剂,包括抗坏血酸和蛋氨酸;防腐剂(例如十八烷基二甲基苄基氯化铵;六甲铵氯化物;苯扎氯铵、苄索氯铵;苯酚、丁醇或苯甲醇;对羟基苯甲酸酯类,例如对羟基苯甲酸甲酯或丙酯;邻苯二酚;间苯二酚;环己醇;3-戊醇;和间甲酚);低分子量(少于约10个残基)多肽;蛋白质,例如血清白蛋白、明胶或免疫球蛋白;亲水性聚合物,如聚乙烯吡咯烷酮;氨基酸,例如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、二糖和其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合剂如EDTA;蔗糖、甘露糖醇、海藻糖或山梨糖醇等糖类;形成盐的反离子,如钠;金属配合物(例如,锌-蛋白质配合物);和/或非离子表面活性剂,例如或聚乙二醇(PEG)。
[根据细则91更正 06.05.2024]
给药方式
[根据细则91更正 06.05.2024]
在一些实施方案中,施用化合物的组织是其中存在或可能出现靶基因相关疾病或病症的组织,其非限制性实例是肝脏或肾脏。直接组织给药可以通过直接注射或其他方式实现。许多口服递送的化合物自然进入并通过肝脏和肾脏,本发明的治疗方法的一些实施方案包括向对象口服施用一种或更多种靶基因dsRNA试剂。dsRNA试剂或靶基因反义多核苷酸剂,单独或与其他治疗剂联合,可以施用一次,或者它们可以多次施用。如果多次给药,靶基因dsRNA试剂或靶基因反义多核苷酸剂可以通过不同途径给药。例如,虽然不打算限制,第一次(或前几次)给药可以通过皮下方式进行,并且一次或更多次额外给药可以是口服和/或全身给药。
[根据细则91更正 06.05.2024]
对于其中希望全身性施用靶基因dsRNA试剂或靶基因反义多核苷酸剂的本发明实施方案,可以配制靶基因dsRNA试剂或靶基因反义多核苷酸剂用于通过注射例如通过推注或连续输注肠胃外施用。注射制剂可以以单位剂型存在,例如安瓿或多剂量容器,其添加或不添加防腐剂。靶基因dsRNA试剂制剂(也称为药物组合物)可采用油性或水性载体中的混悬液、溶液或乳液等形式,并且可含有配制剂,例如混悬剂、稳定剂和/或分散剂。
[根据细则91更正 06.05.2024]
肠胃外给药的制剂包括无菌水溶液或非水溶液、混悬液和乳液。非水溶剂的例子是丙二醇、聚乙二醇、植物油如橄榄油和可注射的有机酯如油酸乙酯。水性载体包括水、酒精/水溶液、乳液或混悬液,包括盐水和缓冲介质。肠胃外载体包括氯化钠溶液、林格氏葡萄糖溶液、葡萄糖和氯化钠溶液、乳酸林格氏液或固定油。静脉内赋形剂包括流体和营养补充剂、电解质补充剂(例如基于林格氏葡萄糖溶液的那些)等。也可以存在防腐剂和其他添加剂,例如抗微生物剂、抗氧化剂、螯合剂和惰性气体等。其他形式的给药,例如静脉给药,将导致较低的剂量。如果对象在初始剂量下的反应不足,则可以在患者耐受性允许的范围内采用更高的剂量(或通过不同的、更局部的递送途径有效地提高剂量)。可以根据需要每天使用多次剂量以实现一种或更多种靶基因dsRNA试剂或靶基因反义多核苷酸试剂的适当全身或局部水平,并实现靶基因活性的适当降低。
[根据细则91更正 06.05.2024]
在其他实施方案中,本发明的方法包括使用递送载体,例如生物相容性微粒、纳米颗粒或适合植入受体例如对象的植入物。PCT公开WO 95/24929(通过引用并入本文)中描述了可根据该方法使用的示例性可生物降解植入物,其描述了用于包含生物大分子的生物相容的、可生物降解的聚合物基质。
[根据细则91更正 06.05.2024]
不可生物降解的和可生物降解的聚合物基质都可用于本发明的方法中,以将一种或更多种靶基因dsRNA试剂或靶基因反义多核苷酸试剂递送给对象。在一些实施方案中,基质可以是可生物降解的。基质聚合物可以是天然或合成聚合物。可以基于期望释放的时间段来选择聚合物,通常在几小时到一年或更长时间的数量级。通常,可以使用在几小时到三到十二个月之间的一段时间内的释放。聚合物任选地呈水凝胶形式,其可以吸收高达其重量约90%的水,并且还任选地与多价离子或其他聚合物交联。
[根据细则91更正 06.05.2024]
通常,靶基因dsRNA试剂或靶基因反义多核苷酸试剂在本发明的一些实施方案中可以使用可生物降解的植入物通过扩散或通过聚合物基质的降解来递送。用于这种用途的示例性合成聚合物是本领域公知的。使用本领域已知的方法,可生物降解的聚合物和不可生物降解的聚合物可用于递送靶基因dsRNA试剂或靶基因反义多核苷酸试剂。生物黏附聚合物如可生物侵蚀的水凝胶(H.S.Sawhney,C.P.Pathak and J.A.Hubell in Macromolecules,1993,26,581-587)也可用于递送靶基因sRNA试剂或靶基因反义多核苷酸试剂,以治疗靶基因相关疾病或病症。其他合适的递送系统可以包括定时释放、延迟释放或持续释放递送系统。此类系统可避免重复施用靶基因dsRNA试剂或靶基因反义多核苷酸剂,从而提高对象和医疗保健专业人员的便利性。许多类型的释放递送系统是可用的并且是本领域普通技术人员已知的。见例如美国专利No.5,075,109、4,452,775、4,675,189、5,736,152、3,854,480、5,133,974和5,407,686。此外,可以使用基于泵的硬件输送系统,其中一些也适用于植入。
[根据细则91更正 06.05.2024]
长期持续释放植入物的使用可以适用于对象的预防性治疗和具有发生复发性靶基因)相关疾病或病症的风险的对象。如本文所用,长期释放是指将植入物构建和布置成以至少长达10天、20天、30天、60天、90天、六个月、一年或更长时间递送治疗水平的靶基因dsRNA试剂或靶基因反义多核苷酸试剂。长期持续释放植入物是本领域普通技术人员众所公知的并且包括上述的一些释放系统。
[根据细则91更正 06.05.2024]
有效量
[根据细则91更正 06.05.2024]
在一些方面,本发明的方法包括将细胞与有效量的dsRNA试剂或反义多核苷酸试剂接触以减少所接触细胞中的基因表达。本发明方法的某些实施方案包括以有效降低基因表达和治疗对象的相关疾病或病症的量向对象施用dsRNA试剂或反义多核苷酸剂。就减少的表达和/或用于治疗相关疾病或病症而言,所使用的“有效量”是实现所需生物学效果所必需或足够的量。例如,治疗相关疾病或病症的dsRNA试剂或反义多核苷酸试剂的有效量可以是:(i)减缓或停止疾病或病症的进展所需的量;(ii)逆转、减少或消除疾病或病症的一种或更多种症状。在本发明的一些方面,有效量是当施用于需要治疗相关疾病或病症的对象时,导致疾病或病症的预防和/或治疗的治疗响应的dsRNA试剂或反义多核苷酸剂的量。根据本发明的一些方面,有效量是本发明的dsRNA试剂或反义多核苷酸试剂当与针对相关疾病或病症的另一种治疗性治疗组合或共同施用时,导致预防和/或治疗该疾病或病症的治疗响应的量。在本发明的一些实施方案中,用本发明的dsRNA试剂或反义多核苷酸试剂治疗对象的生物学效应可以是由相关疾病或病症引起的症状的改善和/或完全消除。在本发明的一些实施方案中,生物学效应是相关疾病或病症的完全消除,例如通过指示对象没有相关疾病或病症的诊断测试来证明。在一些实施方案中,有效量是导致所需响应的量,例如减少细胞、组织和/或患有疾病或病症的对象中的相关疾病或病症的量本发明的一些实施方案包括确定向对象施用的本发明的靶基因dsRNA试剂或靶基因反义多核苷酸试剂来治疗靶基因相关疾病或病症之功效的方法,其通过评估和/或监测对象中靶基因相关疾病或病症的一种或更多种“生理特征”来进行。靶基因相关疾病或病症的生理特征的非限制性实例是许多患者
[根据细则91更正 06.05.2024]
应当认识到,基因沉默可以在表达的任何细胞中通过组成型或通过基因组工程进行,并通过任何合适的测定来确定。在本发明的一些实施方案中,通过施用本发明的dsRNA试剂,靶基因表达降低至少5%、6%、7%、8%、9%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%。在本发明的一些实施方案中,通过施用本发明的dsRNA试剂,靶基因表达减少5%至10%、5%至25%、10%至50%、10%至75%、25%至75%、25%至100%或50%至100%。
[根据细则91更正 06.05.2024]
本发明中dsRNA试剂和反义多核苷酸试剂以足以靶基因表达的剂量在药物组合物中递送。在本发明的某些实施方案中,dsRNA试剂或反义多核苷酸剂的剂量为每千克接受者体重每天0.01至200.0毫克,一般为每天1至50mg/kg体重、5至40mg/kg体重、10至30mg/kg体重、1至20mg/kg体重、1至10mg/kg体重、4至15mg/kg体重,包括端值。
[根据细则91更正 06.05.2024]
在确定本发明的dsRNA试剂的递送剂量和时间时可以考虑多种因素。递送的dsRNA试剂或反义多核苷酸剂的绝对量将取决于多种因素,包括共同治疗、剂量数和个体对象参数,包括年龄、身体状况、体格大小和体重。这些是本领域普通技术人员众所公知的因素,并且可以通过常规实验解决。在一些实施方案中,可以使用最大剂量,即根据合理的医学判断的最高安全剂量。
[根据细则91更正 06.05.2024]
在一些实施方案中,本发明的方法可包括向对象施用1、2、3、4、5、6、7、8、9、10或更多个剂量的试剂或反义多核苷酸试剂。在一些情况下,可以至少每天、每隔一天、每周、每隔一周、每月等向对象施用药物化合物的剂量,可以每天给药一次或每天给药多于一次,例如在一个24小时周期内给药2、3、4、5或更多次。本发明的药物组合物可以每天给药一次;或者dsRNA试剂或反义多核苷酸试剂可以在一天中以适当的间隔以两个、三个或更多个亚剂量给药,或者甚至使用连续输注或通过控释制剂递送。在本发明方法的一些实施方案中,将本发明的药物组合物每天一次或更多次、每周一次或更多次、每月一次或更多次或每年一次或更多次施用给对象。
[根据细则91更正 06.05.2024]
本发明的某些实施方案包括含有dsRNA试剂或反义多核苷酸试剂和药学上可接受的载体的药物组合物的用途。包含dsRNA试剂或反义多核苷酸剂的药物组合物可用于本发明的方法中以降低细胞中的基因表达和活性,并可用于治疗相关疾病或病症。此类药物组合物可以基于递送方式来配制。用于递送方式的制剂的非限制性实例是:配制用于皮下递送的组合物、配制用于通过肠胃外递送全身给药的组合物、配制用于静脉内(IV)递送的组合物、配制用于鞘内递送的组合物、配制用于直接递送至脑中的组合物等。可以使用一种或更多种方式施用本发明的药物组合物以将dsRNA试剂或反义多核苷酸试剂递送到细胞中,例如:表面(例如,通过透皮贴剂);肺部,例如通过吸入或吹入粉末或气雾剂,包括通过雾化器;气道内、鼻内、表皮和透皮、口服或肠胃外。肠胃外给药包括静脉内、动脉内、皮下、腹膜内或肌肉内注射或输注;表皮下,例如通过植入装置;或颅内,例如通过实质内;鞘内或心室内施用。dsRNA试剂或反义多核苷酸剂也可以直接递送至靶组织,例如直接递送至肝脏、直接递送至肾脏等。可以理解的是,“递送dsRNA试剂”或“反义多核苷酸试剂”到细胞中分别包括递送dsRNA试剂或反义多核苷酸剂、直接在细胞中表达dsRNA试剂以及从递送到细胞中的编码载体表达dsRNA试剂,或使得dsRNA或反义多核苷酸试剂出现在细胞中的任何合适的方式。制剂的制备和使用以及用于递送抑制性RNA的手段是本领域公知的和常规使用的。
[根据细则91更正 06.05.2024]
在一些实施方案中,组合物还包含一种或更多种另外的治疗剂。本发明的组合物可包含一种或更多种dsRNA试剂和任选的一种或更多种药学上可接受的载体、递送剂、靶向剂、可检测标签等,根据本发明方法的一些实施方案可用的靶向剂的非限制性实例是将本发明的dsRNA试剂引导至和/或进入待治疗细胞的试剂。靶向剂的选择将取决于以下要素:相关疾病或病症的性质,以及靶细胞类型。在一个非限制性实例中,在本发明的一些实施方案中,可能需要将dsRNA试剂靶向至和/或进入肝细胞。应当理解,在本发明方法的一些实施方案中,治疗剂包含仅具有递送剂的dsRNA试剂,例如包含N-乙酰半乳糖胺(GalNAc)的递送剂,而没有任何附加的连接元件。例如,在本发明的一些方面,dsRNA试剂可以连接到包含GalNAc的递送化合物上,并且包含在含有药学上可接受载体的组合物中,并且在没有任何连接至dsRNA试剂的可检测标记或靶向剂等的情况下施用至细胞或对象。
[根据细则91更正 06.05.2024]
在本发明的dsRNA试剂与一种或更多种递送剂、靶向剂、标记剂等一起施用和/或连接到其上的情况下,本领域技术人员能够了解并能够选择和使用适合的试剂用于本发明的方法中。在本发明的某些方法中可以使用标记试剂来确定dsRNA试剂在细胞和组织中的位置,并且可用于确定已在本发明的方法中施用的包含dsRNA试剂的治疗组合物的细胞、组织或器官位置。接附和使用标记试剂如酶标记、染料、放射性标记等的手段是本领域公知的。应当理解,在本发明的组合物和方法的一些实施方案中,标记试剂连接至dsRNA试剂中所包含的正义多核苷酸和反义多核苷酸之一或两者。
[根据细则91更正 06.05.2024]
在一些实施方案中,组合物被包装在药盒、容器、包装物、分配器、预填充注射器或小瓶中。药盒包含一种或更多种靶基因dsRNA试剂和/或靶基因反义多核苷酸试剂及其在本发明方法中的使用说明的药盒也在本发明的范围内。本发明的药盒可包含可用于治疗靶基因相关疾病或病症的靶基因dsRNA试剂、靶基因正义多核苷酸和靶基因反义多核苷酸试剂中的一种或更多种。可以制备包含一种或更多种靶基因dsRNA试剂、靶基因正义多核苷酸和靶基因反义多核苷酸试剂的药盒以用于本发明的治疗方法。本发明药盒的组分可以以水性介质或冻干形式包装。本发明的药盒可以包含被分隔开以在其中封闭地收纳一个或更多个容器装置或一系列容器装置(例如试管、小瓶、烧瓶、瓶子、注射器等)的载体。第一容器装置或一系列容器装置可包含一种或更多种化合物,例如靶基因)dsRNA试剂和/或靶基因正义或反义多核苷酸试剂。第二容器装置或一系列容器装置可包含靶向剂、标记剂、递送剂等,其可作为在本发明的治疗方法的实施方案中施用的靶基因)dsRNA试剂和/或靶基因反义多核苷酸的一部分包括在内。
[根据细则91更正 06.05.2024]
本发明的药盒还可包含说明书。说明书通常采用书面形式,并且将为执行由药盒体现的治疗和基于该治疗做出决定提供指导。
[根据细则91更正 06.05.2024]
细胞、对象和对照
[根据细则91更正 06.05.2024]
本发明的方法可以与细胞、组织、器官和/或对象结合使用。在本发明的一些方面,对象是人或脊椎动物哺乳动物,包括但不限于狗、猫、马、牛、山羊、小鼠、大鼠和灵长类动物,例如猴。因此,本发明可用于治疗人和非人对象的靶基因相关疾病或病症。
[根据细则91更正 06.05.2024]
在本发明的一些方面,对象可以是农场动物、动物园动物、驯养动物或非驯养动物,并且本发明的方法可用于兽医预防和治疗方案。在本发明的一些实施方案中,对象是人并且本发明的方法可用于人预防和治疗方案。
[根据细则91更正 06.05.2024]
可应用本发明的对象的非限制性实例是被诊断患有、怀疑患有或有风险患有与以下疾病或病症相关的疾病或病症的对象:高于期望的靶基因表达和/或活性,也称为“升高的靶基因表达水平”。与高于期望水平的靶基因表达和/或活性相关的疾病和病症的非限制性实例在本文别处描述。本发明的方法可应用于在治疗时已被诊断为患有该疾病或病症的对象、与高于期望的靶基因表达和/或活性相关的对象,或被认为处于患有或发展与高于期望的靶基因表达和/或活性相关的疾病或病症的风险中的对象。在本发明的一些方面,与高于期望的靶基因表达和/或活性水平相关的疾病或病症是急性疾病或病症;在本发明的某些方面,与高于期望的靶基因表达和/或活性水平相关的疾病或病症是慢性疾病或病症。
[根据细则91更正 06.05.2024]
在另一个非限制性实例中,将本发明的靶基因dsRNA试剂施用以治疗指因靶基因被激活导致或与其相关的疾病或障碍,或其症状或进展响应于靶基因失活的疾病或障碍。术语“靶基因相关疾病”包括因靶基因表达降低而受益的疾病、障碍或病症。
[根据细则91更正 06.05.2024]
可应用本发明方法的细胞包括体外、体内、离体细胞。细胞可以在对象中、在培养物中和/或混悬液中,或处于任何其他合适的状态或条件中。可以应用本发明的方法的细胞可以是:肝脏细胞(liver cell)、肝细胞(hepatocyte)、心脏细胞、胰腺细胞、心血管细胞、肾细胞或其他类型的脊椎动物细胞,包括人和非人哺乳动物细胞。在本发明的某些方面,可应用本发明方法的细胞是健康的正常细胞,其未知为疾病细胞。在本发明的某些实施方案中,将本发明的方法和组合物应用于肝脏细胞、肝细胞、心脏细胞、胰腺细胞、心血管细胞和/或肾细胞的细胞。在本发明的某些方面,对照细胞是正常细胞,但应当理解,具有疾病或病症的细胞也可以在特定情况下用作对照细胞,例如在比较具有疾病或病症的经处理细胞与具有疾病或病症的未处理细胞的结果等的情况下。
[根据细则91更正 06.05.2024]
