WO2024111485A1 - 含フッ素エステル化合物の製造方法 - Google Patents
含フッ素エステル化合物の製造方法 Download PDFInfo
- Publication number
- WO2024111485A1 WO2024111485A1 PCT/JP2023/041150 JP2023041150W WO2024111485A1 WO 2024111485 A1 WO2024111485 A1 WO 2024111485A1 JP 2023041150 W JP2023041150 W JP 2023041150W WO 2024111485 A1 WO2024111485 A1 WO 2024111485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- group
- fluorine
- bond
- ester compound
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 177
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- -1 ester compound Chemical class 0.000 claims abstract description 142
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 104
- 239000011737 fluorine Substances 0.000 claims abstract description 85
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 83
- 239000003960 organic solvent Substances 0.000 claims abstract description 35
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 88
- 150000002430 hydrocarbons Chemical group 0.000 claims description 81
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 78
- 125000005843 halogen group Chemical group 0.000 claims description 62
- 125000005842 heteroatom Chemical group 0.000 claims description 51
- 125000001153 fluoro group Chemical group F* 0.000 claims description 42
- 239000007789 gas Substances 0.000 claims description 21
- 125000004429 atom Chemical group 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 10
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 4
- 239000002994 raw material Substances 0.000 description 55
- 238000003682 fluorination reaction Methods 0.000 description 52
- 125000004432 carbon atom Chemical group C* 0.000 description 40
- 238000006243 chemical reaction Methods 0.000 description 39
- 239000002904 solvent Substances 0.000 description 39
- 239000007791 liquid phase Substances 0.000 description 31
- 125000000217 alkyl group Chemical group 0.000 description 23
- 125000006551 perfluoro alkylene group Chemical group 0.000 description 14
- 125000003709 fluoroalkyl group Chemical group 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 12
- 229910052801 chlorine Inorganic materials 0.000 description 11
- 125000002947 alkylene group Chemical group 0.000 description 10
- 125000004430 oxygen atom Chemical group O* 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000009835 boiling Methods 0.000 description 9
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 125000001309 chloro group Chemical group Cl* 0.000 description 7
- 150000001265 acyl fluorides Chemical group 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical compound F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 description 4
- 108010081348 HRT1 protein Hairy Proteins 0.000 description 4
- 102100021881 Hairy/enhancer-of-split related with YRPW motif protein 1 Human genes 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000001188 haloalkyl group Chemical group 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- VUWZPRWSIVNGKG-UHFFFAOYSA-N fluoromethane Chemical compound F[CH2] VUWZPRWSIVNGKG-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 239000002516 radical scavenger Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001774 Perfluoroether Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- IRHYACQPDDXBCB-UHFFFAOYSA-N 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane Chemical compound FC(F)(Cl)C(F)(Cl)C(F)(Cl)C(F)(F)Cl IRHYACQPDDXBCB-UHFFFAOYSA-N 0.000 description 1
- PDCBZHHORLHNCZ-UHFFFAOYSA-N 1,4-bis(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(C(F)(F)F)C=C1 PDCBZHHORLHNCZ-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical group C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 1
- BCLQALQSEBVVAD-UHFFFAOYSA-N 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)propanoyl fluoride Chemical compound FC(=O)C(F)(C(F)(F)F)OC(F)(F)C(F)(F)C(F)(F)F BCLQALQSEBVVAD-UHFFFAOYSA-N 0.000 description 1
- YSIGVPOSKQLNTO-UHFFFAOYSA-N 2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)propoxy]propanoyl fluoride Chemical compound FC(=O)C(F)(C(F)(F)F)OC(F)(F)C(F)(C(F)(F)F)OC(F)(F)C(F)(F)C(F)(F)F YSIGVPOSKQLNTO-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical class FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- UJMWVICAENGCRF-UHFFFAOYSA-N oxygen difluoride Chemical class FOF UJMWVICAENGCRF-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- RVZRBWKZFJCCIB-UHFFFAOYSA-N perfluorotributylamine Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RVZRBWKZFJCCIB-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B39/00—Halogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/321—Polymers modified by chemical after-treatment with inorganic compounds
- C08G65/323—Polymers modified by chemical after-treatment with inorganic compounds containing halogens
Definitions
- This disclosure relates to a method for producing a fluorine-containing ester compound.
