[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024120381A1 - 电源装置及其控制方法 - Google Patents

电源装置及其控制方法 Download PDF

Info

Publication number
WO2024120381A1
WO2024120381A1 PCT/CN2023/136416 CN2023136416W WO2024120381A1 WO 2024120381 A1 WO2024120381 A1 WO 2024120381A1 CN 2023136416 W CN2023136416 W CN 2023136416W WO 2024120381 A1 WO2024120381 A1 WO 2024120381A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
current
sampled
reference value
Prior art date
Application number
PCT/CN2023/136416
Other languages
English (en)
French (fr)
Inventor
段鹏飞
李希志
徐鹏洋
陶淦
成始丰
史新清
杨默轩
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211573840.8A external-priority patent/CN115842469A/zh
Priority claimed from CN202310203037.3A external-priority patent/CN118589887A/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024120381A1 publication Critical patent/WO2024120381A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from AC input or output

Definitions

  • the present disclosure relates to the technical field of air-conditioning power supply, and in particular to a power supply device and a control method thereof.
  • the air conditioning system of three-phase AC power supply usually uses the method of setting an uncontrolled rectifier circuit in the three-phase AC power supply circuit as the power input terminal.
  • a power supply device includes a three-phase AC voltage source, a rectifier circuit and a controller.
  • the three-phase AC voltage source is configured to output three-phase AC power.
  • the rectifier circuit is configured to convert the three-phase AC power into DC power.
  • the rectifier circuit includes multiple switch tubes and multiple capacitors.
  • the controller is connected to the three-phase AC voltage source and the rectifier circuit.
  • the controller is configured to: obtain three-phase sampling data of the three-phase AC power, wherein the three-phase sampling data includes three-phase sampling current; obtain the sampling voltages of the multiple capacitors; obtain the DC sampling voltage and midpoint current of the power supply device according to the sampling voltages of the multiple capacitors; obtain the three-phase modulation voltage of the power supply device according to the DC sampling voltage and the three-phase sampling current; obtain the zero-sequence voltage of the power supply device according to the midpoint current, the three-phase sampling current, and the three-phase modulation voltage; and obtain the three-phase synthetic drive control quantity of the power supply device according to the zero-sequence voltage and the three-phase modulation voltage, wherein the three-phase synthetic drive control quantity is used for pulse width modulation of the multiple switch tubes.
  • a control method for a power supply device is provided.
  • the control method for the power supply device is executed at the controller of the power supply device.
  • the power supply device includes: a three-phase AC voltage source, a rectifier circuit and the controller; the rectifier circuit includes a plurality of switch tubes and a plurality of capacitors; the controller is connected to the three-phase AC voltage source and the rectifier circuit.
  • the control method includes: obtaining three-phase sampling data of the three-phase AC output by the three-phase AC voltage source, wherein the three-phase sampling data includes a three-phase sampling current; obtaining the sampling voltages of the plurality of capacitors; obtaining the DC sampling voltage and the midpoint current of the power supply device according to the sampling voltages of the plurality of capacitors; obtaining the three-phase modulation voltage of the power supply device according to the DC sampling voltage and the three-phase sampling current; obtaining the zero-sequence voltage of the power supply device according to the midpoint current, the three-phase sampling current, and the three-phase modulation voltage; and obtaining the three-phase synthetic drive control quantity of the power supply device according to the zero-sequence voltage and the three-phase modulation voltage; the three-phase synthetic drive control quantity is used for pulse width modulation of the plurality of switch tubes.
  • FIG1A is a schematic diagram of an air conditioner according to some embodiments of the present disclosure.
  • FIG1B is a schematic diagram of a power supply device according to some embodiments of the present disclosure.
  • FIG2 is a schematic diagram of another power supply device according to some embodiments of the present disclosure.
  • FIG3 is a curve showing changes in sampled voltages of a plurality of capacitors according to some embodiments of the present disclosure
  • FIG4 is a schematic diagram of another power supply device according to some embodiments of the present disclosure.
  • FIG5 is a schematic diagram of a sampling current of a power supply device after steady state according to some embodiments of the present disclosure
  • FIG6 is a schematic diagram of a controller according to some embodiments of the present disclosure.
  • FIG7 is a schematic diagram of another controller according to some embodiments of the present disclosure.
  • FIG8 is a schematic diagram of yet another controller according to some embodiments of the present disclosure.
  • FIG9 is a schematic diagram of a phase-locked loop of a second-order generalized integrator according to some embodiments of the present disclosure.
  • FIG10 is a schematic diagram of a second-order generalized integrator according to some embodiments of the present disclosure.
  • FIG11 is a Bode diagram of a closed-loop transfer function according to some embodiments of the present disclosure.
  • FIG12 is a schematic diagram of yet another controller according to some embodiments of the present disclosure.
  • FIG13 is a schematic diagram of yet another power supply device according to some embodiments of the present disclosure.
  • FIG14 is a flow chart of a control method of a power supply device according to some embodiments of the present disclosure.
  • FIG. 15 is a flowchart of another method for controlling a power supply device according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • Coupled When describing some embodiments, the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or a communication between two elements.
  • the term “coupled” indicates that two or more components are in direct physical or electrical contact. However, the terms “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the contents of this document.
  • the term “if” is optionally interpreted to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that” or “if [a stated condition or event] is detected” are optionally interpreted to mean “upon determining that” or “in response to determining that” or “upon detecting [a stated condition or event]” or “in response to detecting [a stated condition or event],” depending on the context.
  • the rectifier is usually a nonlinear circuit composed of a diode, an inductor, and a capacitor, where the inductor is large in size and the number of capacitors is large.
  • the power factor here can be understood as the ratio of effective power to apparent power.
  • PFC power factor correction
  • the harmonic content can be reduced by adjusting the parameters of the circuit elements in the rectifier of the three-phase AC air conditioning system, for example, adjusting the inductance value of the inductor and the capacitance value of the capacitor in the rectifier.
  • adjusting the parameters of the circuit elements to reduce the harmonic content In actual use, it is easily affected by some factors and cannot completely eliminate the harmonics. The content and adjustment of the parameters of the circuit components will result in a larger circuit inductor and more capacitors, thereby expanding the occupied space.
  • an embodiment of the present disclosure provides a power supply device (also referred to as a power supply circuit), which is applied to a three-phase alternating current air conditioning system and can efficiently eliminate harmonic content without increasing the occupied space.
  • a power supply device also referred to as a power supply circuit
  • Fig. 1A is a schematic diagram of the structure of an air conditioner provided by some embodiments of the present disclosure.
  • the air conditioner 1000 includes an indoor unit 100 and an outdoor unit 200.
  • the indoor unit 100 and the outdoor unit 200 are connected by a pipeline to transmit a refrigerant.
  • the indoor unit 100 includes an indoor heat exchanger 400 and an indoor fan 600.
  • the outdoor unit 200 includes a compressor 206, a four-way valve 207, an outdoor heat exchanger 208, an outdoor fan 209 and an expansion valve 210.
  • the compressor 206, the outdoor heat exchanger 208, the expansion valve 210 and the indoor heat exchanger 400 connected in sequence form a refrigerant circuit, and the refrigerant circulates in the refrigerant circuit and exchanges heat with the air through the outdoor heat exchanger 208 and the indoor heat exchanger 400, respectively, to realize the cooling mode or heating mode of the air conditioner 1000.
  • the air conditioner 1000 is connected to a power supply device, which is used to supply power to the air conditioner 1000.
  • the power supply device can be connected to the compressor 206 and the outdoor fan 209 in the outdoor unit 200 to supply power to the compressor 206 and the outdoor fan 209.
  • FIG1B is a schematic diagram of the structure of a power supply device provided in some embodiments of the present disclosure.
  • the power supply device is applied to the above-mentioned air conditioner 1000.
  • the power supply device 10 provided in the embodiments of the present disclosure includes a three-phase AC voltage source 1011 and a rectifier circuit 1012.
  • the rectifier circuit 1012 in the power supply device 10 can be disposed inside the air conditioner 1000 , and the three-phase AC voltage source 1011 can be disposed outside the air conditioner 1000 .
  • the three-phase AC voltage source 1011 can be understood as receiving AC power from the power grid, which is equivalent to the power grid;
  • the rectifier circuit 1012 can be understood as a rectifier, which is a three-phase rectifier circuit.
  • the three-phase rectifier circuit can be a three-phase Vienna rectifier circuit (also known as a three-phase Vienna topology circuit). It can be understood that the air conditioner is connected to the power grid through the rectifier circuit.
  • the three-phase AC voltage source 1011 is configured to output three-phase AC power.
  • the three-phase AC power output by the three-phase AC voltage source 1011 is composed of three sinusoidal signals with the same frequency, equal potential amplitude, and a phase difference of 120 degrees, and the three-phase AC power is used as the power input of the power supply device 10.
  • the rectifier circuit 1012 is configured to convert the three-phase AC power output by the three-phase AC voltage source 1011 into DC power.
  • FIG2 is a schematic diagram of the structure of a power supply device 10 provided in some embodiments of the present disclosure.
  • the three-phase voltages of the three-phase AC voltage source 1011 are Ea, Eb and Ec respectively.
  • the rectifier circuit 1012 includes a plurality of switch tubes and a plurality of capacitors.
  • the rectifier circuit 1012 includes switch tubes Q1, Q2, Q3, Q4, Q5 and Q6, and capacitors C1 and C2 (i.e., a first capacitor C1 and a second capacitor C2).
  • the capacitor can be a DC bus filter capacitor.
  • the power supply device 10 further includes resistors R1, R2, and R3, inductors L1, L2, and L3, and a load RL.
  • the rectifier circuit 1012 further includes diodes D1, D2, D3, D4, D5, and D6.
  • the load RL can be understood as a variable frequency drive circuit of a compressor and a fan in an air conditioner or a conventional DC resistance load.
  • the resistors R1, R2, and R3 can be understood as equivalent resistances of the inductors L1, L2, and L3.
  • resistors R1, R2 and R3, inductors L1, L2 and L3, and capacitors C1 and C2 constitute the passive part of the power supply device 10; and switches Q1, Q2, Q3, Q4, Q5 and Q6 constitute the active part of the power supply device 10.
  • diodes D1, D2, D3, D4, D5 and D6 are connected in pairs to form a three-phase bridge arm.
  • Switch tubes Q1, Q2, Q3, Q4, Q5 and Q6 are connected in pairs to form a three-phase bridge arm.
  • the three-phase voltages Ea, Eb and Ec are coupled to a node N, the inductor L1 is connected in series between one end of the power supply for providing the three-phase voltage Ea and the cathode of the diode D1, the inductor L2 is connected in series between one end of the power supply for providing the three-phase voltage Eb and the cathode of the diode D2, and the inductor L3 is connected in series between one end of the power supply for providing the three-phase voltage Ec and the cathode of the diode D3.
  • the anodes of diodes D1, D2 and D3 are all connected to node P1.
  • the cathodes of diodes D4, D5 and D6 are all connected to node P2.
  • the anode of diode D4 is connected to the cathode of diode D1, and the anode of diode D5 is connected to the cathode of diode D6.
  • the cathode of diode D2 is connected, and the anode of diode D6 is connected to the cathode of diode D3.
  • One end of switch tubes Q2, Q4 and Q6 is connected to the midpoint O.
  • Switch tubes Q1 and Q2 are connected in series, and one end of switch tube Q1 and the cathode of diode D1 are connected to node A.
  • Switch tubes Q3 and Q4 are connected in series, and one end of switch tube Q3 and the cathode of diode D2 are connected to node B.
  • Switch tubes Q5 and Q6 are connected in series, and one end of switch tube Q5 and the cathode of diode D3 are connected to node C.
  • One end of capacitor C1 is connected to node P1, and the other end of capacitor C1 is connected to node S.
  • One end of capacitor C2 is connected to node S, and the other end of capacitor C2 is connected to node P2.
  • node S between capacitors C1 and C2 and midpoint O can be understood as the same node.
  • the voltage difference between the capacitors C1 and C2 in the rectifier circuit 1012 will affect the stability of the DC voltage output by the rectifier circuit 1012, and will also affect the harmonic content of the current on the grid side.
  • the voltage deviation on the DC side between the two capacitors C1 and C2 can be reduced, thereby effectively suppressing the midpoint voltage fluctuation and reducing the harmonic content on the AC side.
  • L can be understood as the inductance value of inductors L1, L2 and L3;
  • R represents the resistance value of resistors R1, R2 and R3, and can also be equivalent to the resistance value of inductors L1, L2 and L3;
  • V AO can be understood as the voltage between node A and midpoint O;
  • V BO can be understood as the voltage between node B and midpoint O;
  • V CO can be understood as the voltage between node C and midpoint O;
  • ia, ib and ic can be understood as the input current of the rectifier circuit 1012.
  • the switch tubes Q1 and Q2 control the voltage V AO ; the switch tubes Q3 and Q4 control the voltage V BO ; the switch tubes Q5 and Q6 control the voltage V CO ; sign() can be understood as a sign function;
  • 1- da , 1-d b and 1-d c can be understood as the modulation wave signals before the power supply device 10 reaches a steady state;
  • the power factor is 1, that is, unity power.
  • the equivalent resistance of each phase input of the rectifier circuit 1012 is defined as Re , and the relationship between the input voltage and input current of the rectifier circuit 1012 (1-5) is as follows:
  • Vm is the steady-state output voltage of the DC side of the power supply device 10
  • RS is an equivalent input current sampling resistor of the input current of the rectifier circuit 1012 .
  • the core control equation (1-7) of the rectifier circuit 1012 can be obtained:
  • the power supply device 10 further includes a controller 102 .
  • the controller 102 is at least connected to the rectifier circuit 1012 , and the controller 102 can control multiple switch tubes Q1 to Q6 in the rectifier circuit 1012 .
  • the controller 102 can be a processing device or chip capable of processing data or running program instructions, such as a central processing unit (CPU), a microcontroller unit (MCU), an application specific integrated circuit (ASIC), a programmable logic device (PLD), etc.
  • CPU central processing unit
  • MCU microcontroller unit
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • the controller 102 is configured to: obtain three-phase sampling data of the three-phase alternating current output by the three-phase alternating current voltage source 1011, wherein the three-phase sampling data includes three-phase sampling current; and obtain sampling voltages of multiple capacitors in the rectifier circuit.
  • the three-phase sampling currents are ia, ib and ic.
  • the sampling voltages of the plurality of capacitors may include a sampling voltage Vdcp of the first capacitor C1 and a sampling voltage Vdcn of the second capacitor C2.
  • the power supply device includes a sampling circuit, which is used to sample three-phase alternating current to obtain three-phase sampling data, and to sample multiple capacitors to obtain sampled voltages of multiple capacitors.
  • the sampling circuit can be composed of circuit elements such as capacitors, resistors, operational amplifiers, etc., and the embodiments of the present disclosure are not limited to this.
  • the controller 102 is further configured to obtain a DC sampling voltage and a midpoint current of the power supply device 10 according to the sampling voltages of the plurality of capacitors.
  • the DC sampling voltage of the power supply device 10 can be understood as the sampling voltage of the DC side of the power supply device 10, that is, the above-mentioned V m .
  • the sampling voltages of the first capacitor C1 and the second capacitor C2 are V dcp and V dcn , respectively.
  • the controller 102 is further configured to obtain a DC sampling voltage of the power supply device 10 according to a preset voltage reference value and sampling voltages of a plurality of capacitors.
  • the controller 102 The DC sampling voltage V m of the power supply device 10 is obtained by taking into account the voltage reference value, the sampling voltage V dcp of the first capacitor C1 and the sampling voltage V dcn of the second capacitor C2.
  • the controller 102 determines the difference between the preset voltage reference value V dc ' and the sum V dc of the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor C2, thereby determining the DC sampled voltage V m of the power supply device 10.
  • the preset voltage reference value may refer to the third voltage reference value described below, which has a value range of 600V to 800V, and those skilled in the art may set the preset voltage reference value according to the working principle and actual conditions.
  • the midpoint current of the power supply device 10 can be understood as the current at the midpoint O between the first capacitor C1 and the second capacitor C2.