根据本发明的方法,可以确定靶基因多肽活性的水平并将其与靶基因多肽活性的对照水平进行比较。对照可以是预定值,其可以采取多种形式。它可以是单个截止值,例如中位数或平均值。它可以基于比较组来建立,例如在具有正常水平的靶基因多肽和/或靶基因多肽活性的组和具有增加的靶基因多肽和/或靶基因多肽活性水平的组中。比较组的另一个非限制性实例可以是具有靶基因相关疾病或病症的一种或更多种症状或诊断的群体与没有疾病或病症的一种或更多种症状或诊断的群体;已对其施用本发明的siRNA治疗的对象组与未对其施用本发明的siRNA治疗的对象组。通常,对照可以基于适当年龄组中的明显健康的正常个体或明显健康的细胞。应当理解,除了预定值之外,根据本发明的对照可以是与实验材料平行测试的材料样品。示例包括来自对照群体的样品或通过制造产生的对照样品,以用于与实验样品进行平行测试。在本发明的一些实施方案中,对照可包括未用本发明的靶基因dsRNA试剂接触或处理的细胞或对象,在这种情况下,可以比较靶基因多肽和/或靶基因多肽活性的对照水平以及与本发明的靶基因dsRNA试剂或靶基因反义多核苷酸试剂接触的细胞或对象中靶基因多肽和/或靶基因多肽活性的水平。
[根据细则91更正 06.05.2024]
在本发明的一些实施方案中,对照水平可以是为对象确定的靶基因多肽水平,其中将在不同时间为同一对象确定的靶基因多肽水平与该对照水平进行比较。在一个非限制性实例中,在从未接受过本发明的靶基因治疗的对象获得的生物样品中确定靶基因的水平。在一些实施方案中,生物样品是血清样品。从对象获得的样品中测定的靶基因多肽水平可作为对象的基线或对照值。在本发明的治疗方法中向对象施用一次或更多次靶基因dsRNA试剂之后,可以从对象获得一个或更多个另外的血清样品,并且可以将随后的一个或更多个样品中的靶基因多肽水平与对象的对照/基线水平进行比较。此类比较可用于评估对象中靶基因)相关疾病或病症的发作、进展或消退。例如,从对象获得的基线样品中靶基因)多肽的水平高于在给予对象本发明的靶基因dsRNA试剂或靶基因)反义多核苷酸试剂后从同一对象获得的水平,则表示靶基因相关疾病或病症的消退并且表示施用的本发明的靶基因dsRNA试剂治疗靶基因相关疾病或病症产生的功效。
[根据细则91更正 06.05.2024]
在本发明的某些方面,为对象确定的靶基因多肽和/或靶基因多肽活性水平中的一个或更多个值可以作为对照值,并用于稍后在同一对象中比较靶基因多肽和/或靶基因活性水平,从而允许评估对象中“基线”靶基因多肽活性的变化。因此,将初始水平用作该对象的对照水平的情况下,初始靶基因多肽水平和/或初始靶基因多肽活性水平可以用于显示和/或确定本发明的方法和化合物在对象中所能够降低对象中靶基因多肽和/或靶基因多肽活性的水平。
[根据细则91更正 06.05.2024]
使用本发明的方法,可以将本发明的靶基因dsRNA试剂和/或靶基因反义多核苷酸试剂施用于对象。这样的dsRNAi试剂包括可以如下评估本发明的施用和治疗的功效:与先前时间点从对象获得的血清样品中靶基因)多肽的给药前水平相比,或与非接触对照水平(例如对照血清样品中的靶基因多肽水平相比,当施用和治疗后,从对象获得的血清样品中靶基因多肽的水平降低至少0.5%、1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或更多。应当理解,靶基因多肽的水平和靶基因多肽活性的水平都与靶基因表达的水平相关。本发明方法的某些实施方案包括以有效抑制靶基因表达的量向对象施用本发明的靶基因dsRNA和/或靶基因反义试剂,从而降低对象中靶基因多肽的水平并降低靶基因多肽活性的水平。在本发明的方法的一些实施方案中,细胞与本发明的siRNA试剂的接触(在本文中也称为处理)导致细胞中靶基因表达抑制至少约1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%,20%,21%,22%,23%,24%,25%,26%,27%,28%,29%,30%,31%,32%,33%,34%,35%,36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%,70%,71%,72%,73%,74%,75%,76%,77%,78%,79%,80%,81%,82%,83%,84%,85%,86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或约100%,例如,至低于化验检测水平。
[根据细则91更正 06.05.2024]
本发明的一些实施方案包括从一个或更多个对象获得的一个或更多个生物样品中确定靶基因多肽的存在、不存在和/或量(本文也称为水平)。该测定可用于评估本发明的治疗方法的功效。例如,本发明的方法和组合物可用于确定生物样品中靶基因多肽的水平,该生物样品获自先前用施用本发明的靶基因dsNA试剂和/或靶基因反义剂治疗的对象。与先前时间点从对象获得的血清样品中靶基因多肽的给药前水平相比,或与非接触对照水平(例如对照血清样品中的靶基因多肽水平)相比,当施用和治疗后,从对象获得的血清样品中靶基因多肽的水平降低至少0.5%、1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或更多,则表明给予对象的治疗的功效水平。
[根据细则91更正 06.05.2024]
在本发明的一些实施方案中,针对对象确定的靶基因相关疾病或病症的生理特征可以作为对照结果,并将同一对象在不同时间的生理特征的确定结果与对照结果进行比较。在一个非限制性实例中,病理特征溶血测量自从未给予本发明的靶基因治疗的对象,其可用作对象的基线或对照值。在本发明的治疗方法中向对象施用一次或更多次靶基因dsRNA试剂之后,血细胞分别与对象的对照/基线水平进行比较。此类比较可用于评估对象中靶基因相关疾病或病症的发作、进展或消退。例如,从对象获得的基线血细胞高于在对对象施用本发明的靶基因dsRNA试剂或靶基因反义多核苷酸试剂后从同一对象测定的血栓,则表示靶基相关疾病或病症的消退并且表示施用的本发明的靶基因dsRNA试剂治疗靶基因相关疾病或病症的功效。
[根据细则91更正 06.05.2024]
本发明的一些实施方案包括使用例如但不限于以下方法确定靶基因关疾病或病症的生理特征的存在、不存在和/或变化:(1)测量对象的血细胞;(2)评估从一名或更多名对象获得的一份或更多份生物样品的生理特征;(3)或对对象进行身体检查。该测定可用于评估本发明的治疗方法的功效。
[根据细则91更正 06.05.2024]
关于修饰
[根据细则91更正 06.05.2024]
在本发明的一些实施方案中,基因RNAi剂的RNA被化学修饰以获得增强的稳定性和/或一种或更多种其他有益特性。本发明的某些实施方案中的核酸可以通过本领域公知的方法合成和/或修饰,例如,见“Current protocols in Nucleic Acid Chemistry,"Beaucage,S.L.et al.(Eds.),John Wiley&Sons,Inc.,New York,N.Y.,USA,其作为参考在此并入本文。可以存在于本发明的dsRNA试剂的某些实施方案中的修饰包括例如:(a)末端修饰,例如5'端修饰(磷酸化、缀合、反向连接等)、3'端修饰(缀合、DNA核苷酸、反向连接等);(b)碱基修饰,例如用稳定碱基、去稳定碱基或与扩展的配偶体库进行碱基配对的碱基替换、缺失碱基(无碱基核苷酸)或缀合碱基;(c)糖修饰(例如,在2'位置或4'位置)或糖的替换;以及(d)骨架修饰,包括磷酸二酯键的修饰或替换。在本发明的dsRNA试剂、反义多核苷酸和正义多核苷酸的某些实施方案中可用的RNA化合物的具体实例包括但不限于包含修饰骨架或没有天然核苷间键联的RNA。作为非限制性实例,具有骨架修饰的RNA在骨架中可以不具有磷原子。在其核苷间骨架中没有磷原子的RNA可称为寡核苷。在本发明的某些实施方案中,修饰的RNA在其核苷间骨架中具有磷原子。
[根据细则91更正 06.05.2024]
应当理解,术语“RNA分子”或“RNA”或“核糖核酸分子”不仅包括在自然界中表达或发现的RNA分子,还包括RNA的类似物和衍生物,其包含一种或更多种如本文所述或本领域已知的核糖核苷酸/核糖核苷类似物或衍生物。术语“核糖核苷”和“核糖核苷酸”在本文中可互换使用。RNA分子可以在核碱基结构或核糖-磷酸骨架结构中进行修饰(例如,如下文所述),并且包含核糖核苷类似物或衍生物的分子必须保留形成双链体的能力。
[根据细则91更正 06.05.2024]
提供以下实施例以说明本发明实践的具体实例,其并不旨在限制本发明的范围。对本领域普通技术人员来说明显的是,本发明可应用于多种组合物和方法。
[根据细则91更正 06.05.2024]
约:如本文所用,如应用于所关注的一个或多个值的术语“约”或“大约”是指与所述的参考值类似的值。在某些实施方案中,除非另有说明或另外从上下文中明显看出,否则术语“约”或“大约”是指落入所述参考值在任一方向(大于或小于)上的25%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%或更少内的值的范围(除非这样的数值将超过可能值的100%)。
[根据细则91更正 06.05.2024]
本文中一些所用缩写“Ac”指乙酰基;缩写“Bn"指苄基;缩写"Bz"指苯甲酰基;缩写"DMTrCl”指4,4-二甲氧基三苯甲基氯;缩写"DMTr”指4,4-二甲氧基三苯甲基;缩写'TIIP"指四氢吡喃基;缩写"TBDMS”指叔丁基二甲基甲硅烷基;缩写:"TIPDS"指四异丙基二甲硅烷基;及缩写“DTBS”指二(叔丁基)甲硅烷基。
[根据细则91更正 06.05.2024]附图说明
[根据细则91更正 06.05.2024]
图1为Phos-15-1E-2(((((1R,2R,4R)-4-(2,4-二氧代-3,4-二氢嘧啶-1(2H)-基)-2-羟基环戊基)硫代)甲基)膦酸二乙酯)的单晶X射线衍射图。
[根据细则91更正 06.05.2024]具体实施例
[根据细则91更正 06.05.2024]
提供以下实施例以说明实施本发明的具体实例,并不旨在限制本发明的范围。如对本领域普通技术人员显而易见的,本发明将在多种组合物和方法中得到应用。
[根据细则91更正 06.05.2024]
实施例1
[根据细则91更正 06.05.2024]
亚磷酰胺-01的制备
[根据细则91更正 06.05.2024]
Phos-01-1A的合成
[根据细则91更正 06.05.2024]
向BWP5-B(3.71g,1.5eq)的无水四氢呋喃溶液中中加入PPh3(8.87g,2.0eq),然后向上述混合物中加入DEAD(6.19g,2.1eq)。在0℃下在氮气保护下搅拌30分钟后,向混合物中加入BOM-U(10.0g,1.0eq),搅拌反应16小时。TLC(MeOH:DCM=1:20,Rf=0.6)显示BOM-U被完全消耗。将CaBr2(13.6g,4.0eq.)加入上述混合物中,室温搅拌16小时后,过滤,滤液减压浓缩,其粗产物通过硅胶柱纯化(乙酸乙酯:石油醚=0:100至50:50)洗脱,得到呈灰白色固体的Phos-01-1A(2.3g,38%产率)。
[根据细则91更正 06.05.2024]
MS(M+H)=361。
[根据细则91更正 06.05.2024]
Phos-01-1B的合成
[根据细则91更正 06.05.2024]
向Phos-01-1A(1.9g,1.0eq)的水溶液(10mL)中加入三氟乙酸(10mL)。反应在室温下搅拌3h,TLC(MeOH:DCM=1:20,Rf=0.3)检测显示Phos-01-1A被完全消耗。混合物在减压下浓缩,粗产物通过硅胶柱纯化,并用(MeOH:DCM=0:100至1:10)洗脱,得到无色油状的Phos-01-1B(0.97g,57%产率)。
[根据细则91更正 06.05.2024]
MS(M+H)=321。
[根据细则91更正 06.05.2024]
Phos-01-1C的合成
[根据细则91更正 06.05.2024]
在0℃氮气环境下,向Phos-01-1B(0.97g,1.0eq.)的吡啶溶液中加入DMTr-Cl(1.13g,1.1eq.),将混合物在室温下搅拌16小时。TLC(MeOH:DCM=1:20,Rf=0.9)显示Phos-01-1B被完全消耗,混合物在减压下浓缩至干,粗产物通过硅胶柱纯化,并用(MeOH:DCM=0:100至1:20)洗脱,得到棕色固体Phos-01-1C(0.75g,40%产率)。
[根据细则91更正 06.05.2024]
MS(M+H)=623。
[根据细则91更正 06.05.2024]
Phos-01-1D的合成
[根据细则91更正 06.05.2024]
在0℃在氮气环境下,向Phos-01-1C(0.75g,1.0eq)的干燥四氢呋喃溶液中加入NaH(139mg,1.1eq),并在0℃下搅拌30分钟。在0℃下向上述混合物中加入Phos-13-1A(1.3g,3.0eq.),并在室温下搅拌5小时。TLC(MeOH:DCM=1:20,Rf=0.7)显示Phos-01-1C被完全消耗。将反应液倒入饱和碳酸氢钠水溶液中,并用乙酸乙酯萃取,乙酸乙酯相用盐水洗涤并用无水硫酸钠干燥。过滤除去干燥剂后,滤液经减压浓缩至干。粗产物通过硅胶柱纯化,并用(MeOH:DCM=0:100至1:25)洗脱,得到黄色油状的Phos-01-1D(0.75g,81%产率)。
[根据细则91更正 06.05.2024]
MS(M+H)=773。
[根据细则91更正 06.05.2024]
Phos-01-1F的合成
[根据细则91更正 06.05.2024]
在氮气下,向Phos-01-1D(0.75g,1.0eq.)的异丙醇-水(10∶1,0.5%甲酸)溶液中加入Pd/C(300mg),将该混合物在常压氢气下搅拌过夜。TLC(MeOH:DCM=1:20,Rf=0.3)显示Phos-01-1D被完全消耗。混合物经砂芯漏斗过滤,滤液在减压下浓缩至干。粗产物通过硅胶柱纯化,并用(MeOH:DCM=0:100至1:20)洗脱,得到棕色固体Phos-01-1F(200mg,59%产率)。
[根据细则91更正 06.05.2024]
MS(M+H)=351。
[根据细则91更正 06.05.2024]
亚磷酰胺-01
[根据细则91更正 06.05.2024]
在室温下,在氮气下向100mL烧瓶中加入20mL二氯甲烷和Phos-01-1F(400mg,1.0eq.)。在室温下逐滴加入四氮唑(132mg,1.65eq.,0.45M MeCN溶液),然后将双(二异丙基氨基)(2-氰基乙氧基)膦(775mg,2.25eq.)的二氯甲烷(5mL)溶液逐滴加入上述反应混合物中,并在室温下继续搅拌3小时。TLC(MeOH:DCM=1:20,Rf=0.8)显示Phos-01-1D被完全消耗。将反应液冷却至0℃,倒入饱和碳酸氢钠水溶液(100mL)中,并用二氯甲烷(100mL*3)萃取,用饱和食盐水(100mL)洗涤合并的有机层,用无水硫酸钠干燥并减压浓缩。粗品通过硅胶柱纯化,并用MeOH:DCM=0:100至1:100洗脱;1% Et3N)以得到无色油状的亚磷酰胺-01(190mg,30%产率)。
[根据细则91更正 06.05.2024]
1H NMR(400MHz,CD3CN)δ7.48(d,J=8.0Hz,1H),5.54(d,J=8.0Hz,1H),4.14-4.08(m,4H),3.89-3.67(m,7H),3.66-3.53(m,4H),2.66-2.63(m,2H),1.90-1.73(m,2H),1.20-1.38(m,6H),1.23-1.15(m,12H).
[根据细则91更正 06.05.2024]
MS(M+H)=551。
[根据细则91更正 06.05.2024]
亚磷酰胺-03的制备
[根据细则91更正 06.05.2024]
氮气保护下向500mL烧瓶中加入丙二酸二乙酯(32g,0.2mol,1.0eq.)和DMF(200mL),溶液在搅拌冷却至0-5℃。然后分批加入钠氢(60%,8.4g,0.21mol,1.05eq.),加入钠氢过程中,反应液温度从5℃逐渐升至15℃。将反应液降温至5℃继续搅拌20分钟,然后将碘化钾(1.66g,0.01mol,0.05eq.)加入到混合物中,并加入(2-溴乙氧基)(叔丁基)二甲基硅烷(57.41g,0.24mol,1.2eq.)。将反应液加热至50℃并在氮气保护下搅拌过夜。TLC显示原料转化为新的主要产物。将反应混合物用饱和氯化铵溶液(250mL)淬灭并在0-25℃搅拌0.5小时。有机物用乙酸乙酯:石油醚(50:50,500mL*2)萃取,真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(乙酸乙酯:石油醚=0%-20%)洗出产物。真空浓缩得到50.84g无色油状物phos-03-3A,收率为79.8%。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,DMSO-d6),δppm 4.13-4.07(q,4H),3.60(t,2H),3.50(t,1H),1.96-1.94(m,2H),1.20(t,6H),0.85(s,9H),0.00(s,6H).