- Patent Document 1 describes a method for producing fluorine-containing compounds such as fluorine-containing ester compounds by fluorinating ester compounds in a liquid phase.
- the present disclosure relates to a method for producing fluorine-containing ester compounds with a high fluorination conversion rate.
- a method for producing a fluorinated product comprising: fluorinating an ester compound having at least one fluorinatable atom or bond in an organic solvent into which fluorine gas has been introduced;
- the organic solvent contains a compound having a C—H bond, the amount of the compound having a C—H bond is 0.1 times or more by mass of the ester compound having at least one fluorinable atom or bond;
- a method for producing a fluorine-containing ester compound ⁇ 2> The method for producing a fluorine-containing ester compound according to ⁇ 1>, wherein the compound having a C—H bond contains 1 to 10 hydrogen atoms.
- ⁇ 3> The method for producing a fluorine-containing ester compound according to ⁇ 1> or ⁇ 2>, wherein the organic solvent contains a compound having the C-H bond and a fluorine-containing compound not having a C-H bond.
- ⁇ 4> The method for producing a fluorine-containing ester compound according to any one of ⁇ 1> to ⁇ 3>, wherein a content of the compound having the C-H bond in the organic solvent is 0.01 mass% or more.
- ⁇ 5> The method for producing a fluorine-containing ester compound according to ⁇ 3>, wherein the compound having a C—H bond is a compound that can be fluorinated to convert it into a fluorine-containing compound not having the C—H bond.
- ⁇ 6> The method for producing a fluorine-containing ester compound according to any one of ⁇ 1> to ⁇ 5>, wherein the compound having a C—H bond has a fluorine content of 5 to 99 mass %.
- ⁇ 7> The method for producing a fluorine-containing ester compound according to any one of ⁇ 1> to ⁇ 6>, wherein the compound having a C—H bond is an alkane, an ether compound, an ester compound, a ketone compound, or a compound in which at least one hydrogen atom of these compounds has been substituted with a halogen atom.
- R A1 , R B1 , R B2 , and R B3 each independently represent a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group;
- R A2 is a divalent saturated hydrocarbon group, a halogeno divalent saturated hydrocarbon group, a heteroatom-containing divalent saturated hydrocarbon group, or a halogeno (heteroatom-containing divalent saturated hydrocarbon) group.
- the present disclosure provides a method for producing a fluorine-containing ester compound with a high fluorination conversion rate.
- the term “step” includes not only a step that is independent of other steps, but also a step that cannot be clearly distinguished from other steps as long as the purpose of the step is achieved.
- the numerical range indicated using “to” includes the numerical values before and after “to” as the minimum and maximum values, respectively.
- each component may contain multiple types of the corresponding substance. When multiple substances corresponding to each component are present in the composition, the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
- organic group refers to a group that contains essentially a carbon atom.
- the "hydrocarbon group” may be any of linear, branched, and cyclic, and may be any of saturated aliphatic hydrocarbon groups, unsaturated aliphatic hydrocarbon groups, and aromatic hydrocarbon groups.
- “partially halogenated” means that only some of the halogenatable sites of a compound are halogenated.
- Partially fluoro means that only some of the fluorinatable sites of a compound are fluorinated.
- the compound represented by the formula (X) may be referred to as compound (X).
- the method for producing a fluorinated ester compound according to the present disclosure comprises fluorinating an ester compound having at least one fluorinatable atom or bond (hereinafter also referred to as “raw material ester compound”) in an organic solvent into which fluorine gas has been introduced, the organic solvent containing a compound having a C-H bond, and the amount of the compound having the C-H bond is 0.1 times or more by mass of the ester compound having at least one fluorinatable atom or bond.
- This manufacturing method includes a fluorination step in the liquid phase (hereinafter, also referred to as "liquid-phase fluorination").
- liquid-phase fluorination a fully fluorinated compound that does not have a C-H bond in the molecule is used as a solvent. This is to prevent side reactions and a decrease in the efficiency of fluorination due to the fluorination of the solvent.
- the present inventors have found that when liquid-phase fluorination is performed in an organic solvent that is a compound having a C-H bond, the fluorination conversion rate is improved. The reason for this is not entirely clear, but is presumed to be as follows.
- the solubility of the raw material ester compound in the solvent increases, promoting gas-liquid mixing in liquid-phase fluorination and increasing the fluorination conversion rate.