  • the controller 102 is further configured to obtain the midpoint current of the power supply device 10 according to the capacitance value of one of the multiple capacitors, the sampled voltages of the multiple capacitors, and the sampling period of the power supply device 10.
  • the sampling period may range from 1 kHz to 100 kHz.
  • the controller 102 obtains the midpoint current of the power supply device 10 based on the capacitance value of the first capacitor C1 or the capacitance value of the second capacitor C2, the sampling voltage V dcp of the first capacitor C1 and the sampling voltage V dcn of the second capacitor C2, and the sampling period of the power supply device 10.
  • the midpoint current is expressed as Wherein, I npcon represents the midpoint current, C represents the capacitance value of the first capacitor C1 or the capacitance value of the second capacitor C2 , and T s represents the sampling period of the power supply device 10 .
  • the midpoint current is used to balance the deviation between the sampling voltage V dcp of the first capacitor C1 and the sampling voltage V dcn of the second capacitor C2, so that the deviation is within the allowable range. That is, through the midpoint current, the deviation can be controlled to be small, or even to zero. In this way, the generation of current harmonics on the AC side of the circuit can be avoided.
  • the controller 102 is further configured to obtain a three-phase modulation voltage of the power supply device 10 according to the DC sampling voltage Vm and the three-phase sampling currents ia, ib and ic.
  • the three-phase modulation voltage of the power supply device 10 can be understood as 1- da , 1- db and 1- dc as described above.
  • 1- da , 1- db and 1- dc can be sinusoidal wave signals.
  • the three-phase modulation voltages 1-d a , 1-d b and 1-d c are respectively expressed as:
  • the controller 102 is further configured to obtain a zero-sequence voltage of the power supply device 10 according to the midpoint current I npcon , the three-phase sampled currents ia, ib and ic, and the three-phase modulated voltages 1 - da , 1 - db and 1 - d c .
  • the zero-sequence voltage V0 is expressed as:
  • V ral , V rbl and V rcl represent three-phase modulation voltages 1-d a , 1-d b and 1-d c , respectively.
  • the zero-sequence voltage V0 is superimposed on the three-phase modulated voltages 1-d a , 1-d b and 1-d c to obtain the modulated three-phase modulated voltage. In this way, when the power supply device 10 reaches a steady state, the modulated three-phase modulated voltage will change stably.
  • Superimposing the zero-sequence voltage V0 on the three-phase modulation voltages 1- da , 1- db and 1- dc can be understood as performing balanced control on the midpoint voltage in the power supply device 10.
  • the midpoint voltage here can be understood as the sampling voltage Vdcn of the second capacitor C2.
  • the controller 102 is further configured to obtain a three-phase synthetic drive control quantity of the power supply device 10 according to the zero-sequence voltage and the three-phase modulation voltage.
  • the three-phase synthetic drive control quantity is used for pulse width modulation of multiple switch tubes in the rectifier circuit 1012.
  • V ra , V rb and V rc V rcl +V 0 .
  • the three-phase composite drive control quantities V ra , V rb and V rc can be understood as the new sinusoidal wave obtained by modulating the sinusoidal wave signals of the three-phase modulation voltages 1-d a , 1-d b and 1-d c (i.e., V ral , V rbl and V rcl ) by the zero-sequence voltage V 0. signal. It can be understood that by modulating the sine wave signals of the three-phase modulation voltages 1-d a , 1-d b and 1-d c according to the zero-sequence voltage V 0 , a new sine wave signal is obtained.
  • pulse width modulation can be performed on multiple switch tubes in the rectifier circuit 1012, so that the voltage deviation of the sampling voltage V dcp of the first capacitor C1 and the sampling voltage V dcn of the second capacitor C2 can be controlled. Therefore, by balancing the midpoint voltage in the power supply device 10, the voltage deviation of the sampling voltage V dcp of the first capacitor C1 and the sampling voltage V dcn of the second capacitor C2 can be reduced, thereby reducing the current harmonic content on the three-phase AC voltage source side.
  • FIG3 shows a curve of a change in the sampling voltage of the capacitor in the rectifier circuit 1012 provided in some embodiments of the present disclosure.
  • curve X1 represents the sampling voltage V dcp of the first capacitor C1
  • curve X2 represents the sampling voltage V dcn of the second capacitor C2.
  • the rectifier circuit 1012 is started at 0.5s; at 1s, the zero-sequence voltage V 0 is superimposed on the three-phase modulation voltages V ral , V rbl and V rcl .
  • the deviation between the sampling voltage V dcp of the first capacitor C1 and the sampling voltage V dcn of the second capacitor C2 is large, and the current harmonic content on the three-phase AC voltage source side (i.e., the AC side of the power supply device) is high.
  • the deviation between the sampling voltage V dcp of the first capacitor C1 and the sampling voltage V dcn of the second capacitor C2 is reduced, and the current harmonic content on the three-phase AC voltage source side is reduced.
  • the three-phase synthetic drive control quantity is modulated by zero-sequence voltage to obtain a sinusoidal wave signal, which is compared with the carrier signal output by the controller 102 to output a square wave signal.
  • the square wave signal is used to perform pulse width modulation on the switches Q1, Q2, Q3, Q4, Q5 and Q6 in the rectifier circuit 1012, thereby driving the switches Q1, Q2, Q3, Q4, Q5 and Q6 in the rectifier circuit 1012 to open and close, so as to achieve balanced control of the midpoint voltage of the first capacitor C1 and the second capacitor C2.
  • the three-phase sampling currents ia, ib and ic change steadily, and the waveforms can be referred to as shown in Figure 5. It can be understood that, as shown in Figure 5, the signal of the sampling current of each phase is a sine wave in an ideal state, but in practice it changes steadily with the switching frequency sub-ripple fluctuation.
  • the rectifier circuit 1012 in the power supply device 10 can balance the midpoint voltage on the DC side of the power supply device 10.
  • a single-cycle control strategy is used to control the midpoint current to balance the voltage of the first capacitor C1 and the second capacitor C2.
  • the single-cycle control strategy controls the midpoint current by superimposing the zero-sequence voltage on the three-phase modulation voltage 1-d a , 1-d b and 1-d c after obtaining the midpoint current and the zero-sequence voltage, and obtaining the three-phase synthetic drive control quantity of the power supply device 10. That is, only through simple addition and subtraction operations, 6-way drive signals (for example, 6-way drive signals for controlling 6 switch tubes Q1 to Q6) of the three-phase circuit can be obtained to achieve the balance of the midpoint voltage on the DC side of the power supply device 10.
  • the embodiment of the present disclosure can effectively suppress the fluctuation of the DC side midpoint voltage of the power supply device 10 and reduce the current harmonic content generated on the grid side.
  • the algorithm adopted in the embodiment of the present disclosure is simple, low-cost, and occupies little controller memory.
  • the midpoint voltage balance control based on the zero-sequence component is added, which can effectively stabilize the bus voltage and reduce the current harmonics on the grid side to meet the standard requirements.
  • the controller 102 includes a first control subcircuit 701 , a second control subcircuit 702 , a third control subcircuit 703 , and a pulse width modulation subcircuit 704 .
  • the controller 102 samples the three-phase AC voltage source 1011 to obtain three-phase sampled currents ia, ib and ic, and samples the first capacitor C1 and the second capacitor C2 to obtain a sampled voltage V dcp of the first capacitor C1 and a sampled voltage V dcn of the second capacitor C2.
  • the first control subcircuit 701 (which may be referred to as a voltage loop control loop) is configured to obtain a sampled voltage V m on the DC side of the power supply device according to the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor C2. For example, in the first control subcircuit 701, a difference obtained by subtracting the sum of the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor C2 from the preset voltage reference value V dc ' and V dc is processed by the voltage controller to obtain the sampled voltage V m on the DC side of the power supply device.
  • the third control subcircuit 703 (which may be referred to as a single-cycle control loop) is configured to obtain three-phase modulation voltages V ral , V rbl and V rcl of the power supply device according to the DC side sampling voltage V m and the three-phase sampling currents ia, ib and ic.
  • the second control subcircuit 702 (which may be referred to as a balancing loop control loop) is configured to obtain the midpoint current I npcon of the power supply device according to the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor C2; and obtain the zero-sequence voltage V 0 of the power supply device according to the midpoint current I npcon , the three-phase sampled currents ia, ib and ic, and the three-phase modulation voltages V ral , V rbl and V rcl .
  • the sampled voltage V dcp of the first capacitor C1 the sampled voltage V dcn of the second capacitor C2 and the three-phase sampled currents ia, ib and ic are balanced via the balancing controller.
  • the third control subcircuit 703 is further configured to superimpose the zero-sequence voltage V 0 on the three-phase modulation voltages V ral , V rbl and V rcl to obtain three-phase composite drive control quantities V ra , V rb and V rc of the power supply device.
  • the pulse width modulation subcircuit 704 is configured to compare the three-phase synthetic drive control quantities V ra , V rb and V rc with the carrier signal provided by the controller 102 and then output a square wave signal for pulse width modulation of the switch tubes Q1, Q2, Q3, Q4, Q5 and Q6 of the rectifier circuit 1012.
  • the carrier signal here can be a triangular wave signal.
  • the voltage and current of the three-phase AC voltage source can be represented by a vector in a complex plane, which is a space vector.
  • a vector in a complex plane which is a space vector.
  • FOC field-oriented control
  • the spatial voltage vector direction of the three-phase voltages Ea, Eb and Ec can be described by the vector reference direction of the stationary abc coordinate system.
  • the spatial synthetic voltage vector is a rotating vector, it is difficult to describe it using a three-phase stationary abc coordinate system, so it is necessary to introduce a two-phase stationary ⁇ coordinate system, in which the ⁇ axis and the ⁇ axis are orthogonal, and the ⁇ axis in the two-phase stationary ⁇ coordinate system is selected to coincide with the a direction in the three-phase stationary abc coordinate system. It can be understood that the spatial synthetic voltage vector is still rotating in the two-phase stationary ⁇ coordinate system.
  • the rotating dq coordinate system can rotate synchronously with the spatial composite voltage vector, and the coordinate axes are the d axis and the q axis, where the d axis is orthogonal to the q axis.
  • the transformation from the two-phase static ⁇ coordinate system to the rotating dq coordinate system can be obtained.
  • the components of the spatial composite voltage vector in the rotating dq coordinate system are constants.
  • the current of the rectifier circuit 1012 i.e., the three-phase Vienna rectifier circuit or the three-phase Vienna topology circuit
  • the proportional-integral (PI) controller in the rectifier circuit 1012 it is difficult for the proportional-integral (PI) controller in the rectifier circuit 1012 to eliminate the steady-state error, and the rectifier circuit 1012 has a low harmonic suppression effect in the stationary abc coordinate system. Therefore, the implementation of the rectifier circuit 1012 in the embodiment of the present disclosure is mainly based on the rotating dq coordinate system.
  • the controller 102 can convert the three-phase AC voltage source sampling voltage (Ea, Eb and Ec), the three-phase AC voltage source sampling current (ia, ib and ic) and the sampling capacitor voltage (V dcp and V dcn ) in the stationary abc coordinate system obtained by sampling the received sampling circuit 201 according to the locked grid voltage phase into the three-phase AC voltage source sampling voltage (Ed and Eq), the three-phase AC voltage source sampling current (id and iq) and the sampling capacitor voltage (V dcp and V dcn ) in the rotating dq coordinate system.
  • the controller 102 calculates the three-phase AC voltage source sampling voltage (Ed and Eq), the three-phase AC voltage source sampling current (id and iq) and the sampling capacitor voltage (V dcp and V dcn ) in the rotating dq coordinate system after the conversion to obtain the voltage control amount, and the voltage control amount controls the duty cycle of the switch tubes Q1, Q2, Q3, Q4, Q5 and Q6 in the three-phase Vienna topology circuit.
  • the three-phase AC voltage source sampling voltage (Ed and Eq) and the three-phase AC voltage source sampling current (id and iq) in the rotating dq coordinate system after coordinate transformation are DC quantities.
  • the duty cycle here can be understood as the proportion of the high level in a pulse cycle to the entire cycle, which can be used to control the on-time of the switch tube. For example, 1 second high level and 1 second low level, the duty cycle is 50%.
  • the three-phase AC voltage source in the power supply device 10 is rectified by a three-phase Vienna topology circuit, and the sampled three-phase AC voltage source sampling voltage (Ea, Eb and Ec) and the three-phase AC voltage source sampling current (ia, ib and ic) in the stationary abc coordinate system are converted into the three-phase AC current in the rotating dq coordinate system.
  • the voltage source samples voltage (Ed and Eq) and the three-phase AC voltage source samples current (id and iq).
  • the AC quantity in the three-phase Vienna topology circuit is converted into DC quantity, so as to better filter out the harmonics generated in the three-phase Vienna topology circuit and improve the power factor of the three-phase Vienna topology circuit.
  • the controller 102 obtains three-phase sampling data of three-phase alternating current, and the three-phase sampling data includes three-phase sampling current and three-phase sampling voltage.
  • the three-phase sampling current is ia, ib and ic; the three-phase sampling voltage is Ea, Eb and Ec.
  • the sampling circuit in the power supply device samples the three-phase alternating current to obtain a three-phase sampling circuit and a three-phase sampling voltage.
  • the sampling circuit can be composed of circuit elements such as resistors, capacitors or operational amplifiers.
  • the controller 102 (eg, the phase locking module in the controller 102 shown in FIG. 7 ) is configured to lock the phase ⁇ 1 of the voltage of the power grid for supplying power to the power supply device 10 .
  • the controller 102 uses a phase-locked loop (PLL) based on a second-order general integrator (SOGI) to lock the phase of the grid voltage.
  • PLL phase-locked loop
  • SOGI second-order general integrator
  • the grid voltage is an alternating current, and its magnitude and direction vary with time.
  • the grid voltage phase is locked so that the phase of the three-phase AC power has a fixed relationship with the grid voltage phase, thereby achieving unity power factor.
  • the current phase can follow the grid voltage phase to achieve unity power factor.
  • the controller 102 (eg, a phase-locked module in the controller 102 ) includes a phase-locked loop and a second-order generalized integrator.
  • the phase locked loop is configured to obtain the angular frequency of the voltage output by the power grid.
  • the second-order generalized integrator is configured to extract a positive sequence component of the voltage of the power grid according to an angular frequency of the voltage output by the power grid.
  • the phase locked loop is further configured to lock the phase of the voltage of the grid according to the positive sequence component of the voltage of the three-phase alternating current.
  • phase-locked loop may be the PPL described above
  • second-order generalized integrator may be the SOGI described above.
  • FIG9 is a schematic diagram of a phase-locked loop of a second-order generalized integrator provided in an embodiment of the present disclosure.
  • FIG10 is a schematic diagram of a second-order generalized integrator provided in an embodiment of the present disclosure.
  • k represents the damping coefficient
  • ⁇ 0 represents the resonant frequency of the second-order generalized integrator, which can also be understood as the angular frequency of the voltage output by the power grid obtained by the PLL. It can be understood that the angular frequency of the voltage output by the power grid is changed in real time.
  • s refers to the independent variable of the function after Laplace transformation.
  • Figure 11 shows the Bode plot of the closed-loop transfer function of D(s) and Q(s).
  • D(s) refers to bandpass filtering
  • Q(s) refers to low-pass filtering
  • the second-order generalized integrator obtains E ⁇ '
  • E ⁇ ' is phase-shifted by 90 degrees (90°) to obtain qE ⁇ . Therefore, SOGI has certain filtering characteristics.
  • the controller 102 (eg, a coordinate conversion module in the controller 103 ) is configured to perform coordinate conversion on the three-phase sampled voltages and the three-phase sampled currents according to the phase of the locked voltage of the power grid.
  • the controller 102 performs coordinate transformation on the three-phase sampled voltages Ea, Eb and Ec and the three-phase sampled currents ia, ib and ic in the abc coordinate system according to the phase of the locked power grid voltage, and obtains the three-phase sampled voltages Ed and Eq and the three-phase sampled currents id and iq after coordinate transformation in the dq coordinate system.
  • the mathematical model of the three-phase currents ia, ib and ic of the power supply device 10 in the stationary abc coordinate system i.e., the three-phase sampling currents
  • the mathematical model of the three-phase currents ia, ib and ic of the power supply device 10 in the stationary abc coordinate system is obtained by coordinate change in the rotating dq coordinate system to obtain the three-phase currents id and iq as follows:
  • ⁇ in formulas (2-1) and (2-2) is the angle between the d-axis of the rotating dq coordinate system during the rotation process and the ⁇ -axis in the two-phase stationary ⁇ coordinate system.
  • the controller samples the voltage (Ea, Eb, and Ec) of the three-phase alternating current in the stationary abc coordinate system, and converts it into the two-phase stationary ⁇ coordinate system to obtain the orthogonal output signals E ⁇ and E ⁇ .