[根据细则91更正 06.05.2024]
向500mL烧瓶中加入四氢呋喃(100mL),并在氮气保护下冷却至0℃,然后加入四氢铝锂(0.077mol,1.5eq.)。在0-5℃下将Phos-03-3A(16.4g,0.0515mol,1.0eq.)的四氢呋喃溶液(30mL)加入到反应液中,将反应液于5℃搅拌1小时。TLC显示原料转化为新的主要产物。用100mL乙酸乙酯将反应混合物缓慢淬灭并在5-25℃下搅拌0.5小时。将混合物过滤通过用硅藻土薄层硅胶层。滤液经浓缩得粗品,进一步硅胶柱纯化,洗脱剂(0%-10%MeOH in DCM)洗出产物。真空浓缩得到4.8g黄色油状物Phos-03-3A,收率39.8%。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,DMSO-d6),δppm 4.27(s,2H),3.62(t,2H),3.35-3.32(m,4H),1.56-1.53(m,1H),1.43-1.38(m,2H),0.84(s,9H),0.00(s,6H).
[根据细则91更正 06.05.2024]
向250mL烧瓶中加入吡啶(50mL)和Phos-03-3B(4.5g,0.019mol,1.0eq.),在氮气保护下搅拌并冷却至0℃。然后加入DMTrCl(7.2g,0.021mol,1.15eq.),室温下搅拌过夜。TLC显示原料转化为新的主要产物。减压蒸馏除去挥发物,并通过硅胶柱纯化残余物,洗脱剂(EA:PE:Py=1:8:0.2%)以洗出产物。产真空浓缩得到4.6g黄色油状物Phos-03-3C,收率44.6%。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,DMSO-d6),δppm 7.45-7.39(m,5H),7.359-7.24(m,8H),4.48(s,1H),3.78(s,6H),3.57-3.40(m,4H),3.04(d,2H),1.89-1.83(m,1H),1.56-1.52(m,2H),0.86(s,9H),0.00(s,6H).
[根据细则91更正 06.05.2024]
向250mL烧瓶中加入二氯甲烷(40mL)和Phos-03-3C(4.6g,8.6mmol,1.0eq.),然后加入戴斯-马丁试剂(18.3g,0.043mol,5.0eq.)。在室温下将反应在氮气保护下搅拌2小时。TLC显示原料转化为新的主要产物。过滤溶剂并通过硅胶柱纯化滤液,洗脱液(EA:PE:Py=3:100:0.2%)以洗出产物。真空浓缩得到4.0g黄色油状物Phos-03-3D,收率87.0%。
[根据细则91更正 06.05.2024]
室温下向250mL烧瓶中加入乙腈(60mL)和氯化锂(523mg,1.2mmol,1.2eq.),氮气保护下加入四乙基亚甲基二磷酸酯(3.56g,1.2mmol,1.2eq.)和DBU(1.56g,1.0mmol,1.0eq.)和Phos-03-3D(5.5g,1.0mmol,1.0eq.),室温下继续搅拌2小时。TLC显示原料转化为新的主要产物。旋蒸除去挥发物,并通过硅胶柱纯化残余物,洗脱剂(EA:PE:Py=1:4:0.2%)以洗出产物。真空浓缩产物得到4.0g淡黄色油状物Phos-03-3E,收率59.8%。
[根据细则91更正 06.05.2024]
1H NMR(400MHz,DMSO-d6)δ7.42(dd,2H),7.33(t,2H),7.29-7.24(m,5H),6.91(d,4H),6.65(ddd,1H),5.87(s,1H),5.82(d,1H),5.78(s,1H),4.07(q,4H),3.77(s,6H),3.51(dd,2H),3.12(dd,1H),3.05-2.98(m,1H),2.67(d,1H),1.71-1.53(m,2H),1.27-1.23(m,6H),0.86(s,9H),0.00(d,6H).
[根据细则91更正 06.05.2024]
向250mL烧瓶中加入乙醇(15mL)、吡啶(4.0g,51mmol,8.43eq.)和Phos-03-3E(4.0g,6mmol,1.0eq.),氮气保护下搅拌反应液并冷却至0℃,将吡啶氢氟酸盐(3.0g,0.03mol,5.0eq.)加入烧瓶中。室温下将反应搅拌2小时。TLC显示原料消耗完全。旋蒸除去挥发物,并通过硅胶柱纯化残余物,洗脱剂(EA:PE=0%-80%,+0.2%吡啶)以洗出副产物,接着用5%-10%MeOH的DCM溶液洗出产物。真空浓缩得到2.44g无色油状物Phos-03-3F,收率71.6%。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,DMSO-d6),δppm 7.37-7.35(m,2H),7.32-7.28(m,2H),7.24-7.20(m,5H),6.89-6.87(m,4H),6.64-6.52(m,1H),5.85-5.75(m,1H),4.42(s,1H),3.96-3.92(m,4H),3.74(s,6H),3.33-3.29(m,2H),3.06-2.93(m,2H),2.64(s,1H),1.58-1.48(m,2H),1.23-1.18(m,6H).
[根据细则91更正 06.05.2024]
氮气保护下向100mL烧瓶中依次加入四氢呋喃(15mL)、三苯基磷(1.36g,5.2mmol,1.2eq.)、3-苯甲酰基尿嘧啶(1.12g,5.2mmol,1.2eq.)、偶氮二甲酸二乙酯(0.91g,5.2mmol,1.2eq.)和Phos-03-3F(2.4g,4.3mmol,1.0eq.),反应在室温下搅拌过夜。LC-MS显示主要产物是所需产物。旋蒸除去挥发物,并通过硅胶柱纯化残余物,洗脱剂(EA:PE=0-80%,+0.2%Py)以洗出副产物。用含5%-10%MeOH的二氯甲烷溶液洗出产物。真空浓缩得到3.08g黄色固体Phos-03-3G,产率为95.1%。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,DMSO-d6),δppm 8.59-8.57(m,1H),7.96(dd,2H),7.86(d,1H),7.79-7.75(m,1H),7.60(t,2H),7.35(d,2H),7.31(t,2H),7.24(d,4H),6.89(d,4H),6.64-6.52(m,1H),5.94-5.82(m,2H),3.96-3.88(m,4H),3.74(s,6H),3.68-3.63(m,2H),3.07-2.97(m,2H),2.56-2.53(m,1H),1.81-1.77(m,2H),1.19(t,6H).
[根据细则91更正 06.05.2024]
向250mL烧瓶中加入二氯甲烷(50mL)和Phos-03-3G(3.0g,4mmol,1.0eq.)。在氮气保护下搅拌反应。然后加入三氯乙酸(1.5g,13.2mmol,3.3eq.),将反应在室温下搅拌2小时。TLC发现没有原料残留。然后蒸馏反应混合物并通过硅胶柱纯化残余物,洗脱液(0%-7%MeOH in DCM)以洗出产物。真空浓缩得到1.3g无色油状物Phos-03-3H,收率72.2%。HNMR显示有三乙胺残留,通过反向快速柱纯化除去(C18,40g,40-63μm,洗脱液,H2O/MeOH,0-30%洗出产物)。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,DMSO-d6),δppm 7.96-7.94(m,2H),7.91(d,1H),7.81-7.76(m,1H),7.62-7.58(m,2H),6.60-6.48(m,1H),5.89-5.75(m,2H),4.79(t,1H),3.97-3.89(m,4H),3.74-3.70(m,2H),3.43(t,2H),2.40-2.35(m,1H),1.88-1.69(m,2H),1.22-1.17(m,6H).
[根据细则91更正 06.05.2024]
氮气保护下向100mL烧瓶中加入二氯甲烷(6mL)、四氮唑(0.061g,0.88mmol,1.1eq.)、双(二异丙基氨基)(2-氰基乙氧基)膦(0.31g,1.04mmol,1.3eq.)和Phos-03-3H(0.36g,0.8mmol,1.0eq.),在室温下搅拌1.5小时。LC-MS发现主峰是所需产物。将反应混合物用饱和碳酸氢钠水溶液(50mL)淬灭,并用二氯甲烷(50mL)萃取两次。合并有机相,经干燥浓缩至干,残留物用石油醚(20mL)洗涤两次。残余物进一步通过硅胶柱纯化,洗脱剂(MeOH:DCM=0%-2%,+0.2%TEA)洗出产物。35℃真空浓缩得0.32g无色油状物亚磷酰胺-03,收率61.5%。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,CD3CN),δppm 8.00-7.97(m,2H),7.80 -7.75(m,1H),7.62 -7.58(m,2H),7.53 -7.51(m,1H),6.66-6.55(m,1H),5.91-5.77(m,2H),4.02-3.97(m,4H),3.85-3.74(m,4H),3.73-3.59(m,3H),2.67-2.64(m,2H),2.63-2.57(m,1H),2.01-1.94(m,2H),1.87-1.82(m,1H),1.31-1.24(m,6H),1.20(dd,12H).
[根据细则91更正 06.05.2024]
亚磷酰胺-13的制备
[根据细则91更正 06.05.2024]
在-50℃下,将三氟乙酸酐(83.9g,297mmol,49.0mL)滴加到化合物Phos-13-SM1(50g,297mmol)和2,6-二甲基吡啶(48.4g,452mmol,52.6mL)的二氯甲烷溶液(500mL)中,搅拌10分钟后,将反应液升温至40℃并搅拌3.0小时。TLC显示原料被完全消耗并且形成了一个新斑点。将反应混合物与异丙醚一起研磨并形成沉淀物,通过硅藻土过滤除去沉淀物,滤液用1.0M HCl和盐水洗涤,然后真空浓缩得到棕色油状物Phos-13-1A(61g,203mmol,68.3%收率)。
[根据细则91更正 06.05.2024]
1H NMR:EC10615-62-P1N(400MHz,DMSO-d6)δppm 4.78(d,J=7.63Hz,2H),4.07-4.17(m,4H),1.25-1.30(m,6H).
[根据细则91更正 06.05.2024]
在氮气环境下,在0℃下,向搅拌的四氢呋喃(50mL)中分批加入钠氢(60%纯度,787mg,19.7mmol),将化合物Phos-13-SM2(5.0g,24.6mmol)添加到溶液中并在0℃下搅拌45分钟。然后在0℃将Phos-13-1A(3.54g,11.8mmol)加入到上述溶液中,保持此温度继续搅拌2.0小时,LC-MS显示反应完成。将反应混合物冷却至0-5℃并小心滴加至搅拌的饱和氯化铵溶液(80mL)中(保持温度低于0-5℃),然后用乙酸乙酯(80mL*2)萃取,合并有机相,用盐水(80mL)洗涤,经无水硫酸氢钠干燥,并在减压下浓缩以获得残余物。残余物通过硅胶柱层析(100-200目硅胶)纯化,用甲醇:二氯甲烷(1:100:1:30)洗脱,得到棕色油状物Phos-13-1B(6.0g,76.7%收率)。
[根据细则91更正 06.05.2024]
在0-5℃下将HCl/二氧六环(4M,30.0mL)加入到化合物Phos-13-1B(6.0g,17.0mmol)的二氧六环(30mL)溶液中,然后将混合物在0-5℃下搅拌1.0小时,LC-MS显示反应完成。混合物用异丙醚(300mL*2)研磨并过滤得到固体,固体进一步经制备HPLC得到棕色油状的化合物Phos-13-1C(1.0g,23.2%产率)。
[根据细则91更正 06.05.2024]
1H NMR:EC10615-84-all3(400MHz,CHLOROFORM-d)δppm4.45(d,J=3.25Hz,1H),4.11-4.24(m,5H),3.98(d,J=9.13Hz,2H),3.48 -3.56(m,1H),3.37-3.43(m,2H),3.23-3.28(m,1H),1.30-1.40(m,6H).
[根据细则91更正 06.05.2024]
在25℃下将尿嘧啶(3.0g,26.8mmol)和SOCl2(5.0mL,44.6mmol)添加到100mL反应瓶中,向其中加入ClSO3H(8.0g,69.0mmol)并在室温搅拌1.5小时,升温至60℃并继续反应4.0小时,然后在75℃下搅拌7.0小时。TLC表明化合物尿嘧啶已完全消耗,并形成了一个新斑点。将反应混合物加入到冰和乙酸(1:1)的混合物中。过滤得到沉淀物,所得滤饼用纯化水反复洗涤并真空干燥得到白色粉末Phos-13-1D(1.0g,4.75mmol,17.7%收率)。
[根据细则91更正 06.05.2024]
1H NMR:EC4783-422-P1B1(400MHz,DMSO-d6)δppm 11.02(br s,1H)10.88(br d,J=5.75Hz,1H)7.64(d,J=6.00Hz,1H).
[根据细则91更正 06.05.2024]
在0-5℃下,向化合物Phos-13-1C(1.0g,3.95mmol)和三乙胺(1.20g,11.9mmol,1.65mL)的二氯甲烷(10mL)溶液中加入化合物Phos-13-1D(1.25g,5.92mmol)的二氯甲烷(5.0mL)溶液,随后将混合物在25℃搅拌1.0小时。LC-MS显示化合物Phos-13-1C已完全消耗,产生约50.9%的所需产物。所得反应混合物用水(20mL)稀释,用30%CF3CH2OH/DCM(30mL*5)萃取,合并的有机层经无水硫酸钠干燥并真空浓缩得到残余物。残余物通过硅胶柱层析(100-200目硅胶)纯化,用甲醇:二氯甲烷(1:30~1:8)洗脱,得到白色固体Phos-13-1E(570mg,33.77%收率)。
[根据细则91更正 06.05.2024]
1H NMR:EC12346-4-P1B1-C(400MHz,CHLOROFORM-d)δppm 8.09(s,1H),4.21-4.25(m,1H),4.10-4.19(m,4H),3.82-3.98(m,3H),3.66-3.70(m,2H),3.58(dd,J=10.88,4.25Hz,1H),3.36(d,J=11.01Hz,1H),1.33-1.35(m,6H).
[根据细则91更正 06.05.2024]
在氮气气氛下,向化合物Phos-13-1E(380mg,0.89mmol)和二异丙胺-四氮唑盐(167mg,0.98mmol)的二氯甲烷(1.0mL)溶液中加入双(二异丙基氨基)(2-氰基乙氧基)膦(P试剂,804mg,2.67mmol,0.85mL)的二氯甲烷(0.5mL)溶液,将混合物在40℃下搅拌1.0小时。LC-MS显示化合物Phos-13-1E被完全消耗并且检测到所需产物。将所得反应混合物冷却至-20℃并倒入冷的(0-5℃)饱和碳酸氢钠水溶液(10mL)中,用二氯甲烷(10mL*2)萃取,合并的有机层用冷(0-5℃)饱和碳酸氢钠水溶液/盐水(5mL/5mL)洗涤,经Na2SO4干燥并真空浓缩得到残留物(~2.0mL)。残余物用异丙醚(20mL*2)研磨得到粗品,然后通过柱层析(碱性Al2O3,甲醇:二氯甲烷=0/50至1/50,0.1%TEA)纯化得到白色固体亚磷酰胺-13(95mg,17.0%收率)。
[根据细则91更正 06.05.2024]
1H NMR:EC12346-6-P1Nre(400MHz,DMSO-d6)δppm 9.75(br d,J=8.13Hz,1H),7.97(d,J=4.88Hz,1H),4.16-4.25(m,1H),4.01(quin,J=7.29Hz,5H),3.82(br dd,J=7.25,2.00Hz,2H),3.63-3.75(m,2H),3.44-3.58(m,4H),3.42(br s,1H),3.39(br d,J=2.00Hz,1H),3.24(d,J=11.38Hz,1H),2.76(q,J=5.46Hz,2H),1.21(t,J=7.07Hz,6H),1.07-1.16(m,12H).
[根据细则91更正 06.05.2024]
对映体亚磷酰胺-15-1和对映体亚磷酰胺-15-2的制备
[根据细则91更正 06.05.2024]
在0℃下,将苯甲酰氯(126g,893mmol,104mL)加入到含尿嘧啶(50.0g,446mmol)的吡啶(735g,9.29mol,750mL)和乙腈(1.50L)溶液中,反应液在20-25℃下搅拌12.0小时,TLC显示化合物尿嘧啶已完全消耗。将反应混合物真空浓缩得到残余物,残余物用冷水(1.0L)稀释,用乙酸乙酯(1.0L*3)萃取,合并的有机层用盐水(500mL)洗涤,经无水硫酸钠干燥得到残留物,通过柱色谱法(SiO2,乙酸乙酯/石油醚=1/10至1/1)纯化残余物,得到白色固体Phos-15-1A(63g,65.3%收率)。
[根据细则91更正 06.05.2024]
1H NMR:EC4783-420-P1N(400MHz,DMSO-d6)δppm 7.96(dd,J=8.4,1.2Hz,2H),7.76-7.81(m,1H),7.67(dd,J=7.6,5.6Hz,1H),7.58-7.64(m,2H),5.75(dd,J=7.6,1.2Hz,1H).