- the compound having a C-H bond used as a solvent in liquid-phase fluorination is fluorinated, generating fluorine radicals. It is believed that these fluorine radicals promote the fluorination of the raw material ester compound and improve the conversion rate.
- the raw material ester compound is not particularly limited as long as it is a compound having at least one fluorinatable atom or bond and at least one ester bond.
- Atoms that can be fluorinated include hydrogen atoms bonded to carbon atoms, chlorine atoms bonded to carbon atoms, bromine atoms bonded to carbon atoms, and iodine atoms bonded to carbon atoms.
- Fluorinizable bonds include carbon-carbon unsaturated double bonds and carbon-carbon unsaturated triple bonds.
- the number of fluorinable atoms or bonds in the raw material ester compound may be at least 1.
- the number of fluorinable atoms is preferably 1 to 1,000, and more preferably 1 to 500. From the viewpoint of increasing the purity of the fluorinated product, the number of fluorinable bonds is preferably 1 to 30, and more preferably 1 to 10.
- the raw material ester compound may have only one ester bond or may have two or more ester bonds. From the viewpoint of availability, the number of ester bonds contained in the raw material ester compound is preferably one or two, and more preferably one. That is, the raw material ester compound is preferably a monoester compound or a diester compound, and more preferably a monoester.
- Examples of the raw material ester compound include a compound represented by the following formula (1) and a compound represented by the following formula (2).
- R A1 -O-(C O)-R B1 ...
- R A1 , R B1 , R B2 , and R B3 each independently represent a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group;
- R A2 is a divalent saturated hydrocarbon group, a halogeno divalent saturated hydrocarbon group, a heteroatom-containing divalent saturated hydrocarbon group, or a halogeno (heteroatom-containing divalent saturated hydrocarbon) group.
- a "monovalent saturated hydrocarbon group” may be any of a linear alkyl group, a branched alkyl group, and a cycloalkyl group.
- a “divalent saturated hydrocarbon group” may be any of a linear alkylene group, a branched alkylene group, and a cycloalkylene group.
- the linear alkyl group, the branched alkyl group, the linear alkylene group, and the branched alkylene group may contain an alicyclic structure.
- halogeno means that one or more hydrogen atoms present in the group are replaced with at least one halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Hydrogen atoms may or may not be present in the group.
- halogeno monovalent saturated hydrocarbon group refers to a group in which one or more hydrogen atoms present in a monovalent saturated hydrocarbon group have been replaced by a halogen atom.
- halogeno divalent saturated hydrocarbon group refers to a group in which one or more hydrogen atoms present in a divalent saturated hydrocarbon group have been replaced by a halogen atom.
- heteroatom means an atom other than a carbon atom or a hydrogen atom, and examples include a nitrogen atom, an oxygen atom, and a sulfur atom.
- a heteroatom-containing monovalent saturated hydrocarbon group refers to a group in which a divalent heteroatom or a divalent group containing a heteroatom is contained in a monovalent saturated hydrocarbon group.
- a “heteroatom-containing divalent saturated hydrocarbon group” refers to a group in which a divalent heteroatom or a divalent group containing a heteroatom is contained in a divalent saturated hydrocarbon group.
- divalent heteroatoms include -O- and -S-.
- halogeno (heteroatom-containing monovalent saturated hydrocarbon) group refers to a group in which one or more hydrogen atoms in the heteroatom-containing monovalent saturated hydrocarbon group have been replaced with a halogen atom.
- halogeno (heteroatom-containing divalent saturated hydrocarbon) group refers to a group in which one or more hydrogen atoms in the heteroatom-containing divalent saturated hydrocarbon group have been replaced with a halogen atom.
- R A1 and R B1 contains a hydrogen atom.
- at least one selected from the group consisting of R A2 , R B2 , and R B3 contains a hydrogen atom.
- R A1 represents a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
- Examples of the monovalent saturated hydrocarbon group represented by R A1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, and a cyclohexyl group.
- the halogeno monovalent saturated hydrocarbon group represented by R A1 is preferably a halogenoalkyl group.
- the halogen atom contained in the halogeno monovalent saturated hydrocarbon group is preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom.
- the heteroatom-containing monovalent saturated hydrocarbon group represented by R A1 is preferably a monovalent saturated hydrocarbon group containing an ethereal oxygen atom (that is, --O--), and more preferably an alkyl group containing an ethereal oxygen atom.