  • the orthogonal output signals E ⁇ and E ⁇ can be linearly combined by SOGI to obtain the positive sequence components E ⁇ + and E ⁇ + in the grid voltage.
  • the positive sequence components E ⁇ + and E ⁇ + can be locked by single synchronous phase locking to obtain the locked grid voltage phase ⁇ 1. Even when the grid voltage is distorted, the SOGI system still has good steady-state performance and dynamic performance, and can also filter the input signal. It can be understood that the grid voltage phase ⁇ 1 is the same as the angle of ⁇ in formula (2-1).
  • the controller 102 (e.g., the voltage loop calculation module in the controller 102 shown in FIGS. 6 to 8) is configured to perform voltage following control on the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor C2 to obtain a first current reference value id' corresponding to the d-axis in the dq coordinate system.
  • the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor C2 can obtain the first current reference value through a PI controller.
  • the controller 102 (for example, the current loop calculation module in the controller 102 shown in Figures 6 to 8) is configured to: perform current following control according to a first current reference value to obtain a first voltage reference value corresponding to the d-axis in the dq coordinate system; and perform current following control according to a second current reference value corresponding to a preset q-axis in the dq coordinate system to obtain a second voltage reference value corresponding to the q-axis in the dq coordinate system.
  • the voltage loop calculation module controls the output voltage of the rectifier circuit to be stable, and outputs a first current reference value to the current loop calculation device.
  • the first current reference value can be used as a reference value of the active component of the current loop calculation module.
  • the current loop calculation module can control the amplitude and phase of the current of the three-phase alternating current, thereby correcting the input power factor of the rectifier circuit.
  • the input component of the d-axis in the current loop calculation module is the first current reference value, and the input component of the q-axis is generally 0; after the current loop calculation module controls the calculation, the first voltage reference value and the second voltage reference value are obtained.
  • the controller 102 e.g., the voltage loop calculation module in the controller 102 shown in FIGS. 6 to 8 ) is configured to: obtain a third voltage reference value in a dq coordinate system, and obtain an accumulated value of a sampled voltage of the first capacitor and a sampled voltage of the second capacitor; and obtain a first current reference value through a PI controller according to a difference between the third voltage reference value and the accumulated value.
  • the third voltage reference value V dc ′ refers to a reference value of a DC voltage, and its value range is 600V to 800V, for example, 600V, 700V or 800V, and those skilled in the art may set it according to the working principle and actual situation.
  • the controller 102 is also configured to obtain a voltage control amount based on the three-phase sampled voltage and three-phase sampled current after coordinate conversion, and the sampled voltages of multiple capacitors, wherein the voltage control amount is used to control the duty cycle of multiple switching tubes in the rectifier circuit 1012.
  • the controller 102 (e.g., the pulse width modulation module in the controller 102 shown in FIGS. 6 to 8) is configured to obtain the voltage control amount according to the first voltage reference value, the second voltage reference value, and the voltage deviation of the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor C2.
  • the pulse width modulation module obtains the voltage control amount according to the received first voltage reference value, the second voltage reference value, and the voltage deviation of the capacitor through the coordinate conversion module.
  • the block performs coordinate transformation to obtain a voltage control amount, so that the duty cycle of the switch tube in the rectifier circuit can be controlled according to the voltage control amount.
  • the current loop calculation module in the controller 102 includes: a first PI control circuit, a first decoupling circuit, a second PI control circuit, and a second decoupling circuit.
  • the first PI control circuit and the second PI control circuit may be PI controllers.
  • the first PI control circuit is configured to perform current balancing control according to the first current reference value and the sampled current of the three-phase AC voltage source corresponding to the d-axis in the dq coordinate system to obtain a fourth voltage reference value corresponding to the d-axis in the dq coordinate system.
  • the difference between the first current reference value and the sampled current of the three-phase AC voltage source corresponding to the d-axis in the dq coordinate system is processed by the first PI control circuit to obtain a fourth voltage reference value corresponding to the d-axis in the dq coordinate system.
  • the fourth voltage reference value is input to the first decoupling circuit.
  • the first decoupling circuit is configured to perform decoupling calculation according to the fourth voltage reference value, the sampled current iq of the three-phase AC voltage source corresponding to the q-axis in the dq coordinate system, and the sampled voltage of the three-phase AC voltage source corresponding to the d-axis (as feedforward), to obtain a first voltage reference value.
  • the first voltage reference value is transmitted to the coordinate conversion module for coordinate conversion.
  • the second PI control circuit is configured to perform current balancing control according to the second current reference value and the sampled current of the three-phase AC voltage source corresponding to the q axis in the dq coordinate system to obtain a fifth voltage reference value corresponding to the q axis in the dq coordinate system.
  • the difference between the second current reference value iq' and the sampled current iq of the three-phase AC voltage source corresponding to the q-axis in the dq coordinate system is processed by the second PI control circuit to obtain the fifth voltage reference value Vq' corresponding to the q-axis.
  • the fifth voltage reference value Vq' is input to the second decoupling circuit.
  • the second decoupling circuit is configured to perform decoupling calculation based on the fifth voltage reference value Vq', the sampled current id of the three-phase AC voltage source corresponding to the d-axis in the dq coordinate system, and the sampled voltage Eq of the three-phase AC voltage source corresponding to the q-axis in the dq coordinate system (as feedforward), to obtain a second voltage reference value Vq".
  • the second voltage reference value Vq" is transmitted to the coordinate conversion module for coordinate conversion.
  • the second voltage reference value is obtained, wherein Eq represents the sampled voltage of the three-phase AC voltage source corresponding to the q-axis in the dq coordinate system, Vq' represents the fifth voltage reference value, id represents the sampled current of the three-phase AC voltage source corresponding to the d-axis in the dq coordinate system, and Vq" represents the second voltage reference value.
  • the inconsistency of parasitic parameters of each capacitor (e.g., the first capacitor C1 and the second capacitor C2) and the imbalance of input voltage will lead to the imbalance of voltage output by each capacitor.
  • the imbalance of voltage output by each capacitor will lead to different stresses of each capacitor C1 and C2, thereby increasing the stress of each switch tube (e.g., switch tube Q1, Q2, Q3, Q4, Q5 and Q6).
  • the stress of the switch tube exceeds a certain range, it will cause the switch tube in the rectifier circuit to fail.
  • the controller 102 (for example, the voltage balancing module in the controller 102 in Figure 12) is configured to: obtain a voltage deviation between the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor C2 in the abc coordinate system; perform voltage balancing correction on the voltage deviation between the sampled voltage of the first capacitor and the sampled voltage of the second capacitor in the abc coordinate system to obtain a voltage adjustment value, and the voltage adjustment value is used to obtain a voltage control amount.
  • the controller (such as the voltage balancing module in FIGS. 12 and 13 ) performs linear calculation through a PI controller to balance and correct the sampled voltage V dcp of the first capacitor C1 and the sampled voltage V dcn of the second capacitor, so that the voltage deviation (such as the difference V dcp ⁇ V dcn ) of the sampled voltage V dcp of the first capacitor and the sampled voltage V dcn of the second capacitor is within a normal range (such as a range of ⁇ 50 V to +50 V), thereby obtaining a voltage adjustment value VT ; the voltage adjustment value VT is transmitted to the coordinate conversion module for inverse coordinate transformation.
  • a normal range such as a range of ⁇ 50 V to +50 V
  • the coordinate conversion module is further configured to: The coordinates are inversely transformed with the voltage adjustment value; and according to the result of the inverse coordinate transformation, the voltage alternating quantity is converted and the voltage alternating quantity is output to the pulse width modulation module as the voltage control quantity.
  • the inverse coordinate transformation refers to the transformation from the dq coordinate system to the ⁇ coordinate system, so that the DC voltage can be transformed into the AC voltage.
  • the first voltage reference value and the second voltage reference value are output to the coordinate conversion module 304.
  • the coordinate conversion module 304 performs inverse coordinate conversion according to the received first voltage reference value, the second voltage reference value, and the difference between the sampled voltage of the first capacitor and the sampled voltage of the second capacitor, and converts the first voltage reference value, the second voltage reference value, and the difference between the sampled voltage of the first capacitor and the sampled voltage of the second capacitor in the dq coordinate system into a reference voltage in the two-phase stationary ⁇ coordinate system.
  • the coordinate conversion module 304 transmits the reference voltage in the two-phase stationary ⁇ coordinate system to the pulse width modulation module 305.
  • the coordinate inverse transformation can be performed by using the mathematical model formula (2-4) shown below to transform the voltage from the dq coordinate system to the ⁇ coordinate system.
  • FIG. 13 is a schematic diagram of the internal structure of a controller 102 provided in some embodiments of the present disclosure.
  • the pulse width modulation module is also configured to determine the duty cycle of the switch tube in the three-phase Vienna topology circuit according to the voltage control quantity (V ⁇ and V ⁇ ), and send a pulse width modulation signal to the three-phase Vienna topology circuit according to the duty cycle to control the switch tube in the three-phase Vienna topology circuit.
  • the pulse width modulation module can be understood as space vector pulse width modulation (SVPWM).
  • the pulse width modulation signal can be understood as a high and low level driving signal.
  • the duty cycle of the switch tube can be understood as the ratio of the switch tube conduction time to the working cycle.
  • the pulse width modulation module sends drive signals PWM1, PWM2, PWM3, PWM4, PWM5 and PWM6 to the switch tubes Q1, Q2, Q3, Q4, Q5 and Q6 in the three-phase Vienna topology circuit according to the received voltage control quantities V ⁇ and V ⁇ , so as to control the switching and closing of the switch tubes Q1, Q2, Q3, Q4, Q5 and Q6.
  • the switch tube When the drive signal is at a high level, the switch tube is turned on, and when the drive signal is at a low level, the switch tube is closed.
  • the three-phase sampled data obtained by sampling in the stationary abc coordinate system is converted into three-phase sampled data in the rotating dq coordinate system, so that the AC quantity in the rectifier circuit is converted into the DC quantity, and the DC quantity is used to control the circuit device, filter out the harmonics generated in the power supply device, improve the power factor of the rectifier circuit, and reduce the difficulty of control.
  • the DC quantity can be converted into the AC quantity to facilitate the completion of subsequent other processing.
  • the embodiments of the present disclosure also provide a control method for a power supply device.
  • the control method is applied to the power supply device as described above.
  • the power supply device 10 includes: a three-phase AC voltage source 1011, a rectifier circuit 1012, and a controller 102; the controller 102 is connected to the three-phase AC voltage source 1011 and the rectifier circuit 1012.
  • the control method is performed at the controller 102 of the power supply device 10.
  • the rectifier circuit 1012 includes a plurality of switch tubes Q1 to Q6 and a plurality of capacitors C1 and C2.
  • control method includes the following steps.
  • S102 Obtain sampled voltages of a plurality of capacitors.
  • a DC sampling voltage of the power supply device is obtained according to a preset voltage reference value and sampling voltages of a plurality of capacitors.
  • the midpoint current of the power supply device is obtained according to the capacitance value of one of the plurality of capacitors, the sampled voltages of the plurality of capacitors, and the sampling period of the power supply device.
  • S104 Obtain a three-phase modulation voltage of the power supply device according to the DC sampling voltage and the three-phase sampling current.
  • S106 Obtain a three-phase synthetic drive control quantity of the power supply device according to the zero-sequence voltage and the three-phase modulation voltage.
  • the three-phase synthetic drive control quantity is used for pulse width modulation of multiple switch tubes.
  • the three-phase sampled data obtained by sampling the three-phase AC power output by the three-phase AC voltage source includes the above-mentioned three-phase sampled current and three-phase sampled voltage.
  • the control method further includes the following steps.
  • the angular frequency of the voltage output by the power grid is acquired; the positive sequence component of the voltage of the power grid is extracted according to the angular frequency; and the phase of the voltage of the power grid is locked according to the positive sequence component of the voltage of the power grid.
  • the three-phase sampled voltages and the three-phase sampled currents are transformed from the abc coordinate system to the dq coordinate system according to the phase of the locked voltage of the power grid.
  • S203 Obtain a voltage control amount according to the three-phase sampled voltages and three-phase sampled currents after coordinate conversion and the sampled voltages of multiple capacitors, wherein the voltage control amount is used to control the duty cycle of multiple switch tubes.
  • the plurality of capacitors include a first capacitor and a second capacitor.
  • voltage following control is performed on the sampled voltage of the first capacitor and the sampled voltage of the second capacitor to obtain a first current reference value corresponding to the d-axis in the dq coordinate system; current following control is performed according to the first current reference value to obtain a first voltage reference value corresponding to the d-axis in the dq coordinate system; current following control is performed according to a second current reference value corresponding to the q-axis preset in the dq coordinate system to obtain a second voltage reference value corresponding to the q-axis in the dq coordinate system; the voltage control amount is obtained according to the first voltage reference value, the second voltage reference value, and the voltage deviation between the sampled voltage of the first capacitor and the sampled voltage of the second capacitor.
  • a third voltage reference value in the dq coordinate system is obtained, a sampled voltage of the first capacitor and an accumulated value of a sampled voltage of the second capacitor are obtained, and a first current reference value is obtained according to a difference between the third voltage reference value and the accumulated value.
  • current following control is performed based on the first current reference value and the three-phase sampled current to obtain a fourth voltage reference value corresponding to the d-axis in the dq coordinate system; decoupling calculation is performed based on the fourth voltage reference value, the three-phase sampled current, and the three-phase sampled voltage to obtain the first voltage reference value.
  • current following control is performed based on the second current reference value and the three-phase sampled current to obtain a fifth voltage reference value corresponding to the q-axis in the dq coordinate system; decoupling calculation is performed based on the fifth voltage reference value, the three-phase sampled current, and the three-phase sampled voltage to obtain the second voltage reference value.
  • a voltage deviation between the sampled voltage of the first capacitor and the sampled voltage of the second capacitor is obtained based on the sampled voltage of the first capacitor and the sampled voltage of the second capacitor.
  • a voltage balancing correction is performed on the voltage deviation between the sampled voltage of the first capacitor and the sampled voltage of the second capacitor to obtain a voltage adjustment value.
  • An inverse coordinate transformation is performed based on the first voltage reference value, the second voltage reference value and the voltage adjustment value. The result of the inverse coordinate transformation is converted into a voltage alternating current quantity, wherein the voltage alternating current quantity is used as a voltage control quantity.
  • control method also includes: determining the duty cycle of multiple switching tubes in the rectifier circuit based on the voltage control amount; and sending a pulse width modulation signal to the rectifier circuit based on the duty cycle of the multiple switching tubes to control the multiple switching tubes in the rectifier circuit.
  • the coordinate transformation includes the transformation from the abc coordinate system to the ⁇ coordinate system, and then from the ⁇ coordinate system to the dq coordinate system; the inverse coordinate transformation includes the inverse transformation from the dq coordinate system to the ⁇ coordinate system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种电源装置,包括三相交流电压源、整流电路和控制器。整流电路包括多个开关管和多个电容器。控制器被配置为:获取三相交流电压源输出的三相交流电的三相采样电流;获取多个电容器的采样电压;根据多个电容器的采样电压,得到电源装置的直流采样电压和中点电流;根据直流采样电压和三相采样电流,得到电源装置的三相调制电压;根据中点电流、三相采样电流、以及三相调制电压,得到电源装置的零序电压;根据零序电压和三相调制电压,得到电源装置的三相合成驱动控制量,三相合成驱动控制量用于多个开关管的脉冲宽度调制。