[根据细则91更正 06.05.2024]
向Phos-15-SM2(4.0g,47.6mmol)和化合物Phos-15-1A(7.91g,36.6mmol)的四氢呋喃(80mL)溶液中加入三苯基磷(11.5g,43.9mmol)和偶氮二甲酸二乙酯(7.64g,43.9mmol,7.98mL),混合物在20-25℃下搅拌16小时。LC-MS显示化合物Phos-15-1A被完全消耗。减压浓缩反应混合物以除去四氢呋喃。残余物用水(80mL)稀释,然后用乙酸乙酯(80mL*3)萃取,合并的有机相用盐水(80mL)洗涤,用无水硫酸钠干燥,减压浓缩。通过柱层析法(SiO2,MeOH/DCM=0/10至1/10)纯化残余物以得到呈白色固体的化合物Phos-15-1B(14g,粗产物)。
[根据细则91更正 06.05.2024]
氮气保护下,化合物Phos-15-1B(7.0g,9.30mmol)、间氯过氧苯甲酸(2.27g,11.1mmol,85%纯度)的二氯甲烷(70mL)混合物在0-5℃反应16小时,TLC显示化合物Phos-15-1B已完全消耗,并且检测到一个具有较低极性的主要新点。用饱和NaHSO3和NaHCO3溶液(1:1)缓慢调节反应混合物的pH至7~8,然后用乙酸乙酯(70mL*3)萃取,合并的有机相用盐水(700mL)洗涤,经无水硫酸钠干燥,并减压浓缩。残余物经硅胶柱层析(100-200目硅胶)纯化,乙酸乙酯:石油醚(1:30~1:1)洗脱,得到白色固体化合物Phos-15-1C(1.2g,粗品)。
[根据细则91更正 06.05.2024]
向化合物Phos-15-SM3(4.0g,14.4mmol)的四氢呋喃(24.0mL)溶液中加入KSAc(1.81g,15.8mmol)和四丁基碘化铵(TBAI,531.4mg,1.44mmol),将混合物在70℃下搅拌4.0小时。LC-MS显示原料Phos-15-SM3被完全消耗,并且检测到具有所需目标分子分子量的一个主峰。将反应混合物冷却并减压浓缩,用短硅胶垫过滤除掉固体残余物,并用乙酸乙酯淋洗,滤液真空浓缩滤液,得到棕色油状物化合物Phos-15-1D(3.50g,98.5%产率),化合物Phos-15-1D无需进一步纯化即可用于下一步。
[根据细则91更正 06.05.2024]
1H NMR:EC11950-13-P1B(400MHz,DMSO-d6)δppm 3.96-4.07(m,4H)3.27(d,J=14.0Hz,2H)2.40(s,3H)1.22(t,J=7.2Hz,6H).
[根据细则91更正 06.05.2024]
向化合物Phos-15-1C(1.20g,4.02mmol)的乙醇(15.0mL)溶液中加入碳酸钾(1.11g,8.05mmol)和化合物Phos-15-1D(1.91g,8.45mmol),将混合物在20-25℃下搅拌3.0小时。TLC显示化合物Phos-15-1C已完全消耗,并检测到一个具有较大极性的主要新点。过滤所得反应混合物,用水(20mL)稀释,用二氯甲烷(20mL*3)萃取,合并的有机层经盐水洗涤,无水硫酸钠干燥并真空浓缩得到残余物。通过柱色谱法(SiO2,MeOH/DCM=1/100至10/100)纯化残余物以得到呈棕色油状的化合物Phos-15-1E(1.00g,65.7%收率,对映体化合物-1E-1和化合物-1E-2的1:1混合物)。
[根据细则91更正 06.05.2024]
1H NMR:EC10615-82-P1N1(400MHz,DMSO-d6)δppm 11.23(br s,1H),7.69(d,J=8.0Hz,1H),5.58(dd,J=8.0,1.6Hz,1H),4.93(q,J=8.8Hz,1H),3.96-4.17(m,5H),3.08-3.17(m,1H),3.03(dd,J=14.0,2.0Hz,2H),2.38-2.47(m,1H),2.04-2.07(m,1H),1.82-1.90(m,1H),1.56-1.59(m,1H),1.25(t,J=6.8Hz,6H).
[根据细则91更正 06.05.2024]
化合物Phos-15-1E可通过手性拆分获得对映体Phos-15-1E-1和Phos-15-1E-2,拆分条件:DAICELCHIRALPAK AD 40mm柱,140mL/min,乙醇:二氧化碳=35:75。可以理解的是,当需要获得对映体亚磷酰胺-15-1或对映体亚磷酰胺-15-2时,只要采用对应的对映体Phos-15-1E-1或Phos-15-1E-2为起始原料与磷试剂反应就可以获得。
[根据细则91更正 06.05.2024]
室温氮气气氛下,向化合物Phos-15-1E(400mg,1.06mmol)和二-异丙胺-四氮唑盐(199mg,1.16mmol)的二氯甲烷(4.0mL)溶液中加入双(二异丙基氨基)(2-氰基乙氧基)膦(P试剂,956mg,3.17mmol,1.01mL)的二氯甲烷(0.5mL)溶液,然后将混合物在40℃下搅拌1.0小时。LC-MS显示化合物Phos-15-1E已完全消耗,LC-MS上显示了几个新峰,并检测到约80%的所需化合物。将所得反应混合物冷却至-20℃并倒入冷的(0-5℃)饱和碳酸氢钠水溶液(10mL)中,用二氯甲烷(10mL*2)萃取,合并的有机层用冷(0-5℃)饱和碳酸氢钠水溶液/盐水(5mL/5mL)洗涤,无水硫酸钠干燥,并真空浓缩得到残留物(~2.0mL)。残余物通过柱层析(碱性Al2O3,MeOH/DCM=1/80至1/40,0.1%Et3N)纯化以得到呈无色油状物的亚磷酰胺-15(350mg,0.6mmol,57.2%收率,对映体亚磷酰胺-15-1和对映体亚磷酰胺-15-2的1:1混合物)。
[根据细则91更正 06.05.2024]
对映体亚磷酰胺-15-1或对映体亚磷酰胺-15-2,可以由SFC分离纯化得到的对应的Phos-15-1E-1或Phos-15-1E-2为起始原料,按照以上相同的过程获得。
[根据细则91更正 06.05.2024]
δppm 11.23(br s,1H),7.70(d,J=8.0Hz,1H),5.55-5.60(m,1H),4.89(q,J=8.4Hz,1H),4.29-4.42(m,1H),3.99-4.09(m,4H),3.65-3.84(m,2H),3.53-3.62(m,2H),3.35-3.41(m,1H),3.02(dd,J=14.0,8.0Hz,2H),2.76-2.79(m,2H),2.40-2.49(m,1H),2.15-2.25(m,1H),1.95-2.07(m,1H),1.65-1.75(m,1H),1.23-1.26(m,6H)1.12-1.21(m,12H).
[根据细则91更正 06.05.2024]
Phos-15-1E-1或Phos-15-1E-2手性具体制备方法如下:
[根据细则91更正 06.05.2024]
系统:Waters SFC 150
[根据细则91更正 06.05.2024]
柱名称:
[根据细则91更正 06.05.2024]
柱型号:250*50mm 10μm
[根据细则91更正 06.05.2024]
流动相A:Supercritical CO2
[根据细则91更正 06.05.2024]
流动相B:EtOH
[根据细则91更正 06.05.2024]
波长:214nm
[根据细则91更正 06.05.2024]
流速:140mL/min
[根据细则91更正 06.05.2024]
柱温:RT
[根据细则91更正 06.05.2024]
进样量:7.0mL循环时间:10.0min
[根据细则91更正 06.05.2024]
溶剂:超临界CO2:food grade EtOH:redistilled grade;
[根据细则91更正 06.05.2024]
Phos-15-1E-2(((((1R,2R,4R)-4-(2,4-二氧代-3,4-二氢嘧啶-1(2H)-基)-2-羟基环戊基)硫代)甲基)膦酸二乙酯)的单晶X射线衍射如图1所示。
[根据细则91更正 06.05.2024]
对映体亚磷酰胺-42-1和对映体亚磷酰胺-42-2的制备
[根据细则91更正 06.05.2024]
对映体亚磷酰胺-42-1和对映体亚磷酰胺-42-2的制备方法与对映体亚磷酰胺-15-1和对映体亚磷酰胺-15-2的制备方法相同,不同在于使用不同的立体异构中间体phos12-2C。
[根据细则91更正 06.05.2024]
对映体亚磷酰胺-11-1和对映体亚磷酰胺-11-2的制备
[根据细则91更正 06.05.2024]
在室温下向100mL烧瓶中加入15mL乙醇和上述的化合物Phos-15-1E(0.53g,1.0eq,对映体Phos-15-1E-1和Phos-15-1E-2的1:1混合物),分批加入过氧硫酸氢钾复合盐(1.72g,2.0eq.)的水溶液(10mL),然后将混合物在室温下搅拌过夜。TLC检测(MeOH:DCM=1:10,Rf=0.4)显示有新斑点形成,化合物Phos-15-1E消耗完全。将混合物倒入饱和碳酸氢钠水溶液(20mL)中并用DCM:CF3CH2OH(30mL*5)萃取,将合并的有机层用饱和盐水(50mL*2)洗涤,经无水硫酸钠干燥并在减压下浓缩以得到呈黄色油状的Phos-11-1A(0.5g,87%收率,对映体Phos-11-1A-1和Phos-11-1A-22的1:1混合物)。
[根据细则91更正 06.05.2024]
在室温和氮气下,向100mL烧瓶中加入5mL二氯甲烷、化合物Phos-11-1A(0.3g,1.0eq.)和四氮唑(56mg,1.1eq.),然后滴加双(二异丙基氨基)(2-氰基乙氧基)膦(0.33g,1.5eq.)的二氯甲烷(1mL)溶液,反应液在室温下搅拌1小时。TLC检测(MeOH:DCM:=1:10,Rf=0.6)表明有新斑点产生,化合物Phos-11-1A消耗完全。将混合物倒入饱和碳酸氢钠水溶液(20mL)中并用二氯甲烷(30mL*3)萃取。合并的有机层用饱和食盐水(50mL)洗涤,经无水硫酸钠干燥并减压浓缩。亚磷酰胺-11的粗产物通过硅胶柱纯化,用MeOH:DCM(=0:100至2:100;1% Et3N)洗脱,得到呈黄色油状的亚磷酰胺-11(0.2g,45%收率,对映体亚磷酰胺-11-1和亚磷酰胺-11-2的1:1混合物)。
[根据细则91更正 06.05.2024]
1H NMR(400MHz,CD3CN)δ7.40(d,J=8.0,1H),5.58(d,J=8.0,1H),5.01-5.04(m,1H),4.84-4.87(m,1H),4.14-4.18(m,4H),3.76-3.86(m,4H),3.59-3.65(m,2H),2.73-2.77(m,2H),2.66-2.69(m,2H),2.18-2.26(m,3H),1.28-1.32(m,6H),1.17-1.21(m,12H).31P NMR(400MHz,CD3CN)δ148.45,149.21.
[根据细则91更正 06.05.2024]
对映体亚磷酰胺-11-1或对映体亚磷酰胺-11-2可以由SFC分离纯化得到的对应的Phos-15-1E-1或Phos-15-1E-2为起始原料按照以上2个步骤获得。
[根据细则91更正 06.05.2024]
亚磷酰胺-18的制备
[根据细则91更正 06.05.2024]
将1-甲基尿嘧啶(1.0g,7.9mmol)和SOCl2(2.36g,19.8mmol)添加到100mL反应烧瓶中,并在25℃下搅拌1.5小时。加入ClSO3H(3.67g,31.7mmol)后,在75℃下将反应液搅拌16小时。TLC表明1-甲基尿嘧啶已完全消耗,并形成了一个新斑点。将反应混合物加入到冰和冰醋酸(1:1)的混合物中,过滤并将滤饼并反复用去离子水洗涤,真空干燥得到灰色粉末中间体Phos-18-1A 1.0g,90%收率)。
[根据细则91更正 06.05.2024]
1H NMR(400MHz,DMSO):δ14.25(s,1H),11.26(s,1H),7.99(s,1H),3.27(s,3H).
[根据细则91更正 06.05.2024]
向Phos-13-1C,384mg,1.52mmol)和三乙胺(460mg,4.56mmol)的二氯甲烷(30mL)溶液中,在0-5℃下加入Phos-18-1A(340mg,1.52mmol)的四氢呋喃(10mL)溶液,混合物在25℃反应1.0小时。LC-MS显示Phos-13-1C完全消耗,将所得反应混合物用水(20mL)稀释,用30% CF3CH2OH/DCM萃取(30mL*5),合并的有机层经无水硫酸钠干燥并真空浓缩得到残余物,残余物通过硅胶柱纯化,用含0%至5%的MeOH/DCM洗脱,得到无色糊状Phos-18-1B(400mg,产率60%)。
[根据细则91更正 06.05.2024]
LC-MS:[M+H+]=442
[根据细则91更正 06.05.2024]
氮气保护下,向Phos-18-1B(400mg,0.907mmol)的干燥二氯甲烷(10mL)溶液中加入加入四氮唑(51mg,0.726mmol)和双(二异丙基氨基)(2-氰基乙氧基)膦(P试剂,327.8mg,1.09mmol),反应在25℃下搅拌1.0小时。LC-MS显示起始物料完全耗尽。将所得反应混合物用饱和碳酸氢钠水溶液(10mL*2)和盐水(5mL)洗涤。干燥有机相,浓缩得到粗品,通过快速硅胶柱层析纯化,用0%至5%的MeOH/DCM(其中含有1% TEA)洗脱,得到白色固体亚磷酰胺-18(400mg,收率68.8%)。
[根据细则91更正 06.05.2024]
1H NMR(400MHz,CH3CN)δ9.29(s,1H),8.15(d,J=3.6Hz,1H),4.44–4.31(m,1H),4.09(dd,J=15.0,7.4Hz,4H),3.90–3.73(m,4H),3.72–3.56(m,5H),3.49(dd,J=31.5,11.2Hz,1H),3.36(d,J=2.3Hz,3H),2.75–2.62(m,2H),1.36–1.25(m,6H),1.19(dd,J=9.1,5.3Hz,12H).
[根据细则91更正 06.05.2024]
31P-NMR(162MHz,DMSO-d6)δppm 146.99-147.13(d,1P),20.58-20.76(s,1P)。
[根据细则91更正 06.05.2024]
亚磷酰胺-19的制备
[根据细则91更正 06.05.2024]
在室温下向250mL烧瓶中加入60mL四氢呋喃、Phos-19-SM1(10g,1.0eq.)和CuBrSMe2,在将混合物冷却至-70℃后,滴加乙烯基溴化镁(216mL,4.0eq.),然后让混合物在2小时内缓慢升温至-10℃。TLC检测(石油醚:乙酸乙酯=2:1,Rf=0.4)显示有新斑点形成,Phos-19-SM1消耗完全。在-10℃下将柠檬酸(150mL,10%水溶液)滴加到反应混合物中,用乙酸乙酯(100mL*3)萃取。将合并的有机层用饱和食盐水(100mL)洗涤,经无水硫酸钠干燥并在减压下浓缩以得到呈棕色油状的Phos-19-1A(11g,95%收率)。
[根据细则91更正 06.05.2024]
Phos-19-1A包含一对对映体(3R,4S):(3S,4R)=1:1,包括可以理解的是,以下中间体以及亚磷酰胺-19可以根据需要,以Phos-19-1A消旋体或对应的手性纯对映体为起始原料而获得对应手性纯化合物。
[根据细则91更正 06.05.2024]
在室温和氮气下,向100mL烧瓶中加入50mL二氯甲烷、Phos-19-1A(5g,1.0eq.)和Phos-19-SM2(10.8g,3.0eq.),然后在N2下加入Grubbs催化剂(1g,0.05eq.)并加热回流过夜。TLC检测混合物(乙酸乙酯:石油醚=1:1,Rf=0.25),表明有新斑点产生,Phos-19-2消耗完全。除去溶剂并将残余物通过硅胶柱纯化,用MeOH:DCM(=0:100至5:95)洗脱,得到呈棕色油状的Phos-19-1B(4.5g,55%收率)。
[根据细则91更正 06.05.2024]
在室温和氮气下,向100mL烧瓶中加入15mL乙酸乙酯和Phos-19-1B(1.5g,1.0eq.),然后滴加HCl/EtOAc(15mL,4M)并在室温下搅拌过夜。LC-MS检测显示Phos-19-1B被消耗完。除去溶剂得到棕色固体Phos-19-1C(1.5g,粗品)。
[根据细则91更正 06.05.2024]
MS(M+H)=250.1
[根据细则91更正 06.05.2024]
在室温和氮气下,向100mL烧瓶中加入15mL四氢呋喃和Phos-19-1C(1.5g,1.0eq.),然后加入三乙胺(1.52g,3.5eq.)和化合物Phos-13-1D(0.72g,0.8eq.)并在室温下搅拌过夜。LC-MS显示Phos-19-1C被消耗完。将反应液倒入柠檬酸(15mL,10%水溶液)中并用二氯甲烷(30mL*5)萃取,经无水硫酸钠干燥并在减压下浓缩。残余物通过硅胶柱纯化,用MeOH:DCM(=0:100至10:90)洗脱,得到呈棕色油状的Phos-19-1D(1g,39%产率)。
[根据细则91更正 06.05.2024]
MS(M+H)=424.1
[根据细则91更正 06.05.2024]
在室温和氮气下,向100mL烧瓶中加入5mL二氯甲烷,Phos-19-1D(0.5g,1.0eq.)和四氮唑(83mg,1.1eq.),然后滴加双(二异丙基氨基)(2-氰基乙氧基)膦(0.46g,1.5eq.)的二氯甲烷(1mL)溶液,反应混合物在室温下搅拌1小时。TLC(MeOH:DCM=1:10,Rf=0.65)表明有新斑点产生,Phos-19-1D消耗完全。将混合物倒入饱和碳酸氢钠水溶液(20mL)中并用二氯甲烷(20mL*3)萃取。合并的有机层用饱和食盐水(50mL)洗涤,经无水硫酸钠干燥并减压浓缩。粗品通过硅胶柱纯化,用MeOH:DCM(=0:100至5:95;1% Et3N)洗脱,得到棕色油状的亚磷酰胺-19(0.27g,36%收率)。
[根据细则91更正 06.05.2024]
1H NMR(400MHz,DMSO)δ11.21(s,1H),7.97(s,1H),6.45-6.57(m,1H),5.88-5.98(m,1H),4.18-4.23(m,1H),3.91-3.96(m,4H),3.71-3.74(m,3H),3.57-3.62(m,1H),3.49-3.53(m,2H),3.15-3.24(m,1H),2.91-3.01(m,1H),2.83-2.85(m,2H),2.74-2.78(m,2H),1.18-1.23(m,6H),1.06-1.12(m,12H).