- the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R A1 is preferably a halogeno (heteroatom-containing alkyl group).
- the halogen atom contained in the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a fluorine atom, a chlorine atom, or a bromine atom.
- the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a halogeno monovalent saturated hydrocarbon group containing an ethereal oxygen atom, and more preferably a halogenoalkyl group containing an ethereal oxygen atom.
- the carbon number of R A1 is preferably 1 to 500, more preferably 1 to 200, and even more preferably 3 to 100, from the viewpoint of excellent solubility in a solvent.
- R is preferably represented by the following formula ( A1 ):
- R preferably further has an ether bond, and more preferably includes at least one selected from the group consisting of a polyether chain and a fluoropolyether chain.
- R 11 O-(R 12 O) m1 -R 13 - ... (A1)
- R 11 is an alkyl group which may have a fluorine atom
- R 12 is each independently an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
- R 13 is an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
- m1 is an integer from 0 to 500.
- examples of R 11 include an alkyl group and a fluoroalkyl group.
- the number of carbon atoms in R 11 is preferably 1 to 100, more preferably 1 to 50, even more preferably 1 to 10, and particularly preferably 1 to 6, from the viewpoint of excellent solubility in a solvent.
- the alkyl group represented by R 11 may be a linear alkyl group, a branched alkyl group, or an alkyl group having a ring structure.
- the fluoroalkyl group represented by R 11 may be a straight-chain fluoroalkyl group, a branched-chain fluoroalkyl group, or a fluoroalkyl group having a ring structure.
- R 11 is preferably an alkyl group, more preferably a linear alkyl group, and even more preferably a linear alkyl group having 1 to 6 carbon atoms.
- -(R 12 O) m1 - is preferably represented by the following formula (A2). -[(R f1 O) k1 (R f2 O) k2 (R f3 O) k3 (R f4 O) k4 (R f5 O) k5 (R f6 O) k6 ]- ...
- R f1 is a fluoroalkylene group having 1 carbon atom
- R f2 is a fluoroalkylene group having 2 carbon atoms
- R f3 is a fluoroalkylene group having 3 carbon atoms
- R f4 is a fluoroalkylene group having 4 carbon atoms
- R f5 is a fluoroalkylene group having 5 carbon atoms
- R f6 is a fluoroalkylene group having 6 carbon atoms.
- k1, k2, k3, k4, k5, and k6 each independently represent an integer of 0 or 1 or more
- k1+k2+k3+k4+k5+k6 is an integer of 0 to 500.
- k1+k2+k3+k4+k5+k6 is preferably an integer from 1 to 500, more preferably an integer from 1 to 300, even more preferably an integer from 5 to 200, and particularly preferably an integer from 10 to 150.
- the bonding order of (R f1 O) to (R f6 O) in formula (A2) is arbitrary.
- k1 to k6 in formula (A2) respectively represent the number of (R f1 O) to (R f6 O), and do not represent the arrangement.
- (R f5 O) k5 represents that the number of (R f5 O) is k5, and does not represent a block arrangement structure of (R f5 O) k5 .
- the order of (R f1 O) to (R f6 O) does not represent the bonding order of each unit.
- the fluoroalkylene group may be a linear fluoroalkylene group, a branched fluoroalkylene group, or a fluoroalkylene group having a ring structure.
- R f1 include --CF 2 -- and --CHF--.
- R f2 examples include -CF 2 CF 2 -, -CF 2 CHF-, -CHFCF 2 -, -CHFCHF-, -CH 2 CF 2 -, and -CH 2 CHF-.