Description

电源装置及其控制方法
本申请要求于2022年12月08日提交的、申请号为202211573840.8的中国专利申请、以及于2023年03月03日提交的、申请号为202310203037.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调电源技术领域,尤其涉及一种电源装置及其控制方法。
背景技术
目前,在三相交流电源的空调系统中,由于成本因数,三相交流电源的空调系统通常使用在三相交流电源电路中设置不控整流电路的方式作为电源输入端。
发明内容
一方面,提供一种电源装置。所述电源装置包括三相交流电压源、整流电路和控制器。所述三相交流电压源,被配置为输出三相交流电。所述整流电路,被配置为将所述三相交流电转换为直流电。所述整流电路包括多个开关管和多个电容器。所述控制器与所述三相交流电压源和所述整流电路连接。所述控制器被配置为:获取所述三相交流电的三相采样数据,其中,所述三相采样数据包括三相采样电流;获取所述多个电容器的采样电压;根据所述多个电容器的采样电压,得到所述电源装置的直流采样电压和中点电流;根据所述直流采样电压和所述三相采样电流,得到所述电源装置的三相调制电压;根据所述中点电流、所述三相采样电流、以及所述三相调制电压,得到所述电源装置的零序电压;以及,根据所述零序电压和所述三相调制电压,得到所述电源装置的三相合成驱动控制量,其中,所述三相合成驱动控制量用于所述多个开关管的脉冲宽度调制。
另一方面,提供一种电源装置的控制方法。所述电源装置的控制方法在所述电源装置的控制器处执行。所述电源装置包括:三相交流电压源、整流电路和所述控制器;所述整流电路包括多个开关管和多个电容器;所述控制器与所述三相交流电压源和所述整流电路连接。所述控制方法包括:获取所述三相交流电压源输出的三相交流电的三相采样数据,其中,所述三相采样数据包括三相采样电流;获取所述多个电容器的采样电压;根据所述多个电容器的采样电压,得到所述电源装置的直流采样电压和中点电流;根据所述直流采样电压和所述三相采样电流,得到所述电源装置的三相调制电压;根据所述中点电流、所述三相采样电流、以及所述三相调制电压,得到所述电源装置的零序电压;以及,根据所述零序电压和所述三相调制电压,得到所述电源装置的三相合成驱动控制量;所述三相合成驱动控制量用于所述多个开关管的脉冲宽度调制。
附图说明
图1A为根据本公开的一些实施例的一种空调的示意图;
图1B为根据本公开的一些实施例的一种电源装置的示意图;
图2为根据本公开的一些实施例的另一种电源装置的示意图;
图3为根据本公开的一些实施例的多个电容器的采样电压的变化曲线;
图4为根据本公开的一些实施例的又一种电源装置的示意图;
图5为根据本公开的一些实施例的一种电源装置稳态后的采样电流的示意图;
图6为根据本公开的一些实施例的一种控制器的示意图;
图7为根据本公开的一些实施例的另一种控制器的示意图;
图8为根据本公开的一些实施例的又一种控制器的示意图;
图9为根据本公开的一些实施例的一种二阶广义积分器的锁相环的示意图;
图10为根据本公开的一些实施例的一种二阶广义积分器的示意图;
图11为根据本公开的一些实施例的一种闭环传递函数的伯德图;
图12为根据本公开的一些实施例的又一种控制器的示意图;
图13为根据本公开的一些实施例的又一种电源装置的示意图;
图14为根据本公开的一些实施例的一种电源装置的控制方法的流程图;
图15为根据本公开的一些实施例的另一种电源装置的控制方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例进行清楚、完整地描述。然而,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,或可拆卸连接,或者成一体地连接;可以是直接相连,或者是通过中间媒介间接相连,或者是两个元件内部的连通。术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
在家电领域中,电子装置(例如空调)通常通过整流器与电网相连。整流器通常是由二极管、电感、以及电容组成的一个非线性电路,其中,电感的体积较大,且电容的数量较多。电网中的正弦波电压施加到非线性电路上,正弦波电流会变成非正弦波电流,从而产生无法满足标准要求的谐波;并且,非线性电路还会产生无功污染,导致功率因数较低。这里的功率因数可以理解为有效功率与视在功率的比值。
在空调领域中,单相交流电的空调系统通过功率因数校正(Power Factor Correction,PFC)电路,监测和控制电路中的电压和电流,调整电路中的无功功率,提高单相空调电系统的功率因数,并抑制电网中产生的无法满足标准要求的电流谐波。
由于相比于单相交流电的空调系统,三相交流电的空调系统的输出功率和效率较高、损耗较低、稳定性较好,因此在产品市场上的需求越来越高。目前,可以通过对三相交流电的空调系统中的整流器中的电路元件的参数进行调整,例如,对整流器中的电感器的电感值和电容器的电容值进行调整,以降低谐波含量。然而,对电路元件的参数进行调整来降低谐波含量存在一定风险,在实际使用中容易受到一些因素的影响而不能完全消除谐波 含量,并且对电路元件的参数进行调整会导致电路电感器体积较大,电容器数量变多,从而扩大了占用空间。
基于此,本公开的实施例提供了一种电源装置(也可以称为电源电路),应用于三相交流电的空调系统中,能够高效地消除谐波含量,且不会扩大占用空间。
图1A为本公开的一些实施例提供的一种空调的结构示意图。如图1A所示,空调1000包括室内机100和室外机200。室内机100和室外机200通过管路连接以传输冷媒。
示例性地,室内机100包括室内换热器400和室内风机600。室外机200包括压缩机206、四通阀207、室外换热器208、室外风机209和膨胀阀210。依序连接的压缩机206、室外换热器208、膨胀阀210和室内换热器400形成冷媒回路,冷媒在冷媒回路中循环流动,通过室外换热器208与室内换热器400分别与空气进行换热,以实现空调器1000的制冷模式或制热模式。
在一些示例中,空调1000与电源装置连接,该电源装置用于给空调1000供电。例如,该电源装置可以与室外机200中的压缩机206和室外风机209连接,以给压缩机206和室外风机209供电。
图1B为本公开的一些实施例提供的一种电源装置的结构示意图。该电源装置应用于上述的空调1000。如图1B所示,本公开的实施例提供的电源装置10包括三相交流电压源1011和整流电路1012。
示例性地,该电源装置10中的整流电路1012可以设置于上述空调1000的内部,三相交流电压源1011可以设置于上述空调1000的外部。
在一些实施例中,该三相交流电压源1011可以被理解为接收来自电网的交流电,等效看作电网;整流电路1012可以被理解为整流器,其为三相整流电路。例如,该三相整流电路可以是三相维也纳整流电路(也可以被称为三相维也纳拓扑电路)。可以理解的是,空调通过整流电路与电网相连。
三相交流电压源1011被配置为输出三相交流电。例如,三相交流电压源1011输出的三相交流电由三个频率相同、电势振幅相等、相位差互差120度角的正弦信号组成,该三相交流电用于电源装置10的电源输入。整流电路1012被配置为将三相交流电压源1011输出的三相交流电转换为直流电。
图2为本公开的一些实施例提供的一种电源装置10的结构示意图。在一些实施例中,如图2所示,三相交流电压源1011的三相电压分别是Ea、Eb和Ec。整流电路1012包括多个开关管和多个电容器。示例性地,整流电路1012包括开关管Q1、Q2、Q3、Q4、Q5和Q6、以及电容器C1和C2(即第一电容器C1和第二电容器C2)。例如,电容器可以采用直流母线滤波电容器。
在一些实施例中,如图2所示,电源装置10还包括电阻器R1、R2和R3、电感器L1、L2和L3、以及负载RL。整流电路1012还包括二极管D1、D2、D3、D4、D5和D6。负载RL可以理解为空调中的压缩机和风机的变频驱动电路或常规直流电阻负载。电阻器R1、R2和R3可以理解为电感器L1、L2和L3的等效电阻。
示例性地,电阻器R1、R2和R3、电感器L1、L2和L3、以及电容器C1和C2构成电源装置10的无源部分;开关管Q1、Q2、Q3、Q4、Q5和Q6构成了电源装置10的有源部分。
如图2所示,二极管D1、D2、D3、D4、D5和D6两两连接形成三相桥臂。开关管Q1、Q2、Q3、Q4、Q5和Q6两两连接形成三相桥臂。三相电压Ea、Eb和Ec耦合于一个节点N,电感器L1串联在用于提供三相电压Ea的电源的一端与二极管D1的阴极之间,电感器L2串联在用于提供三相电压Eb的电源的一端与二极管D2的阴极之间,电感器L3串联在用于提供三相电压Ec的电源的一端与二极管D3的阴极之间。二极管D1、二极管D2和二极管D3的阳极均与节点P1连接。二极管D4、二极管D5和二极管D6的阴极均与节点P2连接。二极管D4的阳极与二极管D1的阴极连接,二极管D5的阳极与二极管 D2的阴极连接,二极管D6的阳极与二极管D3的阴极连接。开关管Q2、Q4和Q6的一端均与中点O连接。开关管Q1和Q2串联,且开关管Q1的一端与二极管D1的阴极均与节点A连接。开关管Q3和Q4串联,且开关管Q3的一端与二极管D2的阴极均与节点B连接。开关管Q5和Q6串联,且开关管Q5的一端与二极管D3的阴极均与节点C连接。电容器C1的一端与节点P1连接,电容器C1的另一端与节点S连接。电容器C2的一端与节点S连接,电容器C2的另一端与节点P2连接。其中,电容器C1和C2之间的节点S与中点O可以理解为是同一个节点。
可以理解的是,根据整流器的工作原理,如果整流器的直流侧的电压稳定,则生成的驱动脉冲稳定,电流谐波含量较低;如果整流器的直流侧的电压不稳定,则生成的驱动脉冲也不稳定,电流谐波含量较高。因此,整流电路1012中的电容器C1和C2的电压差会影响整流电路1012输出的直流电压的稳定性,也会影响电网侧的电流的谐波含量。
鉴于此,通过整流电路1012来平衡电容器C1和C2之间的直流侧的中点电压,可以降低两个电容器C1和C2之间直流侧的电压偏差,从而有效地抑制中点电压波动,降低交流侧的谐波含量。
以下,对本公开的实施例中的电源装置中的各个电路参数之间的关系进行介绍。
整流电路的三相电压在三相静止坐标系中的数学模型可以表示为公式(1-1):
其中,L可以理解为电感器L1、L2和L3的电感值;R表示电阻器R1、R2和R3的电阻值,也可以等效为电感器L1、L2和L3的电阻值;VAO可以理解为节点A和中点O之间的电压;VBO可以理解为节点B和中点O之间的电压;VCO可以理解为节点C和中点O之间的电压;ia、ib和ic可以理解为整流电路1012的输入电流。
由于三相交流电的三相之间互相对称,而且没有中性线,因此,可以得到电源装置10中直流侧的中点O和交流侧的中点N之间的电压的关系式(1-2)为:
当电源装置10处于稳态时,不考虑电感和电阻的影响,结合公式(1-1)和公式(1-2),可以得到三相电压Ea、Eb和Ec和VAO、VBO和VCO的关系式(1-3)为:
整流电路1012中的开关管控制的电压和电流方向的关系式(1-4)如下:
其中,开关管Q1和Q2控制电压VAO;开关管Q3和Q4控制电压VBO;开关管Q5和Q6控制电压VCO;sign()可以理解为符号函数;1-da,1-db和1-dc可以理解为电源装置10稳态前的调制波信号;Vdc可以理解为电源装置10的直流侧的电压,即电容器C1和C2的电压之和(例如,电容器C1和C2的电压可以理解为下文所描述的电容器C1和C2的采样电压Vdcp和Vdcn,那么Vdc=Vdcp+Vdcn)。
由于整流电路1012的输入电压和输入电流是同相位,所以功率因数为1,即为单位功 率因数;整流电路1012各相输入的等效电阻定义为Re,则整流电路1012的输入电压和输入电流的关系式(1-5)如下:
结合公式(1-3)、(1-4)和(1-5),可得到下式(1-6):
其中,Vm是电源装置10的直流侧的稳态输出电压,且RS为整流电路1012的输入电流的等效输入电流采样电阻。
根据公式(1-6),可以得到整流电路1012的核心控制方程(1-7):
在此基础上,在本公开的一些实施例中,如图1B所示,电源装置10还包括控制器102。该控制器102至少与整流电路1012连接,控制器102可以实现对整流电路1012中的多个开关管Q1至Q6的控制。
在一些示例中,该控制器102可以是处理器件或芯片,能够处理数据或运行程序指令,例如中央处理器(Central Processing Unit,CPU)、微控制器单元(Microcontroller Unit,MCU)、专用的集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)等。
该控制器102被配置为:获取三相交流电压源1011输出的三相交流电的三相采样数据,该三相采样数据包括三相采样电流;并获取整流电路中的多个电容器的采样电压。
可以理解的是,三相采样电流为ia、ib和ic。在多个电容器包括第一电容器C1和第二电容器C2的情况下,多个电容器的采样电压可以包括第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn
示例性地,电源装置包括采样电路,采样电路用于对三相交流电进行采样,得到三相采样数据,并对多个电容器进行采样,得到多个电容器的采样电压。例如,采样电路可以由电容器、电阻器、运算放大器等电路元件构成,本公开的实施例对此不做限定。
控制器102还被配置为根据多个电容器的采样电压,得到电源装置10的直流采样电压和中点电流。
其中,该电源装置10的直流采样电压可以理解为电源装置10的直流侧的采样电压,即上述的Vm。例如,第一电容器C1和第二电容器C2的采样电压分别为Vdcp和Vdcn,此时电源装置10的直流采样电压Vm可以表示为Vm=KⅹVdc=Kⅹ(Vdcp+Vdcn),其中,K是固定常数(即)。
在一些实施例中,控制器102还被配置为根据预设电压参考值和多个电容器的采样电压,得到电源装置10的直流采样电压。
在多个电容器包括第一电容器C1和第二电容器C2的情况下,控制器102根据预设电 压参考值、第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn,得到电源装置10的直流采样电压Vm
例如,控制器102确定预设电压参考值Vdc'与第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn之和Vdc的差值,从而确定电源装置10的直流采样电压Vm。该预设电压参考值可以指的是下文所描述的第三电压参考值,其取值范围是600V至800V,本领域技术人员可以根据工作原理和实际情况,对预设电压参考值进行设置。