[根据细则91更正 06.05.2024]
31P NMR(400MHz,DMSO)δ147.51,17.01,16.88.
[根据细则91更正 06.05.2024]
亚磷酰胺-43的制备
[根据细则91更正 06.05.2024]
向500mL烧瓶中加入(3aR,6aR)-2,2-二甲基四氢-3aH-环戊二烯并[d][1,3]二氧杂环戊烯-4(6aH)-酮(16.2g,105mmol,1.0eq)、(巯甲基)膦酸二乙酯(19.3g,105mmol,1.0eq)和二氯甲烷(200mL)。将烧瓶在氮气保护下搅拌并冷却至0-5℃,然后滴加入三乙胺(1.06g,10.5mmol,0.1eq),滴加完毕后回温至25℃并在氮气保护下搅拌过夜。LCMS检测反应完全,将反应液真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(EA:DCM=0%-15%)洗出产物,真空浓缩产物,得到Phos-43-1A为淡黄色油状物25g,收率为70.3%。
[根据细则91更正 06.05.2024]
LCMS:M+H=339.5
[根据细则91更正 06.05.2024]
向500mL烧瓶中加入Phos-43-1A(25g,73.9mmol,1.0eq)和乙醇(250mL)。将烧瓶在氮气保护下搅拌并冷却至0-5℃,然后分批加入硼氢化钠(3.1g,81.3mmol,1.1eq),加入完毕后保持0-5℃搅拌0.5h。LCMS检测反应完全,往反应液里滴加入冰水(200mL)并搅拌10min,然后用二氯甲烷(500mL)萃取两次,合并的有机相用无水硫酸钠干燥并真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(MeOH:DCM=0%-5%)洗出产物,真空浓缩产物,得到Phos-43-1B为淡黄色油状物24.5g,收率为97.4%。
[根据细则91更正 06.05.2024]
LCMS:M+H=341.5。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,CD3CN),δppm 4.67-4.65(d,J=8.0,1H),4.47-4.42(m,2H),4.08-4.01(m,5H),3.27-3.25(m,1H),2.97-2.93(d,J=16.0,2H),2.03-1.99(m,1H),1.73-1.71(m,1H),1.38(s,3H),1.26-1.22(m,9H).
[根据细则91更正 06.05.2024]
向250mL烧瓶中加入Phos-43-1B(10g,29.4mmol,1.0eq)、吡啶(7g,88.1mmol,3.0eq)和二氯甲烷(100mL)。将烧瓶在氮气保护下搅拌并冷却至-78℃,然后滴加入三氟甲磺酸酐(12.4g,44.1mmol,1.5eq),滴加完毕后保持-78℃并在氮气保护下搅拌3h。LCMS检测反应完全,将反应液倒入50mL冰水中,然后用二氯甲烷(100mL)萃取两次,合并的有机相用无水硫酸钠干燥并真空浓缩得到粗产物Phos-43-1C直接用于下一步。
[根据细则91更正 06.05.2024]
LCMS:M+H=473.4
[根据细则91更正 06.05.2024]
向500mL烧瓶中加入Phos-43-1C(16g,33.8mmol,1.0eq)、3-苯甲酰基尿嘧啶(8.8g,40.6mmol,1.2eq)、碳酸铯(22g,67.7mmol)和乙腈(200mL)。将烧瓶在氮气保护下25℃搅拌过夜。LCMS检测反应完全,将反应液过滤,滤液真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(MeOH:DCM=0%-5%)洗出产物,真空浓缩产物,得到Phos-43-1D为棕色油状物18g,收率为98.7%。
[根据细则91更正 06.05.2024]
LCMS:M+H=539.4
[根据细则91更正 06.05.2024]
向500mL烧瓶中加入Phos-43-1D(18g,33.4mmol,1.0eq)和甲醇(180mL)。将烧瓶在氮气保护下滴加氨甲醇(180mL),滴加完毕后在25℃并在氮气保护下搅拌5h。LCMS检测反应完全,将反应液真空浓缩得到粗产物Phos-43-1E直接用于下一步。
[根据细则91更正 06.05.2024]
LCMS:M+H=435.4
[根据细则91更正 06.05.2024]
向500mL烧瓶中加入Phos-43-1E(14.5g,33.4mmol,1.0eq)和二氧六环(180mL)。滴加入盐酸二氧六环(4M 180mL)将烧瓶在氮气保护下25℃搅拌过夜。LCMS检测反应完全,将反应液真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(MeOH:DCM=0%-10%)洗出产物,真空浓缩产物,得到Phos-43-1F为白色固体5.2g,收率为39.5%。
[根据细则91更正 06.05.2024]
LCMS:M+H=395.4
[根据细则91更正 06.05.2024]
向250mL烧瓶中加入Phos-43-1F(5.2g,13.2mmol,1.0eq)、甲苯(100mL)和乙腈(20mL),然后加入氰基亚甲基三正丁基膦(6.4g,26.5mmol,2.0eq)并将烧瓶在氮气保护下90℃搅拌48h。LCMS检测反应完全,将反应液真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(MeOH:DCM=0%-10%)洗出产物。真空浓缩产物,得到Phos-43-1G为白色固体3.5g,收率为70.5%。
[根据细则91更正 06.05.2024]
LCMS:M+H=377.3
[根据细则91更正 06.05.2024]
向250mL闷罐中加入Phos-43-1G(2.0g,5.3mmol,1.0eq)、无水甲醇(20mL)、硼酸三甲酯(1.1g,10.6mmol,2.0eq)、原甲酸甲酯(0.56g,5.3mmol,1.0eq)和碳酸氢钠(44.5mg,0.52mmol,0.2eq)。上述混合物加热至120℃搅拌48h。将闷罐冷却至室温,LCMS检测反应完全,将反应液真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(MeOH:DCM=0%-10%)洗出产物。真空浓缩产物,得到Phos-43-1H为白色固体1.3g,收率为60%。
[根据细则91更正 06.05.2024]
LCMS:M+H=409.4
[根据细则91更正 06.05.2024]
向50mL烧瓶中加入Phos-43-1G(0.6g,1.47mmol,1.0eq)、无水二氯甲烷(10mL),依次加入四氮唑(0.13g,1.76mmol,1.2eq)双(二异丙基氨基)(2-氰基乙氧基)膦(0.66g,2.2mmol,1.5eq)。上述混合物在氮气保护下25℃搅拌1h。LCMS检测反应完全,将反应液倒入碳酸氢钠水溶液中,二氯甲烷(20mL)萃取两次,合并有机相用无水硫酸钠干燥后真空浓缩得到粗产物。粗产物通过快速硅胶柱纯化,洗脱剂(DCM:MeOH:TEA=0%-5%+0.2%TEA)洗出产物。35℃真空浓缩得亚磷酰胺无色油状物亚磷酰胺-43(0.89g,收率100%)。
[根据细则91更正 06.05.2024]
LCMS:M+H=609.6
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,CD3CN),δppm 8.97(s,1H),7.43-7.41(d,J=8.0,1H),5.61-5.59(d,J=8.0,1H),4.76-4.69(m,1H),4.44-4.34(m,1H),4.14-4.04(m,5H),3.90-3.81(m,2H),3.69-3.62(m,2H),3.46-3.44(m,1H),3.36-3.33(d,J=12.0,3H),2.97-2.87(m,2H),2.77-2.65(m,3H),1.67-1.56(m,1H),1.32-1.27(m,6H),1.24-1.18(m,12H).
[根据细则91更正 06.05.2024]
31P NMR:(400MHz,CD3CN),δppm 150.03,148.62;23.44,23.24.
[根据细则91更正 06.05.2024]
亚磷酰胺-47的制备方法与亚磷酰胺-43一样,区别在于起始物料5-甲基尿嘧啶作为核碱基。
[根据细则91更正 06.05.2024]
亚磷酰胺-45的制备
[根据细则91更正 06.05.2024]
向100mL闷罐中加入镁屑(0.26g,10.6mmol,10.0eq)、无水乙醇(40mL)、上述混合物加热至90℃搅拌18h。将闷罐冷却至室温,加入Phos-43-1G(0.4g,1.06mmol,1.0eq),加热至90℃搅拌18h。将闷罐冷却至室温,LCMS检测反应未完全,约50%转化为Phos-45-1A。反应液真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(MeOH:DCM=0%-8%)洗出产物。真空浓缩产物,得到Phos-45-1A为淡黄色油状物0.13g,收率为29%。
[根据细则91更正 06.05.2024]
LCMS:M+H=423.4
[根据细则91更正 06.05.2024]
向50mL烧瓶中加入Phos-45-1A(0.11g,0.26mmol,1.0eq)、无水二氯甲烷(3mL),依次加入四氮唑(22mg,0.31mmol,1.2eq)、双(二异丙基氨基)(2-氰基乙氧基)膦(0.12g,0.4mmol,1.5eq)。上述混合物在氮气保护下25℃搅拌1h。LCMS检测反应完全,将反应液倒入碳酸氢钠水溶液中,二氯甲烷(10mL)萃取两次,合并有机相用无水硫酸钠干燥后真空浓缩得到粗产物。粗产物通过快速硅胶柱纯化,洗脱剂(DCM:MeOH:TEA=0%-3%+0.2%TEA)洗出产物。35℃真空浓缩得亚磷酰胺黄色色油状物Phos-45(0.1g,收率61.7%)。
[根据细则91更正 06.05.2024]
LCMS:M+H=623.5,
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,CD3CN),δppm 7.42-7.40(d,J=8.0,1H),5.61-5.59(d,J=8.0,1H),4.73-4.68(m,1H),4.34-4.30(m,1H),4.12-4.06(m,5H),3.88-3.83(m,2H),3.68-3.65(m,2H),3.58-3.42(m,2H),2.97-2.86(m,3H),2.72-2.62(m,3H),1.65-1.53(m,1H),1.32-1.17(m,18H),1.13-1.10(t,J=6.8,3H).
[根据细则91更正 06.05.2024]
31P NMR:(400MHz,CD3CN),δppm 149.85,148.50;23.46,23.25。
[根据细则91更正 06.05.2024]
亚磷酰胺-46的制备
[根据细则91更正 06.05.2024]
向100mL闷罐中加入镁屑(0.48g,20.0mmol,15.0eq)、无水乙二醇单甲醚(50mL)、上述混合物加热至90℃搅拌1h。将闷罐冷却至室温,加入Phos-43-1G(0.5g,1.33mmol,1.0eq),加热至90℃搅拌18h。将闷罐冷却至室温,LCMS检测反应原料完全消失。反应液转入烧瓶中,0℃下滴加入0.5N稀盐酸调节pH=6,二氯甲烷(50mL)萃取5次,合并有机相用无水硫酸钠干燥后真空浓缩得到粗产物。粗产物通过快速柱纯化,洗脱剂为(MeOH:DCM=0%-10%)洗出产物。真空浓缩产物,得到Phos-46-1A为淡黄色油状物0.13g,收率为20%。
[根据细则91更正 06.05.2024]
LCMS:M+H=513.4。
[根据细则91更正 06.05.2024]
向50mL烧瓶中加入Phos-46-1A(0.1g,0.19mmol,1.0eq)、无水二氯甲烷(3mL),依次加入四氮唑(16mg,0.23mmol,1.2eq)双(二异丙基氨基)(2-氰基乙氧基)膦(0.09g,0.3mmol,1.5eq)。上述混合物在氮气保护下25℃搅拌1h。LCMS检测反应完全,将反应液倒入碳酸氢钠水溶液中,二氯甲烷(10mL)萃取两次,合并有机相用无水硫酸钠干燥后真空浓缩得到粗产物。粗产物通过快速硅胶柱纯化,洗脱剂(DCM:MeOH:TEA=0%-5%+0.2%TEA)洗出产物。35℃真空浓缩得亚磷酰胺黄色油状物Phos-46(93mg,收率66.9%)。
[根据细则91更正 06.05.2024]
LCMS:M+H=713.6。
[根据细则91更正 06.05.2024]
1H NMR:(400MHz,CD3CN),δppm 8.92(s,1H),7.47-7.44(dd,J=8.0,J=2.8,1H),5.64-5.62(d,J=8.0,1H),4.78-4.68(m,1H),4.42-4.22(m,2H),4.18-4.15(m,4H),3.92-3.85(m,2H),3.78-3.66(m,3H),3.60-3.52(m,5H),3.48-3.45(m,3H),3.36-3.35(dd,J=2.4,J=0.8,6H),3.28-3.27(d,J=5.6,3H),3.03-2.94(m,2H),2.75-2.63(m,3H),1.65-1.53(m,1H),1.22-1.17(m,12H).