- R f3 include -CF 2 CF 2 CF 2 -, -CF 2 CHFCF 2 -, -CF 2 CH 2 CF 2 -, -CHFCF 2 CF 2 -, -CHFCHFCF 2 -, -CHFCHFCHF-, -CHFCH 2 CF 2 -, -CH 2 CF 2 CF 2 -, -CH 2 CHFCF 2 -, -CH 2 CH 2 CF 2 -, -CH 2 CF 2 CHF-, -CH 2 CHFCHF-, -CH 2 CH 2 CHF- , -CF (CF 3 )-CF 2 -, -CF(CHF 2 )-CF 2 -, -CF(CH 2 F)-CF 2 -, -CF( CH3 ) -CF2- , -CF(CF3)-CHF-, -CF( CHF2 )-CHF-, -CF( CH2F )-CHF- , -CF(CF3)
- R f4 include -CF 2 CF 2 CF 2 - , -CF 2 CF 2 CHF-, -CF 2 CF 2 CF 2 CH 2 - , -CF 2 CHFCF 2 CF 2 -, -CHFCHFCF 2 CF 2 -, -CH 2 CHFCF 2 CF 2 -, -CF 2 CH 2 CF 2 CF 2 -, -CHFCH 2 CF 2 CF 2 -, -CH 2 CH 2 CF 2 CF 2 -, -CHFCF 2 CHFCF 2 -, -CH 2 CF 2 CHFCF 2 -, -CF 2 CHFCFCF 2 - , and -CF 2 CHFCFCF 2 -, -CHFCHFCHFCF 2 -, -CH 2 CHFCHFCF 2 -, -CF 2 CH 2 CHFCF 2 -, -CHFCH 2 CHFCF 2 -, -CH 2 CH 2 CHFCF 2 -, -CH 2 CHFC
- R f5 examples include -CF 2 CF 2 CF 2 CF 2 CF 2 -, -CHFCF 2 CF 2 CF 2 -, -CH 2 CHFCF 2 CF 2 CF 2 -, -CF 2 CHFCF 2 CF 2 CF 2 -, -CHFCHFCF 2 CF 2 CF 2 -, -CF 2 CH 2 CF 2 CF 2 -, -CHFCH 2 CF 2 CF 2 CF 2 -, -CH 2 CH 2 CF 2 CF 2 CF 2 -, -CF 2 CF 2 CHFCF 2 CF 2 -, -CHFCF 2 CHFCF 2 Examples include -CF 2 -, -CH 2 CF 2 CHFCF 2 CF 2 -, -CH 2 CF 2 CF 2 CF 2 CH 2 -, and -cycloC 5 F 8 -.
- R f6 include -CF 2 CF 2 CF 2 CF 2 CF 2 -, -CF 2 CF 2 CHFCHFCF 2 CF 2 -, -CHFCF 2 CF 2 CF 2 CF 2 CF 2 -, -CHFCHFCHFCHFCHFCHF-, -CHFCF 2 CF 2 CF 2 CH 2 - , -CH 2 CF 2 CF 2 CF 2 CH 2 - , and -cycloC 6 F 10 -.
- -cycloC 4 F 6 - means a perfluorocyclobutanediyl group, a specific example of which is a perfluorocyclobutane-1,2-diyl group
- -cycloC 5 F 8 - means a perfluorocyclopentanediyl group, a specific example of which is a perfluorocyclopentane-1,3-diyl group
- -cycloC 6 F 10 - means a perfluorocyclohexanediyl group, a specific example of which is a perfluorocyclohexane-1,4-diyl group.
- —(R 12 O) m1 — preferably contains at least one selected from the group consisting of structures represented by the following formulas (F1) to (F3), and more preferably contains a structure represented by formula (F2). -(R f1 O) k1 -(R f2 O) k2 - ... (F1) -(R f2 O) k2 -(R f4 O) k4 - ... (F2) -(R f3 O) k3 - ... (F3)
- the symbols in formulas (F1) to (F3) are the same as those in formula (A2) above.
- the bonding order of (R f1 O) and (R f2 O), and (R f2 O) and (R f4 O) are each arbitrary.
- (R f1 O) and (R f2 O) may be arranged alternately, (R f1 O) and (R f2 O) may be arranged in blocks, or may be arranged randomly.
- k1 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- k2 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- k2 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- k4 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- k3 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- examples of R 13 include the same as R f1 to R f6 above.
- R 13 is preferably a fluoroalkylene group having 1 to 4 carbon atoms.
- R A1 include the following structures. * represents a bonding site with --O--, n1 represents an integer of 0 to 60, and n2 represents an integer of 0 to 500. n1 is, for example, 13, and n2 is, for example, 7.
- R B1 is a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
- Examples of the monovalent saturated hydrocarbon group represented by R B1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a 2-ethylhexyl group, and a cyclohexyl group.
- the halogeno monovalent saturated hydrocarbon group represented by R B1 is preferably a halogenoalkyl group.