电源装置10的中点电流可以理解为第一电容器C1和第二电容器C2之间的中点O的电流。在一些实施例中,控制器102还被配置为根据多个电容器中的一个电容器的电容值、多个电容器的采样电压、以及电源装置10的采样周期,得到电源装置10的中点电流。例如,采样周期的取值范围可以是1kHz至100kHz。
在多个电容器包括第一电容器C1和第二电容器C2的情况下,控制器102根据第一电容器C1的电容值或第二电容器C2的电容值、第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn、以及电源装置10的采样周期,得到电源装置10的中点电流。
例如,中点电流表示为其中,Inpcon表示中点电流,C表示第一电容器C1的电容值或第二电容器C2的电容值,Ts表示电源装置10的采样周期。
在一些实施例中,中点电流用于平衡第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn的偏差,使该偏差在允许的范围内。即,通过中点电流,可以控制该偏差较小,甚至达到偏差为零。这样,可以避免电路交流侧的产生电流谐波。
控制器102还被配置为根据直流采样电压Vm和三相采样电流ia、ib和ic,得到电源装置10的三相调制电压。
其中,电源装置10的三相调制电压可以理解为如上所述的1-da、1-db和1-dc。例如,1-da、1-db和1-dc可以是正弦波信号。
例如,根据上述公式(1-7)可知,三相调制电压1-da、1-db和1-dc分别表示为:
在一些实施例中,控制器102还被配置为根据中点电流Inpcon、三相采样电流ia、ib和ic、以及三相调制电压1-da、1-db和1-dc,得到电源装置10的零序电压。
例如,零序电压V0表示为:
其中,Vral、Vrbl和Vrcl分别表示三相调制电压1-da、1-db和1-dc
由于在电源装置10未达到稳态时,三相调制电压是不断变化的,因此,在本公开的实施例中,将零序电压V0叠加到三相调制电压1-da、1-db和1-dc中,得到了调制之后的三相调制电压,这样在电源装置10达到稳态的情况下,调制之后的三相调制电压会稳定变化。
将零序电压V0叠加至三相调制电压1-da、1-db和1-dc可以理解为对电源装置10中的中点电压进行平衡控制。这里的中点电压可以理解为第二电容器C2的采样电压Vdcn
控制器102还被配置为根据零序电压和三相调制电压,得到电源装置10的三相合成驱动控制量。其中,三相合成驱动控制量用于整流电路1012中的多个开关管的脉冲宽度调制。
例如,三相合成驱动控制量Vra、Vrb和Vrc分别表示为:Vra=Vral+V0,Vrb=Vrbl+V0,Vrc=Vrcl+V0
其中,三相合成驱动控制量Vra、Vrb和Vrc可以理解为对三相调制电压1-da、1-db和1-dc(即Vral、Vrbl和Vrcl)的正弦波信号通过零序电压V0进行调制之后得到的新的正弦波 信号。可以理解的是,通过根据零序电压V0对三相调制电压1-da、1-db和1-dc的正弦波信号进行调制,得到新的正弦波信号,根据该新的正弦波信号,可以对整流电路1012中的多个开关管进行脉冲宽度调制,从而能够控制第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn的电压偏差。因此,通过对电源装置10中的中点电压进行平衡控制,能够减小第一电容C1的采样电压Vdcp和第二电容C2的采样电压Vdcn的电压偏差,从而降低三相交流电压源侧的电流谐波含量。
在一些实施例中,图3示出了本公开的一些实施例提供的整流电路1012中的电容器的采样电压的变化曲线。其中,曲线X1表示第一电容器C1的采样电压Vdcp,曲线X2表示第二电容器C2的采样电压Vdcn。由图3可知,在0.5s时整流电路1012启动;在1s时零序电压V0叠加至三相调制电压Vral、Vrbl和Vrcl。在电源装置10进行调制之前(例如在图3中的0.5s至1s时间段内),第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn之间的偏差较大,而且三相交流电压源侧(即电源装置的交流侧)的电流谐波含量较高。在电源装置10进行调制之后(例如在图3中的1s之后),第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn之间的偏差减小,而且三相交流电压源侧的电流谐波含量降低。
在一些实施例中,三相合成驱动控制量通过零序电压调制之后得到正弦波信号,与控制器102输出的载波信号比较之后输出方波信号,方波信号用于对整流电路1012中的开关管Q1、Q2、Q3、Q4、Q5和Q6进行脉冲宽度调制,从而驱动整流电路1012中的开关管Q1、Q2、Q3、Q4、Q5和Q6打开和闭合,以实现对第一电容器C1和第二电容器C2的中点电压的平衡控制。
在电源装置10处于稳态的情况下,三相采样电流ia、ib和ic稳定变化,波形可以参考图5所示。可以理解的是,如图5所示,每相采样电流的信号在理想状态下是呈正弦波,实际中是随着开关频率次纹波波动稳定变化的。
因此,在本公开的实施例中,电源装置10中的整流电路1012能够平衡电源装置10的直流侧的中点电压。基于零序电压注入的方法,采用单周期控制策略控制中点电流来平衡第一电容器C1和第二电容器C2的电压。其中,单周期控制策略控制中点电流是在得到中点电流和零序电压后,将零序电压叠加至三相调制电压1-da、1-db和1-dc,得到电源装置10的三相合成驱动控制量实现的。即只需通过简单的加减运算可以得到三相电路同开同关的6路驱动信号(例如控制6个开关管Q1至Q6的6路驱动信号),实现平衡电源装置10的直流侧的中点电压。
如果不叠加中点电压,则第一电容器C1和第二电容器C2的电压偏差较大,交流侧电流谐波含量高,因此,本公开的实施例可有效抑制电源装置10的直流侧中点电压的波动,降低电网侧产生的电流谐波含量。
而且,本公开的实施例采用的算法简单、成本低廉、且占用控制器内存少,同时加入了基于零序分量的中点电压平衡控制,可以有效的稳定母线电压并降低电网侧的电流谐波,以达到标准要求。
在一些实施例中,如图4所示,控制器102包括第一控制子电路701、第二控制子电路702、第三控制子电路703和脉宽调制子电路704。
控制器102对三相交流电压源1011进行采样,得到三相采样电流ia、ib和ic,并对第一电容器C1和第二电容器C2进行采样,得到第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn
第一控制子电路701(可以称为电压环控制回路)被配置为,根据第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn得到的电源装置的直流侧的采样电压Vm。例如,在第一控制子电路701中,预设电压参考值Vdc'减去第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn之和与Vdc所得到的差值,经电压控制器处理,得到电源装置的直流侧的采样电压Vm
第三控制子电路703(可以称为单周期控制回路)被配置为,根据直流侧的采样电压Vm和三相采样电流ia、ib和ic得到电源装置的三相调制电压Vral、Vrbl和Vrcl
第二控制子电路702(可以称为平衡环控制回路)被配置为,根据第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn得到电源装置的中点电流Inpcon;根据中点电流Inpcon、三相采样电流ia、ib和ic、以及三相调制电压Vral、Vrbl和Vrcl得到电源装置的零序电压V0。例如,在第二控制子电路702中,第一电容器C1的采样电压Vdcp、第二电容器C2的采样电压Vdcn和三相采样电流ia、ib和ic经由平衡控制器进行平衡处理。
第三控制子电路703还被配置为,将零序电压V0叠加至三相调制电压Vral、Vrbl和Vrcl,得到电源装置的三相合成驱动控制量Vra、Vrb和Vrc
脉宽调制子电路704,被配置为将三相合成驱动控制量Vra、Vrb和Vrc与控制器102提供的载波信号比较之后输出方波信号,用于对整流电路1012的开关管Q1、Q2、Q3、Q4、Q5和Q6进行脉冲宽度调制。此处的载波信号可以是三角波信号。
需要说明的是,第一控制子电路701、第二控制子电路702、第三控制子电路703和脉宽调制子电路704的各个功能的具体实现过程可以参考上文描述,此处不再赘述。
在一些实施例中,三相交流电压源的电压和电流可以用复平面中的矢量表示,该矢量是一种空间矢量。在磁场定向控制(field-oriented control,FOC)中有两种坐标变换,一种坐标变换是从静止abc坐标系变换为静止的αβ坐标系,另一种坐标变换是从静止的αβ坐标系反变换为旋转的dq坐标系。三相电压Ea、Eb和Ec的空间电压矢量方向可以用静止abc坐标系矢量参考方向来描述。通过对三相电压Ea、Eb和Ec的空间电压矢量求和,合成一个大小不变且匀速旋转的空间合成电压矢量。由于空间合成电压矢量是一个旋转的矢量,用三相静止abc坐标系很难对其进行描述,因此需要引入两相静止αβ坐标系,其中α轴和β轴正交,选定两相静止αβ坐标系中的α轴与三相静止abc坐标系中的a方向重合。可以理解的是,空间合成电压矢量在两相静止αβ坐标系中仍然是旋转的。
而旋转dq坐标系可以与空间合成电压矢量同步旋转,坐标轴分别为d轴和q轴,其中d轴与q轴正交,将空间合成电压矢量在d轴和q轴的分量分解到α轴和β轴,就可以得到两相静止αβ坐标系到旋转dq坐标系的变换。并且,空间合成电压矢量在旋转dq坐标系上的分量是定值。
由于在静止abc坐标系下,整流电路1012(也即三相维也纳整流电路或三相维也纳拓扑电路)的电流是交流电流,因此,整流电路1012中的比例-积分(Proportional-Integral,PI)控制器难以消除稳态误差,而且在静止abc坐标系下,整流电路1012对谐波的抑制效果也不高。因此,本公开的实施例中整流电路1012的实现方式主要是基于旋转dq坐标系下进行的。
在本公开的实施例中,控制器102可以根据锁定的电网电压相位对接收到的采样电路201采样得到的静止abc坐标系下的三相交流电压源采样电压(Ea、Eb和Ec)三相交流电压源采样电流(ia、ib和ic)以及采样电容电压(Vdcp和Vdcn)转换为旋转dq坐标系下的三相交流电压源采样电压(Ed和Eq)、三相交流电压源采样电流(id和iq)以及采样电容电压(Vdcp和Vdcn)。控制器102根据转换后的旋转dq坐标系下的三相交流电压源采样电压(Ed和Eq)、三相交流电压源采样电流(id和iq)以及采样电容电压(Vdcp和Vdcn)进行运算得到电压控制量,电压控制量对三相维也纳拓扑电路中的开关管Q1、Q2、Q3、Q4、Q5和Q6的占空比进行控制。通过坐标转换后的旋转dq坐标系下的三相交流电压源采样电压(Ed和Eq)、三相交流电压源采样电流(id和iq)是直流量。这里的占空比可以理解为一个脉冲周期内高电平占整个周期的比例,可以用来控制开关管的导通时间。示例性的,1秒高电平,1秒低电平,占空比就为50%。
由此,在本公开的实施例中,对电源装置10中的三相交流电压源通过三相维也纳拓扑电路进行整流,并将采样得到的静止abc坐标系下的三相交流电压源采样电压(Ea、Eb和Ec)、三相交流电压源采样电流(ia、ib和ic)转换为旋转dq坐标系下的三相交流电 压源采样电压(Ed和Eq)、三相交流电压源采样电流(id和iq)。使三相维也纳拓扑电路中的交流量转换为直流量,从而更好地滤除三相维也纳拓扑电路中产生的谐波,提高了三相维也纳拓扑电路的功率因数。
在一些实施例中,控制器102获取三相交流电的三相采样数据,该三相采样数据包括三相采样电流和三相采样电压。例如,三相采样电流是ia、ib和ic;三相采样电压是Ea、Eb和Ec。例如,电源装置中的采样电路对三相交流电进行采样,得到三相采样电路和三相采样电压。该采样电路可以是有电阻器、电容器或运算放大器等电路元件构成。
控制器102(例如图7所示的控制器102中的锁相模块)被配置为锁定用于向电源装置10供电的电网的电压的相位θ1
例如,控制器102采用基于二阶广义积分器(Second-Order General Integrator,SOGI)的锁相环(Phase-Locked Loop,PLL)对电网电压的相位进行锁定。在电网的电压不平衡时,通常会产生谐波,SOGI可以对电源装置10的输入电压进行90度相位角偏移,并且可以滤除电网不平衡时产生的高次谐波,因此即使在电网电压不平衡时,PLL也可以稳定的对电网电压的相位θ1进行锁定。
电网电压是交流电,其大小和方向是随时间变化的。例如,正弦交流电压的三角函数表达式为u=Usin2πft,其中,2πft相当于角度,此处2πft可以称为电压相位。
可以理解的是,对电网电压相位进行锁定,使得三相交流电的相位和电网电压相位具有固定关系,从而可以实现单位功率因数。例如,在锁定了电网电压相位之后,电流相位可以跟随电网电压相位工作,实现单位功率因数。
在一些实施例中,如图8所示,控制器102(例如控制器102中的锁相模块)包括锁相环和二阶广义积分器。
锁相环被配置为获取电网输出的电压的角频率。
二阶广义积分器被配置为根据电网输出的电压的角频率,提取电网的电压的正序分量。
锁相环还被配置为根据三相交流电的电压的正序分量,锁定电网的电压的相位。
例如,锁相环可以是上文所述的PPL,二阶广义积分器可以是上文所述的SOGI。
在一些实施例中,图9为本公开的实施例提供的一种二阶广义积分器的锁相环的示意图。图10为本公开的实施例提供的一种二阶广义积分器的示意图。其中,k表示阻尼系数;ω0表示二阶广义积分器的谐振频率,这里也可以理解为PLL获取的电网输出的电压的角频率。可以理解的是,电网输出的电压的角频率是实时变换的。
示例性地,闭环传递函数D(s)和Q(s)为下式(2-3):
其中,s指的是经过拉普拉斯变换后函数的自变量。
图11示意了D(s)和Q(s)闭环传递函数的伯德图。其中,D(s)指的是带通滤波,Q(s)指的是低通滤波;二阶广义积分器得到Eα',并将Eα'移相90度(90°)后得到qEα。因此,SOGI具有一定的滤波特性。
控制器102(例如控制器103中的坐标转换模块)被配置为根据锁定的电网的电压的相位,对三相采样电压和三相采样电流进行坐标转换。