[根据细则91更正 06.05.2024]
31P NMR:(400MHz,CD3CN),δppm 149.85,148.42;24.43,24.22。
[根据细则91更正 06.05.2024]
本文中其他的5'-膦酸酯修饰的核苷类似物可以用相似的方法或者本领域熟知的合成路线进行制备获得。
[根据细则91更正 06.05.2024]
实施例2.寡核苷酸的合成
[根据细则91更正 06.05.2024]
根据本发明使用的寡核苷酸可通过熟知的固相合成技术便利且常规地制得。用于此合成的设备由多家供应商销售包括例如Mermade 12(LGC)。此外或作为另外一种选择可采用本领域已知的用于这种合成的任何其它装置。熟知的是使用类似的技术制备寡核苷酸诸如烷基化衍生物以及具有硫代磷酸酯键合的那些。
[根据细则91更正 06.05.2024]
寡核苷酸:未取代的和取代的磷酸二酯(O)寡核苷酸(包括但不限于寡核苷酸)可使用标准亚磷酰胺化学通过碘氧化而在自动化DNA合成仪Mermade 12(LGC)上合成。
[根据细则91更正 06.05.2024]
在某些实施方案中硫代磷酸酯核苷间键合(S)以类似于磷酸二酯核苷间键合的方式合成,不同的是:通过使用10%w/v的3,H-1,2-苯并二硫醇-3-酮-1,1-二氧化物的乙腈溶液氧化亚磷酸酯键合而实现硫杂化。将硫杂化反应步骤的时间增至180秒并通过正常加帽步骤继续。在55℃下的浓氨水中处理(12-16h)从CPG柱裂解并解封后通过用超过3倍体积的乙醇从1M的NH4OAc溶液中进行沉淀来回收寡核苷酸。
[根据细则91更正 06.05.2024]
次磷酸酯(phosphinate)核苷间键合可如US5,508,270中所述而制备。烷基磷酸酯核苷间键合可如US4,469,863中所述而制备,也可以通过本文所述的亚磷酰胺法。3’-脱氧-3’-亚甲基膦酸酯核苷间键合可如US5,610,289或5,625,050中所述而制备。亚磷酰胺核苷间键合可如US5,256,775或美5,366,878中所述而制备。烷基硫代磷酸酯核苷间键合可如已公布的WO 94/17093和WO94/02499公布中所述而制备。3′-脱氧-3′-氨基磷酰胺酯核苷间键合可如US5,476,925中所述而制备。磷酸三酯核苷间键合如US5,023,243中所述而制备,一些磷酸核苷间键的制备方法可见Beilstein J Org Chem.2017;13:1368–1387。
[根据细则91更正 06.05.2024]
具有一个或多个不含磷的核苷间键合包括但不限于亚甲基甲基亚氨基连接的寡核苷、亚甲基二甲基肼连接的寡核苷、亚甲基羰基氨基连接的寡核苷以及亚甲基氨基羰基连接的寡核苷的寡核苷酸以及具有例如交替O或S键合的混合主链寡核苷酸可如US5,378,825、US5,386,023、US5,489,677、US5,602,240和US5,610,289中所述而制备。
[根据细则91更正 06.05.2024]
双链核糖核酸(dsRNA)试剂通过以1∶1摩尔比混合两条互补链(正义链和反义链)中的每一条来形成双链体以获得。
[根据细则91更正 06.05.2024]
表2中的双链体通常使用基于亚磷酰胺化学的成熟固相合成方法,在寡核苷酸合成仪上合成dsRNA的正义和反义链序列。寡核苷酸链的增长是通过4步循环实现的:去保护、缩合、加帽和用于添加每个核苷酸的氧化或硫化步骤。合成是在由可控多孔玻璃(CPG,)制成的固体支持物上进行的。一般的单体亚磷酰胺购自商业来源,而本文中5'-膦酸酯修饰的核苷类似物化合物可以替代的作为一种单体亚磷酰胺,而引入寡核苷酸链中。在本文中5'-膦酸酯修饰的核苷类似物化合物可以替代的作为单体亚磷酰胺连接在的5'-末端的情况下,将用于最后的偶联反应。将3%二氯甲烷中的三氯乙酸(TCA)用于4,4'-二甲氧基三苯甲基保护基(DMT)的脱保护。5-乙硫基-1H-四唑用作活化剂。THF/Py/H2O中的I2和吡啶/MeCN中的苯乙酰二硫化物(PADS)分别用于氧化和硫化反应。在最后的固相合成步骤之后,通过用1:1体积的20wt%甲胺水溶液和28%氢氧化铵溶液处理来切割固体载体结合的低聚物并去除保护基团。为了合成用于体外筛选的寡核苷酸,将粗混合物浓缩。将剩余的固体溶解在1.0M NaOAc中,加入冰冷的EtOH以沉淀出作为钠盐的单链产物,其无需进一步纯化即可用于退火。为了合成用于体内测试的寡核苷酸,粗单链产物通过离子对反相HPLC(IP-RP-HPLC)进一步纯化。通过将来自IP-RP-HPLC的纯化单链寡核苷酸产物溶解在1.0M NaOAc中并通过添加冰冷的EtOH进行沉淀,将其转化为钠盐。在水中通过等摩尔互补进行正义链和反义链寡核苷酸的退火,以形成双链寡核苷酸产物。
[根据细则91更正 06.05.2024]
将实施例1中所述的亚磷酰胺化合物偶联到寡核苷酸的5′末端中,从而产生5′-末端核苷酸,方法如CN110072530A和CN103154014A描述,膦酸酯基各自羟基保护基的原子,如含有两个甲基或者乙基保护的氧原子,根据所使用的脱保护步骤,去除所述甲基或者乙基中的一个或两个,在一些实施例中,采用甲腈:三甲基碘硅烷:吡啶e=50:2:2(v/v/v)脱乙基液脱除乙基保护。
[根据细则91更正 06.05.2024]
包含本发明5′-末端核苷酸的寡核苷酸用本文所述或者本领域技术人员所熟知的方法获得,寡核苷酸序列结构以FXII为靶的dsRNA双链体如表2所示。
[根据细则91更正 06.05.2024]
在表2中双链体的5'-末端核苷结构如下所示:
[根据细则91更正 06.05.2024]
如表2-3表示了双链体包含正义链和反义链;化学修饰表示为,大写:2'-氟修饰核苷酸;小写:2'-甲氧基修饰核苷酸;两个核苷之间的上标“*”表示硫代磷酸醋核间键合,两个核苷之间的不存在上标表示磷酸二酯核间键合;Invab:反向无碱基,GLS-15是本文所述的靶向基团。
[根据细则91更正 06.05.2024]
表2靶向FXII双链体
[根据细则91更正 06.05.2024]
表3靶向FXII双链体
[根据细则91更正 06.05.2024]
如上表2-3所示,双链体由相同的正义链构成,双链体之间的不同之处仅在于反义链的5′-末端包含不同的尿嘧啶核苷衍生物。
[根据细则91更正 06.05.2024]
实施例3.包含本发明5′-末端核苷酸的寡核苷酸体内评价
[根据细则91更正 06.05.2024]
为了评估FXII双链核苷核酸(又称dsRNA)的体内活性,使用了雌性C57BL/6小鼠,6周龄,无特定病原体,购于上海斯莱克实验动物有限责任公司。
[根据细则91更正 06.05.2024]
a)实验方案
[根据细则91更正 06.05.2024]
动物实验每组4只C57BL/6,雌性小鼠,给药剂量1或者2(mg/kg),给药频率SC,第1天给药1次,第8、22和29天进行采血,检测血浆:FXII蛋白水平。
[根据细则91更正 06.05.2024]
b)实验天数定义:以小鼠首次给药当天定义为实验第1天,往前一天为第-1天,往后一天为第2天,以此类推。
[根据细则91更正 06.05.2024]
c)所有待测化合物在给药前用PBS配制成5mg/mL储液。取少量5mg/mL储液稀释20倍,使用Nanodrop上机检测OD值。根据OD值换算得到储液实际浓度后,取适量稀释至工作液浓度(0.2mg/mL)进行给药。
[根据细则91更正 06.05.2024]
d)所有小鼠(C57BL/6,雌性,6周)经过6天适应期后,在第1天按上述进行皮下注射给药。
[根据细则91更正 06.05.2024]
e)第8、22和29天,所有小鼠经颌下静脉采血收集血浆,用于FXII蛋白水平检测。
[根据细则91更正 06.05.2024]
f)样品检测分析
[根据细则91更正 06.05.2024]
应用ELISA试剂盒检测小鼠血浆中FXII蛋白水平。
[根据细则91更正 06.05.2024]
使用ELISA试剂盒(Molecular Innovations,IMSFXIIKTT)检测小鼠血浆中FXII蛋白水平。简言之,将EDTA-K2收集的血浆样本稀释30,000倍后加入到捕获抗体包被的检测板中孵育,然后依次加入检测抗体和HRP偶联的二抗,最后用TMB显色,读取450nm处吸光值。使用四参数法拟合标准曲线,并将检测样本OD值代入计算出每个样品的FXII蛋白含量,乘以稀释倍数即为原始血浆中FXII蛋白浓度。数据结果如表4所示。
[根据细则91更正 06.05.2024]
表4.使用对应于表2中所示的序列、化学修饰和递-送的寡合化合物,FXII蛋白的相对表达水平。
[根据细则91更正 06.05.2024]
表4小鼠血浆中FXII蛋白表达的剩余百分比
[根据细则91更正 06.05.2024]
实施例4.包含本发明5′-末端核苷酸的寡核苷酸体内评价
[根据细则91更正 06.05.2024]
为了评估FXII双链核苷核酸(又称dsRNA)的体内活性,使用了雌性C57BL/6小鼠,6周龄,无特定病原体,购于上海斯莱克实验动物有限责任公司。
[根据细则91更正 06.05.2024]
a)实验方案
[根据细则91更正 06.05.2024]
动物实验每组4只C57BL/6,雌性小鼠,给药剂量0.5或者1(mg/kg),给药频率SC,第1天给药1次,第8、22和29天进行采血,检测血浆:FXII蛋白水平。
[根据细则91更正 06.05.2024]
b)实验天数定义:以小鼠首次给药当天定义为实验第1天,往前一天为第-1天,往后一天为第2天,以此类推。
[根据细则91更正 06.05.2024]
c)所有待测化合物在给药前用PBS配制成5mg/mL储液。取少量5mg/mL储液稀释20倍,使用Nanodrop上机检测OD值。根据OD值换算得到储液实际浓度后,取适量稀释至工作液浓度(0.2mg/mL)进行给药。
[根据细则91更正 06.05.2024]
d)所有小鼠(C57BL/6,雌性,6周)经过6天适应期后,在第1天按上述进行皮下注射给药。
[根据细则91更正 06.05.2024]
e)第8、22、29天,所有小鼠经颌下静脉采血收集血浆,用于FXII蛋白水平检测。
[根据细则91更正 06.05.2024]
f)样品检测分析
[根据细则91更正 06.05.2024]
应用ELISA试剂盒检测小鼠血浆中FXII蛋白水平。
[根据细则91更正 06.05.2024]
使用ELISA试剂盒(Molecular Innovations,IMSFXIIKTT)检测小鼠血浆中FXII蛋白水平。简言之,将EDTA-K2收集的血浆样本稀释30,000倍后加入到捕获抗体包被的检测板中孵育,然后依次加入检测抗体和HRP偶联的二抗,最后用TMB显色,读取450nm处吸光值。使用四参数法拟合标准曲线,并将检测样本OD值代入计算出每个样品的FXII蛋白含量,乘以稀释倍数即为原始血浆中FXII蛋白浓度。数据结果如表5所示。
[根据细则91更正 06.05.2024]
表5.使用对应于表2和表3中所示的序列、化学修饰和递-送的寡合化合物,FXII蛋白的相对表达水平。
[根据细则91更正 06.05.2024]
实施例5.包含本发明5′-末端核苷酸的寡核苷酸体内评价
[根据细则91更正 06.05.2024]
实验方法同实施例4,使用对应于表2和表3中所示的序列、化学修饰和递-送的寡合化合物,FXII蛋白的相对表达水平。
[根据细则91更正 06.05.2024]
表6小鼠血浆中FXII蛋白表达的剩余百分比
[根据细则91更正 06.05.2024]
从表6可以看出,使用含5'-S膦酸酯修饰核苷类似物的dsRNA(例如AD01177)基因沉默效果优于使用含5'-O膦酸酯修饰核苷类似物的dsRNA(AD01558)。
[根据细则91更正 06.05.2024]
表7小鼠血浆中FXII蛋白表达的剩余百分比
[根据细则91更正 06.05.2024]
表8小鼠血浆中FXII蛋白表达的剩余百分比
[根据细则91更正 06.05.2024]
实施例6.包含本发明5′-末端核苷酸的寡核苷酸体内评价
[根据细则91更正 06.05.2024]
实验方法同实施例4,使用对应于表2和表3中所示的序列、化学修饰和递-送的寡合化合物,FXII蛋白的相对表达水平。
[根据细则91更正 06.05.2024]
表9小鼠血浆中FXII蛋白表达的剩余百分比
[根据细则91更正 06.05.2024]
等同物
[根据细则91更正 06.05.2024]
尽管本文已经描述和说明了本发明的几个实施例,但本领域普通技术人员很容易理解,用于执行此处描述的功能和/或获得结果和/或一个或更多个优点的多种其他手段和/或结构,以及这些变化和/或修改中的每一个都被认为在本发明的范围内。更一般地,本领域技术人员将容易理解,此处描述的所有参数、尺寸、材料和配置都是示例性的,并且实际参数、尺寸、材料和/或配置将取决于使用本发明教导的具体应用。本领域技术人员将认识到或能够仅使用常规实验来确定本文描述的本发明的特定实施例的许多等价物。因此,应当理解,前述实施例仅通过示例的方式呈现并且属于所附权利要求及其等效物的范围内,本发明可以以不同于具体描述和要求保护的方式实施。本发明针对在此描述的每个单独的特征、系统、物品、材料和/或方法。此外,两个或更多个此类特征、系统、物品、材料和/或方法的任何组合,如果此类特征、系统、物品、材料和/或方法相互不矛盾,则也包括在本发明的范围内。
[根据细则91更正 06.05.2024]
如本文所定义和使用的所有定义应理解为对照字典定义、通过引用并入的文件中的定义和/或所定义术语的普通含义。
[根据细则91更正 06.05.2024]
在说明书和权利要求中并未使用数量限定的情况,除非明确指出相反,否则应理解为“至少一个”。
[根据细则91更正 06.05.2024]
说明书和权利要求书中使用的短语“和/或”应理解为表示如此结合的要素中的“一个或两个”,即这样的要素在某些情况下组合出现而在其他情况下分离出现。除了由“和/或”具体标识的要素之外,除非明确指出相反,否则可以可选地存在其他要素,无论与那些具体标识的要素相关或不相关。
[根据细则91更正 06.05.2024]
本申请中引用或参考的所有参考文献、专利和专利申请和出版物均通过引用整体并入本文。

Claims (172)

  1. 一种寡核苷酸,其包含由式(V)、式(VI)或式(VII)及它们的立体异构体之一表示的5'-末端核苷酸:
    其中,每个T1独立地为任选保护的膦部分;
    每个T3独立地为将使所述5'-末端核苷酸连接到寡核苷酸的核苷间连接基团;
    每个X1独立地为化学键、O、S、NJ1或CJ1J2,其中J1和J2各自独立地是氢、卤素、磺酰基、亚磺酰基、任选取代的C1-C6烷基、任选取代的C3-C6环烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、任选取代的C5-C12芳基、任选取代的5-12元杂芳基、任选取代的5-12元杂环;
    每个X2独立地为CR15或者N;
    每个X3独立地为化学键、任选取代的C1-C3亚烷基、SO、SO2、C(=O)、P(=O)R;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
    每个Bx独立地为杂环碱基部分;
    每个R1和R2分别独立地为H、卤素、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
    每个R3和R15分别独立地为H、卤素、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基;
    每个A独立地为具有下式之一:
    Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基或NR4R5
    每个Q3独立地为O、S、NR6或CR7R8
    每个Q4、Q5、Q6、Q7、Q9、Q10、Q11和Q12各自独立地为H、卤素、任选保护的羟基、乙酰氧基、叠氮基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、NR9R10
    每个Q8独立地为O、S、SO、SO2、PR16R17或NR11
    每个R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
    每个R4、R5、R6、R7、R8、R9、R10、R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);
    M1为C(Rd)(Re)、C(Rd)(Re)C(Rf)(Rg),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6);
    每个J3、J4、J5和J6独立地为H或C1-C6烷基;
    n为0、1或者2;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  2. 如权利要求1所述的寡核苷酸,T1为任选保护的膦部分具有下式:
    其中:
    Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基;
    取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  3. 如权利要求2所述的寡核苷酸,所述的羟基或巯基的保护基独立地选自:甲基、乙基、苄基(Bn)、苯基、异丙基、叔丁基、乙酰基、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、叔丁氧基甲基、甲氧基甲基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、烯丙基、环己基(cHex)、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、苯甲酰基、苯甲酰基甲酸酯、对苯基苯甲酰基、4-甲氧基苄基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基、4-氯苄基、4-硝基苄基、2,4-二硝基苯基、4-酰氧基苄基、2-甲基苯基、2,6-二甲基苯基、2-氯苯基、2,6-二氯苄基、二苯基甲基、三苯基甲基、4-甲硫基-1-丁基、2-(S-乙酰硫基)乙基(SATE)、2-氰乙基、2-氰基-1,1-二甲基乙基(CDM)、4-氰基-2-丁烯基、2-(三甲基硅基)乙基(TSE)、2-(苯硫基)乙基、2-(三苯基硅基)乙基、2-(苄磺酰基)乙基、2,2,2-三氯乙基、2,2,2-三溴乙基、2,3-二溴丙基、2,2,2-三氟乙基、苯硫基、2-氯-4-三苯甲基苯基、2-溴苯基、2-[N-异丙基-N-(4-甲氧基苯甲酰基)氨基]乙基、4-(N-三氟乙酰基氨基)丁基、4-氧代戊基、4-三苯甲基氨基苯基、4-苄基氨基苯基、四氢吡喃基、吗啉代、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、特戊酸酯甲醚基(POM)和9-苯基黄嘌呤-9-基;
    所述的氨基保护基独立地选自:2-三甲基硅基乙氧基羰基(Teoc)、1-甲基-1-(4-联苯基)乙氧基羰基(Bpoc)、叔丁氧基羰基(BOC)、烯丙氧基羰基(Alloc)、9-芴基甲氧基羰基(Fmoc)、苄氧基羰基(Cbz)、苄基、甲酰基、乙酰基、特戊酰基、三卤乙酰基、苯甲酰基、硝基苯基、乙酰基、2-硝基苯磺酰基、邻苯二甲酰亚胺基(Pht)、对甲苯磺酰基(Tos)、三苯甲基(Trt)、2,4-二氧基苄基(PMB)和二硫代丁二酰基。
  4. 如权利要求2-3所述的寡核苷酸,T1为任选保护的膦部分具有下式:
    其中,Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
  5. 如权利要求2-3所述的寡核苷酸,其中,Ra和Rc各自为OH、SH、OCH3、OCH2CH3、OCH(CH3)2、OCH2OC(=O)C(CH3)3、NH2、OCH2CH2CN、NHSO2CH3
  6. 如权利要求2-3所述的寡核苷酸,其中,Ra和Rc各自为OH,Rb为O。
  7. 如权利要求1-6所述的寡核苷酸,其中,所述的T3为核苷间连接基团选自含磷的链接基团或者不含磷的链接基团。
  8. 如权利要求7所述的寡核苷酸,其中,所述的含磷核苷间连接基团独立地为:磷酸二酯连接基团、磷酸三酯连接基团、硫代磷酸酯连接基团、二硫代磷酸酯键连接基团、烷基膦酸酯连接基团、氨基膦酸酯连接基团、膦酸酯连接基团、次膦酸酯连接基团、硫代氨基磷酸酯连接基团和氨基磷酸酯连接基团。
  9. 如权利要求7所述的寡核苷酸,其中,所述的核苷间连接基团独立地为烷基膦酸酯连接基团、磷酸二酯核苷间连接基团或硫代磷酸酯核苷间连接基团。
  10. 如权利要求1-9所述的寡核苷酸,其中,所述的BX杂环碱基部分选自:天然核碱基、修饰的核碱基、通用碱基。
  11. 如权利要求10所述的寡核苷酸,其中,所述的BX杂环碱基部分选自:嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
  12. 如权利要求10所述的寡核苷酸,其中,所述的BX杂环碱基部分选自:2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)、尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。
  13. 如权利要求1-12所述的寡核苷酸,其中,所述的R15和R3均为H。
  14. 如权利要求1-13所述的寡核苷酸,其中,所述的X1为O。
  15. 如权利要求1-14所述的寡核苷酸,其中,所述的每个R1和R2分别独立地为H、甲磺酰基、乙酰基。
  16. 如权利要求1-14所述的寡核苷酸,其中,所述的每个X2分别独立地为N,每个R1和R2分别独立地为H、甲磺酰基、乙酰基。
  17. 如权利要求1-16所述的寡核苷酸,其中,所述的式(V)、(VI)或式(VII)中的A具有下式之一:
    其中Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;
    Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
    R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);
    J3和J4独立地为H或C1-C6烷基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  18. 如权利要求1-17所述的寡核苷酸,其中,所述的Q1和Q2各自独立地为H、F、-CN、甲基。
  19. 如权利要求18所述的寡核苷酸,其中,所述的Q1和Q2各自独立地为H。
  20. 如权利要求1-19所述的寡核苷酸,条件是当M1为C(Rd)(Re),X2为C,X3为化学键、A为时,Q8为S、SO、SO2、PR16R17或NR11
  21. 如权利要求1-20所述的寡核苷酸,Q8为S、SO、SO2、PR16R17或NR11
  22. 如权利要求1-21所述的寡核苷酸,其中,所述的X2为N,X3为化学键、-CH2-、-CH2CH2-、SO、SO2
  23. 如权利要求1-21所述的寡核苷酸,其中,所述的X2为C,X3为化学键。
  24. 如权利要求1-23所述的寡核苷酸,其中,所述的n为0或者1。
  25. 如权利要求1所述的寡核苷酸,其包含由式(V-1)或其立体异构体所表示的5'-末端核苷酸:
    其中T1、T3、A、R3以及Bx各如权利要求1所定义;X3为化学键、C(=O)、P(=O)R、SO或SO2;M1为C(Rd)(Re)、C(Rd)(Re)C(Rg)(Rf),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地式(I-1)为H或C1-C6烷基;R为R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