- the halogen atom contained in the halogeno monovalent saturated hydrocarbon group is preferably a fluorine atom, a chlorine atom, or a bromine atom.
- the heteroatom-containing monovalent saturated hydrocarbon group represented by R is preferably a monovalent saturated hydrocarbon group containing an ethereal oxygen atom (i.e., -O-), and more preferably an alkyl group containing an ethereal oxygen atom.
- R preferably further has an ether bond.
- the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R B1 is preferably a halogeno (heteroatom-containing alkyl group).
- the halogen atom contained in the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a fluorine atom, a chlorine atom, or a bromine atom.
- the halogeno (heteroatom-containing monovalent saturated hydrocarbon) group is preferably a halogeno monovalent saturated hydrocarbon group containing an ethereal oxygen atom, and more preferably a halogenoalkyl group containing an ethereal oxygen atom.
- the number of carbon atoms in R B1 is preferably 1 to 100, more preferably 2 to 50, and even more preferably 3 to 20, from the viewpoint of excellent solubility in a solvent.
- R B1 preferably contains at least one fluorine atom and preferably does not contain a hydrogen atom.
- R B1 is preferably represented by the following formula (B1). R21O- ( R22O ) m2 - R23 -... (B1)
- R 21 is an alkyl group which may have a fluorine atom
- R 22 is each independently an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
- R 23 is an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
- m2 is an integer of 0 to 20.
- examples of R 21 include an alkyl group and a fluoroalkyl group.
- the carbon number of R 21 is preferably 1 to 50, more preferably 1 to 10, and even more preferably 1 to 6, from the viewpoint of excellent solubility in a solvent.
- the alkyl group represented by R21 may be a linear alkyl group, a branched alkyl group, or an alkyl group having a ring structure.
- the fluoroalkyl group represented by R 21 may be a straight-chain fluoroalkyl group, a branched-chain fluoroalkyl group, or a fluoroalkyl group having a ring structure.
- R 21 is preferably a fluoroalkyl group, more preferably a linear fluoroalkyl group, still more preferably a linear fluoroalkyl group having 1 to 6 carbon atoms, and particularly preferably a linear perfluoroalkyl group having 1 to 6 carbon atoms.
- m2 is preferably 0 to 15, more preferably 0 to 10, even more preferably 0 to 4, and particularly preferably 0 to 2.
- examples of R 23 include the same as R f1 to R f6 above.
- R 23 is preferably a fluoroalkylene group having 1 to 3 carbon atoms, and more preferably a perfluoroalkylene group having 1 to 3 carbon atoms.
- R A2 is a divalent saturated hydrocarbon group, a halogeno divalent saturated hydrocarbon group, a heteroatom-containing divalent saturated hydrocarbon group, or a halogeno (heteroatom-containing divalent saturated hydrocarbon) group.
- Examples of the divalent saturated hydrocarbon group, halogeno divalent saturated hydrocarbon group, heteroatom-containing divalent saturated hydrocarbon group, or halogeno (heteroatom-containing divalent saturated hydrocarbon) group represented by R include groups in which one hydrogen atom or one halogen atom has been removed from the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R in formula ( 1).
- the carbon number of R A2 is preferably 1 to 200, and more preferably 3 to 100, in terms of excellent solubility in a solvent.
- R A2 is preferably represented by the following formula (A5):
- R A2 preferably further has an ether bond, and more preferably includes at least one selected from the group consisting of a polyether chain and a fluoropolyether chain.
- R 31 and R 33 each independently represent an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
- R 32 each independently represent an alkylene group having 1 to 6 carbon atoms which may have a fluorine atom
- m5 is an integer of 0 to 500.
- R 31 and R 33 each independently have the same meaning as R 13 in formula (A1).
- examples of -(R 32 O) m5 - include the same as -(R 12 O) m1 - in formula (A1).
- R A2 include the following structures: * represents a bonding site with —O—, and n2 represents an integer of 0 to 500.
- R B2 and R B3 each independently represent a monovalent saturated hydrocarbon group, a halogeno monovalent saturated hydrocarbon group, a heteroatom-containing monovalent saturated hydrocarbon group, or a halogeno (heteroatom-containing monovalent saturated hydrocarbon) group.