例如,控制器102根据锁定的电网的电压的相位,对abc坐标系下的三相采样电压Ea、Eb和Ec以及三相采样电流ia、ib和ic进行坐标转换,得到dq坐标系下的经过坐标转换后的三相采样电压Ed和Eq以及三相采样电流id和iq。
其中,电源装置10在静止abc坐标系下的三相电压(即三相采样电压)Ea、Eb和Ec通过坐标变化后得到旋转dq坐标系下三相电压Ed和Eq的数学模型如下所示:
同理,电源装置10在静止abc坐标系下的三相电流(即三相采样电流)ia、ib和ic通过坐标变化后得到旋转dq坐标系下三相电流id和iq的数学模型如下所示:
其中,公式(2-1)和(2-2)中的θ为旋转dq坐标系在旋转过程中d轴与两相静止αβ坐标系中α轴的夹角。
在一些实施例中,参考图9,控制器采样得到的静止abc坐标系下的三相交流电的电压(Ea、Eb和Ec),转换为两相静止αβ坐标系后,得到正交输出信号Eα和Eβ。正交输出信号Eα和Eβ经过SOGI线性组合后可以得到电网电压中的正序分量Eα+和Eβ+,正序分量Eα+和Eβ+经过单同步锁相就可以得到锁定后的电网电压相位θ1。即使在电网电压发生畸变的情况下,SOGI系统仍具有较好的稳态性能和动态性能,而且还可以对输入信号进行滤波。可以理解电网电压相位θ1和式(2-1)中θ的角度是一样的。
在一些实施例中,控制器102(例如图6至图8所示的控制器102中的电压环计算模块)被配置为对第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn进行电压跟随控制,得到dq坐标系下的d轴对应的第一电流参考值id'。例如,第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn可以通过PI控制器得到第一电流参考值。
控制器102(例如图6至图8所示的控制器102中的电流环计算模块)被配置为:根据第一电流参考值进行电流跟随控制,得到dq坐标系下的d轴对应的第一电压参考值;并且,根据dq坐标系下的预设的q轴对应的第二电流参考值进行电流跟随控制,得到dq坐标系下的q轴对应的第二电压参考值。
在一些实施例中,电压环计算模块控制整流电路输出电压稳定,输出第一电流参考值至电流环计算装置,该第一电流参考值可以作为电流环计算模块有功分量的参考值。
在一些实施例中,电流环计算模块可以控制三相交流电的电流的幅值和相位,进而对整流电路的输入功率因数进行校正。示例性的,对整流电路的输入功率进行因数校正时,电流环计算模块中d轴的输入分量为第一电流参考值,q轴的输入分量一般为0;经过电流环计算模块控制计算之后,会得到第一电压参考值和第二电压参考值。
示例性地,控制器102(例如图6至图8所示的控制器102中的电压环计算模块)被配置为:获取dq坐标系下的第三电压参考值,并获取第一电容器的采样电压和第二电容器的采样电压的累加值;根据第三电压参考值和累加值的差值,经由PI控制器,得到第一电流参考值。即,第一电流参考值表示为:id'=(Vdc'-((Vdcp+Vdcn))ⅹ(kp+ki/s)),其中,id'表示第一电流参考值,Vdc'表示第三电压参考值,kp表示PI控制器的比例调节参数,ki表示PI控制器的积分调节参数,s是拉普拉斯变换的自变量。
例如,第三电压参考值Vdc'指的是直流电压的参考值,其取值范围为600V至800V,例如可以是600V、700V或800V,本领域技术人员可以根据工作原理和实际情况进行设置。
控制器102还被配置为根据坐标转换后的三相采样电压和三相采样电流、以及多个电容器的采样电压,得到电压控制量,其中,电压控制量用于对整流电路1012中的多个开关管的占空比进行控制。
在一些实施例中,控制器102(例如图6至图8所示的控制器102中的脉宽调制模块)被配置为,根据第一电压参考值、第二电压参考值、以及第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn的电压偏差量,得到电压控制量。例如,脉宽调制模块根据接收到的第一电压参考值、第二电压参考值和电容器的电压偏差量,通过坐标转换模 块进行坐标变换得到电压控制量,以使得整流电路中的开关管的占空比可以根据电压控制量而受到控制。
在一些实施例中,如图12所示,控制器102中的电流环计算模块包括:第一PI控制电路、第一解耦电路、第二PI控制电路和第二解耦电路。
例如,第一PI控制电路和第二PI控制电路可以为PI控制器。
第一PI控制电路被配置为,根据第一电流参考值与dq坐标系下的d轴对应的三相交流电压源的采样电流进行电流均衡控制,得到dq坐标系下的d轴对应的第四电压参考值。
例如,第一电流参考值与dq坐标系下的d轴对应的三相交流电压源的采样电流的差值,经过第一PI控制电路处理,得到dq坐标系下的d轴对应的第四电压参考值。第四电压参考值输入给第一解耦电路。
第一解耦电路被配置为:根据第四电压参考值、dq坐标系下的q轴对应的三相交流电压源的采样电流iq、以及(作为前馈的)d轴对应的三相交流电压源的采样电压进行解耦计算,得到第一电压参考值。第一电压参考值传输给坐标转换模块进行坐标转换。
例如,可以根据公式Ed-(Vd'+iq×ωL)=Vd”,得到第一电压参考值,其中,Ed表示dq坐标系下的d轴对应的三相交流电压源的采样电压,Vd'表示第四电压参考值,iq表示dq坐标系下的q轴对应的三相交流电压源的采样电流,Vd”表示第一电压参考值,L表示电感器L1、L2和L3的电感值,ω可以理解为是一个常数(例如ω是2π×50或2π×60),可以根据实际情况确定。
第二PI控制电路被配置为,根据第二电流参考值与dq坐标系下的q轴对应的三相交流电压源的采样电流进行电流均衡控制,得到dq坐标系下的q轴对应的第五电压参考值。
例如,第二电流参考值iq'与dq坐标系下的q轴对应三相交流电压源的采样电流iq的差值,经过第二PI控制电路的处理,得到q轴对应的第五电压参考值Vq'。第五电压参考值Vq'输入给第二解耦电路。
第二解耦电路被配置为,根据第五电压参考值Vq'、dq坐标系下的d轴对应的三相交流电压源的采样电流id、以及dq坐标系下的(作为前馈的)q轴对应的三相交流电压源的采样电压Eq进行解耦计算,得到第二电压参考值Vq”。第二电压参考值Vq”传输给坐标转换模块进行坐标转换。
例如,根据公式Eq-(Vq'+id×ω)=Vq”,得到第二电压参考值,其中,Eq表示dq坐标系下的q轴对应的三相交流电压源的采样电压,Vq'表示第五电压参考值,id表示dq坐标系下的d轴对应的三相交流电压源的采样电流,Vq”表示第二电压参考值。
在一些实施例中,各个电容器(例如第一电容器C1和第二电容器C2)的寄生参数不一致和输入电压的不平衡,会导致各个电容器输出的电压不平衡。各个电容器输出的电压不平衡将导致各个电容器C1和C2的应力不同,从而导致各个开关管(例如开关管Q1、Q2、Q3、Q4、Q5和Q6)承受的应力增加。当开关管受到的应力超出一定范围时,会导致整流电路中的开关管失效。
在一些实施例中,控制器102(例如图12中的控制器102中的电压平衡模块)被配置为:根据abc坐标系下的第一电容器C1的采样电压Vdcp和第二电容器C2的采样电压Vdcn,得到abc坐标系下的第一电容器的采样电压和第二电容器的采样电压的电压偏差量;对abc坐标系下的第一电容器的采样电压和第二电容器的采样电压的电压偏差量进行电压均衡校正,得到电压调整值,电压调整值用于得到电压控制量。
例如,控制器(例如图12和图13中的电压平衡模块)通过PI控制器进行线性计算,对第一电容器C1的采样电压Vdcp和第二电容器的采样电压Vdcn进行均衡校正,使第一电容器的采样电压Vdcp和第二电容器的采样电压Vdcn的电压偏差量(例如差值Vdcp-Vdcn)处于一个正常范围(例如-50V至+50V的范围)内,从而得到电压调整值VT;电压调整值VT传输给坐标转换模块进行坐标反变换。
在一些实施例中,坐标转换模块还被配置为:根据第一电压参考值、第二电压参考值 和电压调整值进行坐标反变换;并根据坐标反变换后的结果,转换得到电压交流量,将电压交流量作为电压控制量输出至脉宽调制模块。
坐标反变换指的是从dq坐标系变换为αβ坐标系的变换,从而可以将直流电压变换得到交流电压。
例如,第一电压参考值和第二电压参考值输出给坐标转换模块304。坐标转换模块304根据接受到的第一电压参考值、第二电压参考值、以及第一电容器的采样电压和第二电容器的采样电压的差值进行坐标反变换,将dq坐标系下的第一电压参考值、第二电压参考值、以及第一电容器的采样电压和第二电容器的采样电压的差值,变换为两相静止αβ坐标系下的参考电压。坐标转换模块304将两相静止αβ坐标系下的参考电压传输给脉宽调制模块305。
例如,可以通过如下所示的数学模型公式(2-4),进行坐标反变换,将电压从dq坐标系变换为αβ坐标系。
图13为本公开的一些实施例提供的一种控制器102的内部结构示意图。
在一些实施例中,脉宽调制模块还被配置为,根据电压控制量(Vα和Vβ)确定三相维也纳拓扑电路中的开关管的占空比,根据占空比向三相维也纳拓扑电路发出脉冲宽度调制信号,以控制三相维也纳拓扑电路中的开关管。
在一些实施例中,脉宽调制模块可以理解为空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)。脉冲宽度调制信号可以理解为一个高低电平的驱动信号。开关管的占空比可以理解为开关管导通的时间与工作周期之比。
示例性的,脉宽调制模块根据接收到的电压控制量Vα和Vβ,向三相维也纳拓扑电路中的开关管Q1、Q2、Q3、Q4、Q5和Q6分别发出驱动信号PWM1、PWM2、PWM3、PWM4、PWM5和PWM6,用来控制开关管Q1、Q2、Q3、Q4、Q5和Q6的开关和闭合,当驱动信号是高电平时,开关管导通,当驱动信号是低电平时,开关管闭合。
因此,在本公开的实施例中,对三相空调电源系统中的三相交流电压源通过整流电路进行整流的过程中,将采样得到的静止abc坐标系下的三相采样数据转换为旋转dq坐标系下的三相采样数据,使得整流电路中的交流量转换为直流量,利用直流量控制电路器件,滤除了电源装置中产生的谐波,提高整流电路的功率因数,还降低了控制的难度。此外,在控制完成后,可以将直流量转换为交流量,以便于完成后续其他处理。
本公开的实施例还提供一种电源装置的控制方法。该控制方法应用于如上所述的电源装置。参考图1B,电源装置10包括:三相交流电压源1011、整流电路1012和控制器102;控制器102与三相交流电压源1011和整流电路1012连接。该控制方法在电源装置10的控制器102处执行。在一些实施例中,参考图2,整流电路1012包括多个开关管Q1~Q6和多个电容器C1和C2。
如图14所示,控制方法包括如下步骤。
S101、获取三相交流电压源输出的三相交流电的三相采样数据。其中,三相采样数据包括三相采样电流。
S102、获取多个电容器的采样电压。
S103、根据多个电容器的采样电压,得到电源装置的直流采样电压和中点电流。
在一些实施例中,根据预设电压参考值和多个电容器的采样电压,得到电源装置的直流采样电压。
在一些实施例中,根据多个电容器中的一个电容器的电容值、多个电容器的采样电压、以及电源装置的采样周期,得到电源装置的中点电流。
S104、根据直流采样电压和三相采样电流,得到电源装置的三相调制电压。
S105、根据中点电流、三相采样电流、以及三相调制电压,得到电源装置的零序电压。
S106、根据零序电压和三相调制电压,得到电源装置的三相合成驱动控制量。三相合成驱动控制量用于多个开关管的脉冲宽度调制。
在一些实施例中,对三相交流电压源输出的三相交流电进行采样得到的三相采样数据包括上述的三相采样电流和三相采样电压。如图15所示,控制方法还包括以下步骤。
S201、锁定用于向电源装置供电的电网的电压的相位。
在一些实施例中,获取电网输出的电压的角频率;根据角频率,提取电网的电压的正序分量;根据电网的电压的正序分量,锁定电网的电压的相位。
S202、根据锁定的电网的电压的相位,对三相采样电压和三相采样电流进行坐标转换。
在一些实施例中,根据锁定的电网的电压的相位,将三相采样电压和三相采样电流从abc坐标系变换至dq坐标系中。
S203、根据坐标转换后的三相采样电压和三相采样电流、以及多个电容器的采样电压,得到电压控制量。其中,电压控制量用于对多个开关管的占空比进行控制。
在一些实施例中,多个电容器包括第一电容器和第二电容器。在此情况下,对第一电容器的采样电压和所述第二电容器的采样电压进行电压跟随控制,得到dq坐标系下的d轴对应的第一电流参考值;根据第一电流参考值进行电流跟随控制,得到dq坐标系下的d轴对应的第一电压参考值;根据dq坐标系下预设的q轴对应的第二电流参考值进行电流跟随控制,得到dq坐标系下的q轴对应的第二电压参考值;根据第一电压参考值、的第二电压参考值、以及第一电容器的采样电压和第二电容器的采样电压的电压偏差量,得到电压控制量。
例如,获取dq坐标系下的第三电压参考值,获取第一电容器的采样电压和第二电容器的采样电压的累加值,根据第三电压参考值和累加值的差值,得到第一电流参考值。
例如,根据第一电流参考值与三相采样电流进行电流跟随控制,得到dq坐标系下的d轴对应的第四电压参考值;根据第四电压参考值、三相采样电流、以及三相采样电压,进行解耦计算,得到第一电压参考值。
例如,根据第二电流参考值与三相采样电流,进行电流跟随控制,得到dq坐标系下的q轴对应的第五电压参考值;根据第五电压参考值、三相采样电流、以及三相采样电压,进行解耦计算,得到第二电压参考值。
在一些实施例中,根据第一电容器的采样电压和第二电容器的采样电压,得到第一电容器的采样电压和第二电容器的采样电压的电压偏差量。对第一电容器的采样电压和第二电容器的采样电压的电压偏差量进行电压均衡校正,得到电压调整值。根据第一电压参考值、第二电压参考值和电压调整值,进行坐标反变换。将坐标反变换后的结果转换为电压交流量,其中,电压交流量作为电压控制量。
在一些实施例中,控制方法还包括:根据电压控制量,确定整流电路中的多个开关管的占空比;根据多个开关管的占空比,向整流电路发出脉冲宽度调制信号,以控制所述整流电路中的多个开关管。
其中,坐标变换包括从abc坐标系变换为αβ坐标系,再从αβ坐标系变换为dq坐标系;坐标反变换包括从dq坐标系反变换为αβ坐标系。
需要说明的是,关于电源装置的控制方法的每个步骤的详细内容,可以参考上述实施例所述的电源装置的对应部分的描述,此处不再赘述。另外,电源装置的控制方法的有益效果和上述实施例所述的电源装置的有益效果相同,此处不再赘述。
本领域的技术人员将会理解,本申请的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (21)