  26. 如权利要求25所述的寡核苷酸,其中,所述的X3为SO2或化学键;R3氢。
  27. 如权利要求25-26所述的寡核苷酸,其中,所述的Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、氟、羟基、C1-C6烷氧基、O(CH2)2-OCH3
  28. 如权利要求27所述的寡核苷酸,其中,所述的Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢。
  29. 如权利要求25-28所述的寡核苷酸,A具有下式之一:
    Q1和Q2各自独立地为H、卤素、任选取代的C1-C6烷基;
    Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
    R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  30. 如权利要求1所述的寡核苷酸,其包含具有式(V-2)或其立体异构体所表示的5'-末端核苷酸:
    其中T1、T3、A、R3以及Bx各自如权利要求1所定义;M1为C(Rd)(Re)、C(Rd)(Re)C(Rg)(Rg),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基。
  31. 如权利要求30所述的寡核苷酸,其中,所述的每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、氟、羟基、C1-C6烷氧基、O(CH2)2-OCH3
  32. 如权利要求30所述的寡核苷酸,其中,所述的M1为CH2或CH2CH2
  33. 如权利要求30-32所述的寡核苷酸,其中,所述的R3为氢。
  34. 如权利要求30-33所述的寡核苷酸,其中,所述的包含具有式(V-2)或其立体异构体中的A具有下式之一:
    Q1和Q2各自独立地为H、卤素、任选取代的C1-C6烷基;Q8为S、SO、SO2或NR11、PR16R17;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
    R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  35. 如权利要求1所述的寡核苷酸,其包含具有式(VI-1)或其立体异构体所表示的5'-末端核苷酸:
    其中T1、T3、X1、X3、A、R3、Bx以及n各自如权利要求1所定义;R1和R2分别独立地为H、甲磺酰基、乙酰基。
  36. 如权利要求35所述的寡核苷酸,其中,所述的n为0或者1。
  37. 如权利要求35-36所述的寡核苷酸,其中,所述的X3为CH2或者CH2CH2;R3为H。
  38. 如权利要求1所述的寡核苷酸,其包含具有式(VI-2)或其立体异构体所表示的5'-末端核苷酸:
    其中T1、T3、X1、A、Bx各自如权利要求1所定义。
  39. 如权利要求1所述的寡核苷酸,其包含具有式(VI-3)或其立体异构体所表示的5'-末端核苷酸:
    其中T1、T3、X1、A、Bx各自如权利要求1所定义。
  40. 如权利要求1所述的寡核苷酸,其包含具有式(VII-1)或其立体异构体所表示的5'-末端核苷酸:
    其中T1、T3、X1、A、Bx各自如权利要求1所定义。
  41. 如权利要求1所述的寡核苷酸,其包含具有式(VII-2)或其立体异构体所表示的5'-末端核苷酸:
    其中T1、T3、X1、A、Bx各自如权利要求1所定义。
  42. 如权利要求38-41所述的寡核苷酸,其中,所述的包含具有式(VI-1)、式(VI-2)、式(VI-3)、(VII-1)、(VII-2)或其立体异构体所表示的5'-末端核苷酸中,A独立地具有下式之一:
    其中Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基。
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  43. 如权利要求25-42所述的寡核苷酸,其中,所述的每个Q1和Q2各自独立地为H、F、-CN、甲基。
  44. 如权利要求43所述的寡核苷酸,其中,所述的每个Q1和Q2各自独立地为H。
  45. 如权利要求25-42所述的寡核苷酸,其中,所述的Q8独立地为NR11,R11独立地为甲基、甲磺酰基。
  46. 如权利要求25-42所述的寡核苷酸,其中,所述的Q8为S或SO2
  47. 如权利要求25-46所述的寡核苷酸,其中,所述的T1为任选保护的膦部分具有下式:
    其中:
    Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基。
  48. 如权利要求47所述的寡核苷酸,其中,所述取代的氨基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基。
  49. 如权利要求47所述的寡核苷酸,其中,所述的Rb为O或者S。
  50. 如权利要求47所述的寡核苷酸,其中,所述的Ra和Rc各自为OH、SH、NH2、OCH2CH2CN、NHSO2CH3
  51. 如权利要求47所述的寡核苷酸,其中,所述的Ra和Rc各自为OH,Rb为O。
  52. 如权利要求25-51所述的寡核苷酸,其中,所述的T3为核苷酸间链接基团选自:烷基膦酸酯连接基团、磷酸二酯核苷间连接基团或硫代磷酸酯核苷间连接基团。
  53. 如权利要求25-52所述的寡核苷酸,其中,所述的每个BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
  54. 如权利要求53所述的寡核苷酸,其中,所述的每个BX杂环碱基部分独立地为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
  55. 如权利要求53所述的寡核苷酸,其中,所述的每个BX杂环碱基部分为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)、尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。
  56. 一种寡核苷酸,其包含由式(VIII)或其立体异构体所表示的5'-末端核苷酸:
    其中:Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
    Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、保护的或者任选取代的氨基、天然的或修饰的核苷;并且Rb为O或S或NR12,R12为氢、C1-C6烷基、氨基保护基;
    Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;
    取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
    R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基;
    Z是包含糖或糖替代性部分的核苷;
    T3是将式(VIII)或其立体异构体的5'-末端核苷酸连接到寡核苷酸的核苷间连接基团;
    每个取代的基团包含一个或多个任选独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  57. 如权利要求56所述的寡核苷酸,其中,所述的Q8为S、SO或SO2。
  58. 如权利要求57所述的寡核苷酸,其中,所述的Q1和Q2各自独立地为H。
  59. 如权利要求56-58所述的寡核苷酸,其中,所述的糖或糖替代性部分的核苷中,糖或糖替代性部包括5元呋喃糖环、非呋喃糖环或5-6元碳环体系或开放体系。
  60. 如权利要求59所述的寡核苷酸,其中,所述的糖或糖替代性部分选自:吗啉基、环己烯基、环己基、环戊基、吡喃基、环己六醇基、呋喃糖、非锁核碱基类似物(UNA)、甘油核酸碱基类似物(GNA)、锁核酸(LNA)或桥联核酸(BNA)。
  61. 如权利要求59-60所述的寡核苷酸,其中,所述的Q8与糖或糖替代性部分的4'-碳或者5'-碳键合。
  62. 如权利要求59-60所述的寡核苷酸,其中,所述的糖或糖替代性部分的核苷具有以下结构示意:
    其中,M2为C(q3)(q4)、C(q3)(q4)C(q5)(q6);
    M3为O、S、NR13、C(q7)(q8)、C(q7)(q8)C(q9)(q10)、C(q7)=C(q8)、OC(q7)(q8);
    每个X1独立地为化学键、O、S、NJ1或CJ1J2,其中J1和J2各自独立地是氢、卤素、磺酰基、亚磺酰基、任选取代的C1-C6烷基、任选取代的C3-C6环烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、任选取代的C5-C12芳基、任选取代的5-12元杂芳基、任选取代的5-12元杂环;
    X2为CR15或者N;
    X3为化学键、任选取代的C1-C3亚烷基、SO、SO2、C(=O)、P(=O)R;
    R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
    Bx为杂环碱基部分;
    R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10分别独立地为氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基;
    R13为氢、C1-C6烷基。
  63. [根据细则26改正 22.04.2024]
    如权利要求62所述的寡核苷酸,其中,所述的糖或糖替代性部分的核苷具有以下结构示意:
  64. 如权利要求63所述的寡核苷酸,其中,所述的M3为O、S、C(q7)(q8)、C(q7)(q8)C(q9)(q10)。
  65. 如权利要求56所述的寡核苷酸,包含由式(VIII-1)或其立体异构体所表示的5'-末端核苷酸:
    其中,Q8、Ra、Rc、Rb、M2、M3、X1、X2、X3、q1、q2和Bx,各自如权利要求56中所定义。
  66. 如权利要求62-65所述的寡核苷酸,其中,所述的R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10各自独立的选自氢、氟、羟基、甲基、甲氧基、O(CH2)2-OCH3
  67. 如权利要求66所述的寡核苷酸,其中,所述的R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10各自独立的选自氢。
  68. 如权利要求65-67所述的寡核苷酸,其中,所述的M3为O、S、C(q7)(q8),M2为C(q3)(q4),X2为CR15或者N,X3为化学键、SO、SO2
  69. 如权利要求68所述的寡核苷酸,其中,所述的M3为M3为O、S、CH2,M2为CH2,X2为CH,X3为化学键。
  70. 如权利要求68所述的寡核苷酸,其中,所述的M3为CH2,M2为CH2,X2为N,X3为化学键、SO或SO2
  71. 如权利要求65-67所述的寡核苷酸,其中,所述的M3为C(q7)(q8),M2为C(q3)(q4)C(q5)(q6),X2为CR15或者N,X3为化学键、SO、SO2
  72. 如权利要求71所述的寡核苷酸,其中,所述的M3为CH2,M2为CH2CH2,X2为CH,X3为化学键。
  73. 如权利要求71所述的寡核苷酸,其中,所述的M3为CH2,M2为CH2CH2,X2为N,X3为化学键、SO或SO2
  74. 如权利要求56-73所述的寡核苷酸,其中,所述的Q8为S、SO或SO2
  75. 如权利要求56-73所述的寡核苷酸,其中,所述的Rb为氧。
  76. 如权利要求56-73所述的寡核苷酸,其中,所述的Q8为SO或SO2,Ra和Rc各自独立地选自OH、SH、NH2、NHSO2CH3
  77. 如权利要求56-73所述的寡核苷酸,其中,所述的Q8为S、SO或SO2,Rb为氧,Ra和Rc各自独立地选自OH。
  78. 如权利要求56-77所述的寡核苷酸,其中,所述的X1为氧。
  79. 如权利要求56-78所述的寡核苷酸,其中,所述的BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
  80. 如权利要求79所述的寡核苷酸,其中,所述的BX杂环碱基部分为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
  81. 如权利要求79所述的寡核苷酸,其中,所述的BX杂环碱基部分为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)、尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。
  82. 一种寡核苷酸,其在5'-末端核苷酸具有下式的化合物片段:
    其中:Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、保护的或者任选取代的氨基、天然的或修饰的核苷;并且Rb为O或S或NR12,R12为氢、C1-C6烷基、氨基保护基;
    取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
    R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基;
    每个取代的基团包含一个或多个任选独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN;
    表示与5'-末端核苷酸剩余部分的链接处。
  83. 如权利要求1-82所述的寡核苷酸,包含以下之一具体结构或其立体异构体表示的5'-末端核苷:
  84. 如权利要求56-83所述的寡核苷酸,其中,所述的核苷间连接基团独立地为烷基膦酸酯连接基团、磷酸二酯核苷间连接基团或硫代磷酸酯核苷连接基团。
  85. 如权利要求1-84所述的寡核苷酸,其中,所述的寡核苷酸为双链核糖核酸(dsRNA)试剂,包含:正义链和反义链,其中所述正义链和反义链完全或者部分互补,并且所述反义链与核酸靶基因部分或者完全互补;所述正义链和反义链的至少一者为由如权利要求1-84所述的所表示的5'-末端核苷酸的寡核苷酸;并且其中所述双链核糖核酸(dsRNA)试剂任选地进一步包含独立的靶向基团。
  86. 如权利要求85所述的寡核苷酸,其中,所述的双链核糖核酸(dsRNA)试剂,其中反义链包含由如权利要求1-84所述的所表示的5'-末端核苷酸的寡核苷酸。
  87. 如权利要求1-86所述的寡核苷酸,其中,寡核苷酸或双链核糖核酸(dsRNA)中,每一条链均分别包含8-40核苷酸。
  88. 如权利要求1-87所述的寡核苷酸,其中,所述的寡核苷酸或双链核糖核酸(dsRNA)试剂在药物制备中的用途,所述药物用于抑制基因表达。
  89. 一种具有式(I)、式(II)和式(III)或它们的立体异构体所示的化合物:
    其中,每个T1独立地为任选保护的膦部分;
    每个T2独立地为活性磷基团;
    每个X1独立地为化学键、O、S、NJ1或CJ1J2,其中J1和J2各自独立地是氢、卤素、磺酰基、亚磺酰基、任选取代的C1-C6烷基、任选取代的C3-C6环烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、任选取代的C5-C12芳基、任选取代的5-12元杂芳基、任选取代的5-12元杂环;
    每个X2独立地为CR15或者N;
    每个X3独立地为化学键、任选取代的C1-C3亚烷基、SO、SO2、C(=O)、P(=O)R;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
    每个Bx独立地为杂环碱基部分;
    每个R1和R2分别独立地为H、卤素、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
    每个R3和R15分别独立地为H、卤素、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基;
    每个A独立地具有下式之一:
    每个Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基或NR4R5
    每个Q3独立地为O、S、NR6或CR7R8
    Q4、Q5、Q6、Q7、Q9、Q10、Q11和Q12各自独立地为H、卤素、任选保护的羟基、乙酰氧基、叠氮基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、NR9R10
    Q8为O、S、SO、SO2、PR16R17或NR11
    R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
    每个R4、R5、R6、R7、R8、R9、R10、R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);
    M1为C(Rd)(Re)、C(Rd)(Re)C(Rf)(Rg),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6);
    每个J3、J4、J5和J6独立地为H或C1-C6烷基;
    每个n独立地为0、1或者2;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  90. 如权利要求89所述的化合物,每个T1独立地为任选保护的膦部分具有下式:
    其中:
    Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、氨基或者保护/被取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基;
    取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  91. 如权利要求90所述的化合物,所述的羟基或巯基的保护基独立地选自:甲基、乙基、苄基(Bn)、苯基、异丙基、叔丁基、乙酰基、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、叔丁氧基甲基、甲氧基甲基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、烯丙基、环己基(cHex)、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、苯甲酰基、苯甲酰基甲酸酯、对苯基苯甲酰基、4-甲氧基苄基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基、4-氯苄基、4-硝基苄基、2,4-二硝基苯基、4-酰氧基苄基、2-甲基苯基、2,6-二甲基苯基、2-氯苯基、2,6-二氯苄基、二苯基甲基、三苯基甲基、4-甲硫基-1-丁基、2-(S-乙酰硫基)乙基(SATE)、2-氰乙基、2-氰基-1,1-二甲基乙基(CDM)、4-氰基-2-丁烯基、2-(三甲基硅基)乙基(TSE)、2-(苯硫基)乙基、2-(三苯基硅基)乙基、2-(苄磺酰基)乙基、2,2,2-三氯乙基、2,2,2-三溴乙基、2,3-二溴丙基、2,2,2-三氟乙基、苯硫基、2-氯-4-三苯甲基苯基、2-溴苯基、2-[N-异丙基-N-(4-甲氧基苯甲酰基)氨基]乙基、4-(N-三氟乙酰基氨基)丁基、4-氧代戊基、4-三苯甲基氨基苯基、4-苄基氨基苯基、四氢吡喃基、吗啉代、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、特戊酸酯甲醚基(POM)和9-苯基黄嘌呤-9-基。
    所述的氨基保护基独立地选自:2-三甲基硅基乙氧基羰基(Teoc)、1-甲基-1-(4-联苯基)乙氧基羰基(Bpoc)、叔丁氧基羰基(BOC)、烯丙氧基羰基(Alloc)、9-芴基甲氧基羰基(Fmoc)、苄氧基羰基(Cbz)、苄基、甲酰基、乙酰基、特戊酰基、三卤乙酰基、苯甲酰基、硝基苯基、乙酰基、2-硝基苯磺酰基、邻苯二甲酰亚胺基(Pht)、对甲苯磺酰基(Tos)、三苯甲基(Trt)、2,4-二氧基苄基(PMB)和二硫代丁二酰基。
  92. 如权利要求90-91所述的化合物,每个T1独立地为任选保护的膦部分具有下式:
    其中:
    Ra和Rc各自独立地选自保护的羟基或者保护的巯基;并且Rb为O或S。
    所述羟基保护基各自独立地选自乙酰基、叔丁基、叔丁氧基甲基、甲氧基甲基、四氢吡喃基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、对氯苯基、2,4-二硝基苯基、苄基、苯甲酰基、对苯基苯甲酰基、2,6-二氯苄基、二苯基甲基、对硝基苄基、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、苯甲酰基甲酸酯、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、三苯甲基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基、特戊酸酯甲醚基(POM)或取代的9-苯基黄嘌呤-9-基;
    所述巯基保护基各自独立地选自甲基、乙基、乙酰基、叔丁基、叔丁氧基甲基、甲氧基甲基、四氢吡喃基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、2-三甲基甲硅烷乙基、对氯苯基、2,4-二硝基苯基、苄基、苯甲酰基、对苯基苯甲酰基、2,6-二氯苄基、二苯基甲基、对硝基苄基、三甲基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基、三苯甲硅烷基、三异丙基甲硅烷基、苯甲酰基甲酸酯、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、9-芴甲氧羰基、甲磺酸基、甲苯磺酸基、三氟甲磺酸基、三苯甲基、单甲氧基三苯甲基、二甲氧三苯甲基、三甲氧基三苯甲基或取代的9-苯基黄嘌呤-9-基。
  93. 如权利要求92所述的化合物,羟基保护基各自独立地选自乙酰基、苄基、叔丁基二甲基甲硅烷基、特戊酸酯甲醚基(POM)、叔丁基二苯基甲硅烷基以及4,4’-二甲氧三苯甲基;巯基保护基各自独立地选自苄基、4,4’-二甲氧三苯甲基、三苯甲基。
  94. 如权利要求90-93所述的化合物,Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
  95. 如权利要求90-94所述的化合物,Rb为O,Ra和Rc各自独立地选自OH、SH、OCH3、OCH2CH3、OCH(CH3)2、OCH2OC(=O)C(CH3)3、OCH2CH2CN、NHSO2CH3
  96. 如权利要求89-95所述的化合物,每个T2独立地为活性磷基团,所述的活性磷基团具有如下结构:其中M4为H、任选取代的C1-C6烷基、OH、OJ7、SH、SJ7或NJ7J8,M5为任选取代的C1-C6烷基、OH、OJ7、SH、SJ7或NJ7J8,每个J7或J8独立地为任选取代的C1-C6烷基、磺酰基;r为0或者1。
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  97. 如权利要求96所述的化合物,每个J7或J8独立地为取代的C1-C6烷基中,所述的取代基选自氰基、卤素。
  98. 如权利要求96所述的化合物,M4选自甲基、异基、丙基、异丙基。
  99. 如权利要求96所述的化合物,M4选自甲磺酰胺基。
  100. 如权利要求96所述的化合物,M4为OJ7,其中J7为取代的C1-C6烷基,取代基选自氰基、卤素。
  101. 如权利要求96所述的化合物,其中M4为O(CH2)2CN,M5为N(CH(CH3)2)2,r为0。
  102. 如权利要求96所述的化合物,每个T2活性磷基团独立地是亚磷酰胺。
  103. 如权利要求96所述的化合物,每个T2活性磷基团独立地选自二异丙基氰基乙氧基亚磷酰胺、二异丙基乙基亚磷酰胺和H-膦酸酯。
  104. 如权利要求89-103所述的化合物,每个X1独立地为O。
  105. 如权利要求89-104所述的化合物,每个BX杂环碱基部分独立地选自天然核碱基、修饰的核碱基、通用碱基。
  106. 如权利要求105所述的化合物,每个BX杂环碱基部分独立地为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
  107. 如权利要求105所述的化合物,每个BX杂环碱基部分独立地为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)、尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。
  108. 如权利要求89-106所述的化合物,每个R15和R3分别独立地为H。
  109. 如权利要求89-108所述的化合物,每个R1和R2分别独立地为H、甲磺酰基、乙酰基。
  110. 如权利要求89-109所述的化合物,每个X2分别独立地为N,每个R1和R2分别独立地为H、甲磺酰基、乙酰基。
  111. 如权利要求89-110所述的化合物,A具有下式之一:
    其中Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  112. 如权利要求89-111所述的化合物,每个Q1和Q2各自独立地为H、F、-CN、甲基。
  113. 如权利要求112所述的化合物,每个Q1和Q2各自独立地为H。
  114. 如权利要求89-113所述的化合物,条件是M1为C(Rd)(Re),X2为C,X3为化学键、A为时,Q8为S、SO、SO2、PR16R17或NR11
  115. 如权利要求89-114所述的化合物,条件是M1为C(Rd)(Re),X2为C,X3为化学键、A为时,Q8为S、SO、SO2或NR11
  116. 如权利要求89-115所述的化合物,X2为N,X3为化学键、-CH2-、-CH2CH2-、SO、SO2
  117. 如权利要求89-116所述的化合物,X2为CH,X3为化学键。
  118. 如权利要求89-117所述的化合物,n为0或者1。
  119. 如权利要求89所述的化合物,具有式(I-1)所示的化合物或其立体异构体:
    其中T1、T2、A、R3以及Bx各自如权利要求89所定义;X3为化学键、C(=O)、P(=O)R、SO或SO2;M1为C(Rd)(Re)、C(Rd)(Re)C(Rg)(Rf),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地式(I-1)为H或C1-C6烷基;R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
  120. 如权利要求119所述的化合物,每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、氟、羟基、C1-C6烷氧基、O(CH2)2-OCH3
  121. 如权利要求120所述的化合物,每个Rd、Re、Rg和Rf分别独立地为氢。
  122. 如权利要求89-121所述的化合物,R3为氢。
  123. 如权利要求89-122所述的化合物,其中X3为SO2或者化学键。
  124. 如权利要求89-123所述的化合物,A具有下式之一:
    Q1和Q2各自独立地为H、卤素、任选取代的C1-C6烷基;
    Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  125. 如权利要求89所述的化合物,具有式(I-2)所示的化合物或其立体异构体:
    其中T1、T2、A、R3以及Bx各自如权利要求89所定义;M1为C(Rd)(Re)、C(Rd)(Re)C(Rg)(Rg),每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、NJ5、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基。
  126. 如权利要求125所述的化合物,每个Rd、Re、Rg和Rf分别独立地选自以下的取代基团:氢、氟、羟基、C1-C6烷氧基、O(CH2)2-OCH3
  127. 如权利要求125所述的化合物,M1为CH2或CH2CH2
  128. 如权利要求125-127所述的化合物,R3为氢。
  129. 如权利要求125-128所述的化合物,A具有下式之一:
    Q1和Q2各自独立地为H、卤素、任选取代的C1-C6烷基;
    Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19
    R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  130. 如权利要求89所述的化合物,具有式(II-1)所示或其立体异构体:
    其中T1、T2、X1、X3、A、R3、Bx以及n各自如权利要求89所定义;R1和R2分别独立地为H、甲磺酰基、乙酰基。
  131. 如权利要求130所述的化合物,n为0或者1。
  132. 如权利要求130-131所述的化合物,X3为CH2或者CH2CH2
  133. 如权利要求89所述的化合物,具有式(II-2)或式(II-3)所示或其立体异构体:
    其中T1、T2、X1、A以及Bx各自如权利要求89所定义。
  134. 如权利要求89所述的化合物,具有式(III-1)或式(III-2)所示或其立体异构体:
    其中T1、T2、X1、A以及Bx各自如各自如权利要求89所定义。
  135. 如权利要求130-134所述的化合物,中的A具有下式之一:
    其中Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基;Q8为O、S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基、C(=O)J3、C(=O)OJ3或者C(=O)N(J3)(J4);J3和J4独立地为H或C1-C6烷基;
    每个任选取代的基团包含一个或多个独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  136. 如权利要求118-135所述的化合物,其中每个Q1和Q2各自独立地为H、F、-CN、甲基。
  137. 如权利要求136所述的化合物,其中每个Q1和Q2各自独立地为H。
  138. 如权利要求118-137所述的化合物,其中T1为任选保护的膦部分具有下式:
    其中:
    Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、胺基或者保护/取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基。
  139. 如权利要求138所述的化合物,取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基。
  140. 如权利要求138所述的化合物,Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
  141. 如权利要求138所述的化合物,Rb为O,Ra和Rc各自独立地选自OH、OCH3、OCH2CH3、OCH(CH3)2、OCH2OC(=O)C(CH3)3、OCH2CH2CN、NHSO2CH3
  142. 如权利要求118-141所述的化合物,T2为活性磷基团,所述的活性磷基团是亚磷酰胺。
  143. 如权利要求142所述的化合物,T2活性磷基团选自二异丙基氰基乙氧基亚磷酰胺、二异丙基乙基亚磷酰胺和H-膦酸酯。
  144. 如权利要求118-142所述的化合物,BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
  145. 如权利要求144所述的化合物,BX杂环碱基部分为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
  146. 如权利要求144所述的化合物,BX杂环碱基部分为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)、尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。
  147. 一种具有式(IV)或它们的立体异构体所示的化合物:
    其中:Q8为S、SO、SO2、PR16R17或NR11;R16和R17独立地为(=O)、(=S)、OH、SH、C1-C6烷基、NR18R19;Ra和Rc各自独立地选自羟基或者保护的羟基、巯基或者保护的巯基、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、保护的或者任选取代的氨基、天然的或修饰的核苷;并且Rb为O、S或NR12,R12为氢、C1-C6烷基、氨基保护基;
    取代的氨基中的取代基选自:任选取代的C1-C6烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、亚磺酰基、磺酰基、乙酰基;
    Q1和Q2各自独立地为H、卤素、-CN、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、任选取代的C2-C6烯基、任选取代的C2-C6炔基或NR4R5
    每个R4、R5、R11、R18和R19独立地为H、任选取代的C1-C6烷基、任选取代的C1-C6烷氧基、甲磺基、磺酸基;
    Z是包含亚磷酰胺、糖或糖替代性部分的核苷;
    每个取代的基团包含一个或多个任选独立地选自以下的取代基团:卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、CN。
  148. 如权利要求147所述的化合物,其中Q8为S、SO或SO2
  149. 如权利要求147-148所述的化合物,Q1和Q2各自独立地为H。
  150. 如权利要求147-149所述的化合物,所述糖或糖替代性部分的核苷中,糖或糖替代性部分包括5元呋喃糖环、非呋喃糖环或5-6元碳环体系或开放体系。
  151. 如权利要求150所述的化合物,糖或糖替代性部分选自:吗啉基、环己烯基、环己基、环戊基、吡喃基、环己六醇基、呋喃糖、非锁核碱基类似物(UNA)、甘油核酸碱基类似物(GNA)、锁核酸(LNA)或桥联核酸(BNA)。
  152. 如权利要求151所述的化合物,其中Q8与糖或糖替代性部分的4'-碳或者5'-碳键合。
  153. 如权利要求150-151所述的化合物,其中糖或糖替代性部分的核苷具有以下结构示意:
    其中,M2为C(q3)(q4)、C(q3)(q4)C(q5)(q6);
    M3为O、S、NR13、C(q7)(q8)、C(q7)(q8)C(q9)(q10)、C(q7)=C(q8)、OC(q7)(q8);
    X1为化学键或选自O、S、NJ1或CJ1J2,其中J1和J2各自独立地是氢、卤素、磺酰基、亚磺酰基、任选取代的C1-C6烷基、任选取代的C3-C6环烷基、任选取代的C2-C6烯基、任选取代的C2-C6炔基、任选取代的C5-C12芳基、任选取代的5-12元杂芳基、任选取代的5-12元杂环;
    X2为CR15或者N;
    X3为化学键、任选取代的C1-C3亚烷基、SO、SO2、C(=O)、P(=O)R;
    R为OH、SH、C1-C6烷基、NH2、NHSO2CH3
    Bx为杂环碱基部分;
    R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10分别独立地为氢、卤素、羟基、C1-C6烷基、C1-C6烷氧基、C1-C6烷巯基、O(CH2)2-OCH3、CN、OC(=O)J5、OC(=O)N(J5)(J6)和C(=O)N((J5)(J6),J5、J6独立地为H或C1-C6烷基;
    R13为氢、C1-C6烷基。
  154. 如权利要求153所述的化合物,每个R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10分别独立地选自以下的基团:氢、氟、羟基、C1-C6烷基、C1-C6烷氧基、O(CH2)2-OCH3
  155. 如权利要求154所述的化合物,每个R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10分别独立地选自以下的基团:氢。
  156. 如权利要求153-155所述的化合物,其中糖或糖替代性部分的核苷具有以下结构示意:
  157. 如权利要求147-156所述的化合物,
    其中,Q8、Ra、Rc、Rb、M2、M3、X1、X2、X3、q1、q2和Bx,各自如权利要求147所示。
  158. 如权利要求157所述的化合物,R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10各自独立的选自氢、氟、羟基、甲基、甲氧基、O(CH2)2-OCH3
  159. 如权利要求158所述的化合物,R15、q1、q2、q3、q4、q5、q6、q7、q8、q9和q10各自独立的选自氢。
  160. 如权利要求157-159所述的化合物,M3为O、S、C(q7)(q8),M2为C(q3)(q4),X2为CR15或者N,X3为化学键、SO、SO2
  161. 如权利要求160所述的化合物,M3为O、S、CH2,M2为CH2,X2为CH,X3为化学键。
  162. 如权利要求160所述的化合物,M3为CH2,M2为CH2,X2为N,X3为化学键、SO或SO2
  163. 如权利要求157-159所述的化合物,M3为C(q7)(q8),M2为C(q3)(q4)C(q5)(q6),X2为CR15或者N,X3为化学键、SO、SO2
  164. 如权利要求163所述的化合物,M3为CH2,M2为CH2CH2,X2为CH,X3为化学键。165.如权利要求163所述的化合物,M3为CH2,M2为CH2CH2,X2为N,X3为化学键、SO或SO2
  165. 如权利要求147-164所述的化合物,Q8为S、SO或SO2
  166. 如权利要求147-165所述的化合物,Rb为O或者S,Ra和Rc各自独立地选自受保护的羟基、C1-C6烷基、C1-C6烷氧基。
  167. 如权利要求147-165所述的化合物,Ra和Rc各自独立地选自羟基、OCH3、OCH2CH3、OCH(CH3)2OCH3、OCH2CH2CN、NHSO2CH3
  168. 如权利要求147-167所述的化合物,BX杂环碱基部分选自天然核碱基、修饰的核碱基、通用碱基。
  169. 如权利要求168所述的化合物,BX杂环碱基部分为嘧啶、取代的嘧啶、假尿嘧啶、取代的假尿嘧啶、嘌呤、次黄嘌呤或取代的嘌呤。
  170. 如权利要求168所述的化合物,BX杂环碱基部分为2-硫尿嘧啶、5-氟尿嘧啶、二氢尿苷(D)、7-甲基鸟苷(m7G)、尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、假尿嘧啶、N1-甲基-假尿嘧啶、次黄嘌呤、5-甲基胞嘧啶、5-甲基尿嘧啶、3-苯甲酰基尿嘧啶、2,6-二氨基嘌呤、腺嘌吟或鸟嘌呤。
  171. 如权利要求147-170所述的化合物,所述的亚磷酰胺选自二异丙基氰基乙氧基亚磷酰胺、二异丙基乙基亚磷酰胺和H-膦酸酯。
  172. 如权利要求147-171所述的化合物,具有如下具体结构:
PCT/CN2024/085752 2023-04-06 2024-04-03 5'-膦酸酯修饰的核苷类似物及其制备的寡核苷酸 WO2024208249A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2023086603 2023-04-06
CNPCT/CN2023/086603 2023-04-06
CNPCT/CN2023/129195 2023-11-02
CN2023129195 2023-11-02

Publications (1)

Publication Number Publication Date
WO2024208249A1 true WO2024208249A1 (zh) 2024-10-10

Family

ID=92971157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/085752 WO2024208249A1 (zh) 2023-04-06 2024-04-03 5'-膦酸酯修饰的核苷类似物及其制备的寡核苷酸

Country Status (1)

Country Link
WO (1) WO2024208249A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154014A (zh) * 2010-04-28 2013-06-12 Isis制药公司 修饰核苷、其类似物以及由它们制备的寡聚化合物
CN109526222A (zh) * 2016-06-06 2019-03-26 箭头药业股份有限公司 5’-环膦酸酯修饰核苷酸
CN110072530A (zh) * 2016-09-02 2019-07-30 迪克纳制药公司 4′-磷酸酯类似物和包含其的寡核苷酸
CN114375296A (zh) * 2019-06-06 2022-04-19 艾维迪提生物科学公司 核酸多肽组合物及其用途
WO2023164464A1 (en) * 2022-02-22 2023-08-31 Sanegene Bio Usa Inc. 5'-modified carbocyclic ribonucleotide derivatives and methods of use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154014A (zh) * 2010-04-28 2013-06-12 Isis制药公司 修饰核苷、其类似物以及由它们制备的寡聚化合物
CN109526222A (zh) * 2016-06-06 2019-03-26 箭头药业股份有限公司 5’-环膦酸酯修饰核苷酸
CN110072530A (zh) * 2016-09-02 2019-07-30 迪克纳制药公司 4′-磷酸酯类似物和包含其的寡核苷酸
CN114375296A (zh) * 2019-06-06 2022-04-19 艾维迪提生物科学公司 核酸多肽组合物及其用途
WO2023164464A1 (en) * 2022-02-22 2023-08-31 Sanegene Bio Usa Inc. 5'-modified carbocyclic ribonucleotide derivatives and methods of use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAVE, J. F. ET AL.: "Enzymatic phosphorylation and pyrophosphorylation of 2',3'- dideoxyadenosine-5'-monophosphate, a key metabolite in the pathway for activation of the anti-HIV (human immunodeficiency virus) agent 2',3'-dideoxyinosine", BIOCHEMICAL PHARMACOLOGY, vol. 48, no. 6, 31 December 1994 (1994-12-31), pages 1105 - 1112, XP025552783, DOI: 10.1016/0006-2952(94)90146-5 *
WOLFF-KUGEL, D. ET AL.: "Studies Towards the Synthesis of the Saturated and Unsaturated Carbocyclic Methylene Phosphonate Analogs of Dideoxyadenosine", NUCLEOSIDES AND NUCLEOTIDES, vol. 12, 31 December 1993 (1993-12-31), pages 279 - 294, XP093053958, DOI: 10.1080/07328319308017826 *

Similar Documents

Publication Publication Date Title
KR101654007B1 (ko) 테트라하이드로피란 핵산 유사체
JP2022512975A (ja) S-抗原輸送阻害オリゴヌクレオチドポリマーおよび方法
EP4022059A1 (en) Oligonucleotide compositions and methods of use thereof
KR20190040033A (ko) 가역적으로 변형된 올리고뉴클레오티드를 포함하는 조성물 및 그의 용도
US9688707B2 (en) Bicyclic morpholino compounds and oligomeric compounds prepared therefrom
JP2021046396A (ja) ホスホルアミダイト化学を使用する骨格修飾モルホリノオリゴヌクレオチド及びキメラの合成
KR20180103166A (ko) 핵산 복합체
JP7263236B2 (ja) 新規二環式ヌクレオシドおよびそれから調製されたオリゴマー
KR20210008369A (ko) 7'-5'-알파-아노머-이중고리상 당 뉴클레오시드를 포함하는 올리고뉴클레오티드 컨쥬게이트
US9249178B2 (en) Tricyclic nucleosides and oligomeric compounds prepared therefrom
TW202220695A (zh) 寡核苷酸之全身遞送
WO2024208249A1 (zh) 5'-膦酸酯修饰的核苷类似物及其制备的寡核苷酸
WO2014089146A1 (en) Compositions and methods for in vivo delivery of antisense compounds
KR20240014067A (ko) 뮤신 5AC (MUC5AC)의 발현을 억제하기 위한 RNAi 작용제, 그의 조성물, 및 사용 방법
WO2024140101A1 (zh) 修饰的双链寡核苷酸分子、修饰的双链寡核苷酸缀合物及其用途
WO2024040531A1 (en) Novel compositions for conjugating oligonucleotides and carbohydrates
WO2023109814A1 (zh) miRNA-2911分子作为核酸稳定剂的应用
WO2024114776A1 (zh) 双环脱碱基核酸类似物以及由它们制备的寡聚化合物
JP2022120380A (ja) miRNA133-b誘導体及びその利用
CN118984717A (zh) Arnatar化合物和用于增强细胞摄取的方法