  1. 一种电源装置,包括:
    三相交流电压源,被配置为输出三相交流电;和
    整流电路,被配置为将所述三相交流电转换为直流电;其中,所述整流电路包括多个开关管和多个电容器;和
    控制器,与所述三相交流电压源和所述整流电路连接;
    其中,所述控制器被配置为:
    获取所述三相交流电的三相采样数据,其中,所述三相采样数据包括三相采样电流;
    获取所述多个电容器的采样电压;
    根据所述多个电容器的采样电压,得到所述电源装置的直流采样电压和中点电流;
    根据所述直流采样电压和所述三相采样电流,得到所述电源装置的三相调制电压;
    根据所述中点电流、所述三相采样电流、以及所述三相调制电压,得到所述电源装置的零序电压;
    根据所述零序电压和所述三相调制电压,得到所述电源装置的三相合成驱动控制量,其中,所述三相合成驱动控制量用于所述多个开关管的脉冲宽度调制。
  2. 根据权利要求1所述的电源装置,其中,所述控制器被配置为:根据预设电压参考值和所述多个电容器的采样电压,得到所述电源装置的直流采样电压。
  3. 根据权利要求1或2所述的电源装置,其中,所述控制器被配置为:根据所述多个电容器中的一个电容器的电容值、所述多个电容器的采样电压、以及所述电源装置的采样周期,得到所述电源装置的中点电流。
  4. 根据权利要求1至3中任一项所述的电源装置,其中,所述多个电容器包括第一电容器和第二电容器;
    所述中点电流表示为:
    其中,Inpcon表示所述中点电流,C表示所述第一电容器的电容值或所述第二电容器的电容值,Vdcp表示所述第一电容器的采样电压,Vdcn表示第二电容器的采样电压,Ts表示所述电源装置的采样周期。
  5. 根据权利要求1至4中任一项所述的电源装置,其中,所述零序电压表示为:
    其中,V0表示所述零序电压,Vral、Vrbl和Vrcl表示所述三相调制电压,ia、ib和ic表示所述三相采样电流。
  6. 根据权利要求5所述的电源装置,其中,所述三相合成驱动控制量表示为:Vra=Vral+V0,Vrb=Vrbl+V0,Vrc=Vrcl+V0;其中,Vra、Vrb和Vrc表示所述三相合成驱动控制量。
  7. 根据权利要求1所述的电源装置,其中,所述三相采样数据还包括三相采样电压;
    所述控制器还被配置为:
    锁定用于向所述电源装置供电的电网的电压的相位;
    根据锁定的所述电网的电压的相位,对所述三相采样电压和所述三相采样电流进行坐标转换;
    根据坐标转换后的三相采样电压和三相采样电流、以及所述多个电容器的采样电压,得到电压控制量,其中,所述电压控制量用于对所述多个开关管的占空比进行控制。
  8. 根据权利要求7所述的电源装置,其中,所述多个电容器包括第一电容器和第二 电容器;
    所述控制器被配置为:
    根据所述锁定的电网的电压的相位,将所述三相采样电压和所述三相采样电流从abc坐标系变换至dq坐标系中;
    对所述第一电容器的采样电压和所述第二电容器的采样电压进行电压跟随控制,得到所述dq坐标系下的d轴对应的第一电流参考值;
    根据所述第一电流参考值进行电流跟随控制,得到所述dq坐标系下的d轴对应的第一电压参考值;
    根据dq坐标系下预设的q轴对应的第二电流参考值进行电流跟随控制,得到所述dq坐标系下的q轴对应的第二电压参考值;
    根据所述第一电压参考值、所述的第二电压参考值、以及所述第一电容器的采样电压和所述第二电容器的采样电压的电压偏差量,得到所述电压控制量。
  9. 根据权利要求8所述的电源装置,其中,所述控制器被配置为:
    根据所述第一电容器的采样电压和所述第二电容器的采样电压,得到所述第一电容器的采样电压和所述第二电容器的采样电压的电压偏差量;
    对所述第一电容器的采样电压和所述第二电容器的采样电压的电压偏差量进行电压均衡校正,得到电压调整值,所述电压调整值用于得到所述电压控制量。
  10. 根据权利要求7至9中任一项所述的电源装置,其中,所述控制器包括:
    锁相环,被配置为获取所述电网输出的电压的角频率;和
    二阶广义积分器,被配置为根据所述角频率,提取所述电网的电压的正序分量;
    其中,所述锁相环还被配置为,根据所述电网的电压的正序分量,锁定所述电网的电压的相位。
  11. 根据权利要求8或9所述的电源装置,其中,所述控制器被配置为:
    获取所述dq坐标系下的第三电压参考值;
    获取所述第一电容器的采样电压和所述第二电容器的采样电压的累加值;
    根据所述第三电压参考值和所述累加值的差值,得到所述第一电流参考值。
  12. 根据权利要求9所述的电源装置,其中,所述控制器被配置为:
    根据所述第一电流参考值与所述三相采样电流进行电流跟随控制,得到所述dq坐标系下的d轴对应的第四电压参考值;
    根据所述第四电压参考值、所述三相采样电流、以及所述三相采样电压,进行解耦计算,得到所述第一电压参考值;
    根据所述第二电流参考值与所述三相采样电流,进行电流跟随控制,得到所述dq坐标系下的q轴对应的第五电压参考值;
    根据所述第五电压参考值、所述三相采样电流、以及所述三相采样电压,进行解耦计算,得到所述第二电压参考值。
  13. 根据权利要求9所述的电源装置,其中,所述控制器还被配置为:
    根据所述第一电压参考值、所述第二电压参考值和所述电压调整值,进行坐标反变换;其中,所述坐标变换包括从所述abc坐标系变换为αβ坐标系,再从αβ坐标系变换为dq坐标系,所述坐标反变换包括从dq坐标系反变换为αβ坐标系;
    将所述坐标反变换后的结果转换为电压交流量,其中,所述电压交流量作为所述电压控制量;
    根据所述电压控制量,确定所述流电路中的所述多个开关管的占空比;
    根据所述多个开关管的占空比,向所述整流电路发出脉冲宽度调制信号,以控制所述整流电路中的所述多个开关管。
  14. 一种电源装置的控制方法,在所述电源装置的控制器处执行,其中,所述电源装置包括:三相交流电压源、整流电路和所述控制器;所述整流电路包括多个开关管和多个 电容器;所述控制器与所述三相交流电压源和所述整流电路连接;
    所述控制方法包括:
    获取所述三相交流电压源输出的三相交流电的三相采样数据,其中,所述三相采样数据包括三相采样电流;
    获取所述多个电容器的采样电压;
    根据所述多个电容器的采样电压,得到所述电源装置的直流采样电压和中点电流;
    根据所述直流采样电压和所述三相采样电流,得到所述电源装置的三相调制电压;
    根据所述中点电流、所述三相采样电流、以及所述三相调制电压,得到所述电源装置的零序电压;
    根据所述零序电压和所述三相调制电压,得到所述电源装置的三相合成驱动控制量;所述三相合成驱动控制量用于所述多个开关管的脉冲宽度调制。
  15. 根据权利要求14所述的控制方法,其中,根据所述多个电容器的采样电压,得到所述电源装置的直流采样电压,包括:
    根据预设电压参考值和所述多个电容器的采样电压,得到所述电源装置的直流采样电压。
  16. 根据权利要求14或15所述的控制方法,其中,根据所述多个电容器的采样电压,得到所述电源装置的中点电流,包括:
    根据所述多个电容器中的一个电容器的电容值、所述多个电容器的采样电压、以及所述电源装置的采样周期,得到所述电源装置的中点电流。
  17. 根据权利要求14所述的控制方法,其中,所述三相采样数据还包括三相采样电压;所述控制方法还包括:
    锁定用于向所述电源装置供电的电网的电压的相位;
    根据锁定的所述电网的电压的相位,对所述三相采样电压和所述三相采样电流进行坐标转换;
    根据坐标转换后的三相采样电压和三相采样电流、以及所述多个电容器的采样电压,得到电压控制量,所述电压控制量用于对所述多个开关管的占空比进行控制。
  18. 根据权利要求17所述的控制方法,其中,根据锁定的所述电网的电压的相位,对所述三相采样电压和所述三相采样电流进行坐标转换,包括:
    根据所述锁定的电网的电压的相位,将所述三相采样电压和所述三相采样电流从abc坐标系变换至dq坐标系中;
    其中,所述多个电容器包括第一电容器和第二电容器;根据坐标转换后的三相采样电压和三相采样电流、以及所述多个电容器的采样电压,得到电压控制量,包括:
    对所述第一电容器的采样电压和所述第二电容器的采样电压进行电压跟随控制,得到所述dq坐标系下的d轴对应的第一电流参考值;
    根据所述第一电流参考值进行电流跟随控制,得到所述dq坐标系下的d轴对应的第一电压参考值;
    根据dq坐标系下预设的q轴对应的第二电流参考值进行电流跟随控制,得到所述dq坐标系下的q轴对应的第二电压参考值;
    根据所述第一电压参考值、所述的第二电压参考值、以及所述第一电容器的采样电压和所述第二电容器的采样电压的电压偏差量,得到所述电压控制量。
  19. 根据权利要求17或18所述的控制方法,其中,锁定用于向所述电源装置供电的所述电网的电压的相位,包括:
    获取所述电网输出的电压的角频率;
    根据所述角频率,提取所述电网的电压的正序分量;
    根据所述电网的电压的正序分量,锁定所述电网的电压的相位。
  20. 根据权利要求18所述的控制方法,其中,对所述第一电容器的采样电压和所述 第二电容器的采样电压进行电压跟随控制,得到所述dq坐标系下的d轴对应的第一电流参考值,包括:
    获取所述dq坐标系下的第三电压参考值;
    获取所述第一电容器的采样电压和所述第二电容器的采样电压的累加值;
    根据所述第三电压参考值和所述累加值的差值,得到所述第一电流参考值;
    根据所述第一电流参考值进行电流跟随控制,得到所述dq坐标系下的d轴对应的第一电压参考值,包括:
    根据所述第一电流参考值与所述三相采样电流进行电流跟随控制,得到所述dq坐标系下的d轴对应的第四电压参考值;
    根据所述第四电压参考值、所述三相采样电流、以及所述三相采样电压,进行解耦计算,得到所述第一电压参考值;
    根据dq坐标系下预设的q轴对应的第二电流参考值进行电流跟随控制,得到所述dq坐标系下的q轴对应的第二电压参考值,包括:
    根据所述第二电流参考值与所述三相采样电流,进行电流跟随控制,得到所述dq坐标系下的q轴对应的第五电压参考值;
    根据所述第五电压参考值、所述三相采样电流、以及所述三相采样电压,进行解耦计算,得到所述第二电压参考值。
  21. 根据权利要求18所述的控制方法,其中,根据所述第一电压参考值、所述的第二电压参考值、以及所述第一电容器的采样电压和所述第二电容器的采样电压的电压偏差量,得到所述电压控制量,包括:
    根据所述第一电容器的采样电压和所述第二电容器的采样电压,得到所述第一电容器的采样电压和所述第二电容器的采样电压的电压偏差量;
    对所述第一电容器的采样电压和所述第二电容器的采样电压的电压偏差量进行电压均衡校正,得到电压调整值;
    根据所述第一电压参考值、所述第二电压参考值和所述电压调整值,进行坐标反变换;其中,所述坐标变换包括从所述abc坐标系变换为αβ坐标系,再从αβ坐标系变换为dq坐标系,所述坐标反变换包括从dq坐标系反变换为αβ坐标系;
    将所述坐标反变换后的结果转换得到电压交流量,其中,所述电压交流量作为所述电压控制量;
    所述控制方法还包括:
    根据所述电压控制量,确定所述整流电路中的所述多个开关管的占空比;
    根据所述多个开关管的占空比,向所述整流电路发出脉冲宽度调制信号,以控制所述整流电路中的所述多个开关管。
PCT/CN2023/136416 2022-12-08 2023-12-05 电源装置及其控制方法 WO2024120381A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211573840.8A CN115842469A (zh) 2022-12-08 2022-12-08 一种空调电源系统和方法
CN202211573840.8 2022-12-08
CN202310203037.3 2023-03-03
CN202310203037.3A CN118589887A (zh) 2023-03-03 2023-03-03 一种三相vienna整流器的控制方法和空调电源系统

Publications (1)

Publication Number Publication Date
WO2024120381A1 true WO2024120381A1 (zh) 2024-06-13

Family

ID=91378579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136416 WO2024120381A1 (zh) 2022-12-08 2023-12-05 电源装置及其控制方法

Country Status (1)

Country Link
WO (1) WO2024120381A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118518922A (zh) * 2024-07-24 2024-08-20 东方电子股份有限公司 不平衡电流的检测方法及装置
CN118783792A (zh) * 2024-09-13 2024-10-15 珠海格力电器股份有限公司 双负载控制系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063202A1 (en) * 2003-09-24 2005-03-24 Stancu Constantin C. Active damping control for L-C output filters in three phase four-leg inverters
CN101753044A (zh) * 2010-01-26 2010-06-23 北方工业大学 一种基于零序电压注入的三电平中点电位平衡控制方法
US20170317576A1 (en) * 2016-04-29 2017-11-02 Delta Electronics (Shanghai) Co., Ltd. Hybrid topology power converter and control method thereof
CN107834883A (zh) * 2017-10-27 2018-03-23 南京理工大学 一种基于调制波区间划分的中点电压控制装置及方法
CN109495001A (zh) * 2018-12-28 2019-03-19 山东大学 模块化并联三电平Vienna整流器、控制系统及方法
CN109861564A (zh) * 2019-01-10 2019-06-07 中国电力科学研究院有限公司 一种储能负荷网侧整流器电压均衡控制方法及系统
CN114865930A (zh) * 2021-02-04 2022-08-05 许继电源有限公司 一种三相整流器控制方法、装置及三相整流器系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063202A1 (en) * 2003-09-24 2005-03-24 Stancu Constantin C. Active damping control for L-C output filters in three phase four-leg inverters
CN101753044A (zh) * 2010-01-26 2010-06-23 北方工业大学 一种基于零序电压注入的三电平中点电位平衡控制方法
US20170317576A1 (en) * 2016-04-29 2017-11-02 Delta Electronics (Shanghai) Co., Ltd. Hybrid topology power converter and control method thereof
CN107834883A (zh) * 2017-10-27 2018-03-23 南京理工大学 一种基于调制波区间划分的中点电压控制装置及方法
CN109495001A (zh) * 2018-12-28 2019-03-19 山东大学 模块化并联三电平Vienna整流器、控制系统及方法
CN109861564A (zh) * 2019-01-10 2019-06-07 中国电力科学研究院有限公司 一种储能负荷网侧整流器电压均衡控制方法及系统
CN114865930A (zh) * 2021-02-04 2022-08-05 许继电源有限公司 一种三相整流器控制方法、装置及三相整流器系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118518922A (zh) * 2024-07-24 2024-08-20 东方电子股份有限公司 不平衡电流的检测方法及装置
CN118783792A (zh) * 2024-09-13 2024-10-15 珠海格力电器股份有限公司 双负载控制系统及其控制方法

Similar Documents

Publication Publication Date Title
WO2024120381A1 (zh) 电源装置及其控制方法
CN105162381B (zh) 基于pr调节的无电解电容变频驱动控制系统及控制方法
Hansen et al. Sensorless control strategies for PWM rectifier
CN108923721A (zh) 电机变频驱动系统与多联机中央空调器
WO2016050043A1 (zh) 一种交-交变频空调控制方法及控制器
WO2014079124A1 (zh) 电网电压不平衡时电压源型整流器模型预测控制方法
WO2019218423A1 (zh) 基于磁链控制的变压器及励磁涌流抑制方法
CN111800037B (zh) 一种无电解电容控制系统、控制方法、压缩机和制冷设备
CN107611971B (zh) 针对网压谐波畸变的网侧逆变器谐振全阶滑模控制方法
CN112653342B (zh) 一种静止坐标系下的复矢量电流环解耦控制装置及方法
AU2018374071B2 (en) Method and apparatus for detecting a short-circuit capacity at a grid connection point of a wind turbine
CN110513846B (zh) 一种无电解电容空调压缩机控制方法
CN104836460A (zh) 电网不平衡时三相pwm变流器的正负序联合控制方法
WO2016050047A1 (zh) 一种单相变频空调控制方法及控制器
CN104315651B (zh) 一种单相变频空调控制方法及控制器
CN106451573B (zh) 一种多变量反馈控制的三相lcl型联网变换器及方法
CN115579951A (zh) 多逆变器新能源电站分布式协同稳定控制方法
Jabbarnejad et al. Power quality improvement using virtual flux combined control of grid connected converters under balanced and unbalanced grid operation
Hinkkanen et al. Control of induction motor drives equipped with small DC-link capacitance
Wang et al. High power factor control of IPMSM drive system without electrolytic capacitor
CN108631624B (zh) 一种基于三维调制的级联h桥整流器及其控制方法
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法
CN113678361B (zh) 空调装置
Kenne et al. Adaptive PI control strategy for a self-excited induction generator driven by a variable speed wind turbine
Jiang et al. An Inverter Input Current Closed-loop Control Scheme for IPMSM Drives Fed by Electrolytic Capacitorless Converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23899956

Country of ref document: EP

Kind code of ref document: A1