- Examples of the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R or R include groups similar to the monovalent saturated hydrocarbon group, halogeno monovalent saturated hydrocarbon group, heteroatom-containing monovalent saturated hydrocarbon group, or halogeno (heteroatom-containing monovalent saturated hydrocarbon) group represented by R in formula (1).
- Examples of the raw material ester compound include the following compound ( T1 ) .
- n1 represents a number of 1 or more, preferably 1 to 50, more preferably 1 to 40, and even more preferably 1 to 30.
- the boiling point of the raw material ester compound is preferably 30°C or higher, more preferably 50°C or higher, and more preferably 100°C or higher. From the same viewpoint, the boiling point of the raw material ester compound is preferably 500°C or lower, more preferably 400°C or lower, and even more preferably 300°C or lower. From the above viewpoint, the boiling point of the raw material ester compound is preferably 30 to 500°C, more preferably 50 to 400°C, and even more preferably 100 to 300°C. In this disclosure, "boiling point” refers to the boiling point at normal pressure (760 mmHg).
- the number average molecular weight (Mn) of the raw material ester compound is preferably 100 to 100,000, more preferably 100 to 20,000, further preferably 300 to 10,000, and particularly preferably 400 to 6,000.
- Mn is equal to or greater than the lower limit, the decomposition reaction in the gas phase during liquid phase fluorination is easily suppressed.
- Mn is equal to or less than the upper limit, the purification of the fluorine-containing compound is easily performed.
- Mn is the number average value of the molecular weight of each molecule calculated from the molecular structure identified by 1 H-NMR and 19 F-NMR.
- the raw material ester compound preferably contains fluorine atoms.
- the fluorine content in the raw material ester compound i.e., the proportion of fluorine atoms in the molecule
- the fluorine content in the raw material ester compound is preferably 10 to 86 mass%, more preferably 10 to 76 mass%, and even more preferably 30 to 76 mass%.
- the raw material ester compound may be a commercially available product or a synthesized compound.
- the raw material ester compound may be an ester of a compound having a hydroxyl group and a compound having an acyl fluoride group (FC(O)-).
- FC(O)- acyl fluoride group
- the method of obtaining the ester is not particularly limited as long as the ester has a structure of a compound produced when a compound having a hydroxyl group and a compound having an acyl fluoride group are subjected to an esterification reaction.
- the raw material ester compound may be a compound obtained by esterifying a compound having a hydroxyl group and a compound having one or more groups selected from the group consisting of a ClC(O)- group, a BrC(O)- group, and a carboxy group.
- the raw material ester compound may also be a compound obtained by subjecting a portion other than the ester bond to another chemical conversion after the esterification reaction.
- the raw material ester compound is preferably a compound produced by esterification reaction between a compound having a hydroxyl group and a compound having an acyl fluoride group.
- the compound having a hydroxyl group may be a compound having one or more hydroxyl groups.
- the compound having an acyl fluoride group may be a compound having one or more acyl fluoride groups.
- the raw material ester compound is preferably an ester of a compound having one hydroxyl group and a compound having one acyl fluoride group.
- an organic solvent is used as a solvent in the liquid phase.
- the organic solvent includes a compound having a C-H bond.
- the organic solvent may include a compound not having a C-H bond in addition to the compound having a C-H bond, or may not include a compound not having a C-H bond.
- the content of the compound having a C-H bond relative to the total amount of the organic solvent is preferably 0.01% by mass or more, more preferably 30% by mass or more, may be 50% by mass or more, or may be 70% by mass or more.
- the content of the compound having a C-H bond relative to the total amount of the organic solvent may be 90% by mass or less, or may be 80% by mass or less. From the above viewpoint, the content of the compound having a C-H bond relative to the total amount of the organic solvent may be 0.01 to 90% by mass, may be 30 to 80% by mass, may be 50 to 80% by mass, or may be 70 to 80% by mass.
- the organic solvent is preferably a compound that has high solubility for the raw material ester compound, and is preferably a compound that can dissolve 1% or more by mass of the raw material ester compound at 25°C, and more preferably a compound that can dissolve 5% or more by mass.
- the amount of the organic solvent is preferably 1 time by mass or more, more preferably 2 times by mass or more, relative to the raw ester compound.
- the amount of the organic solvent may be 100 times by mass or less, 50 times by mass or less, or 10 times by mass or less, relative to the raw ester compound.
- the amount of the organic solvent may be 1 to 100 times by mass, 2 to 50 times by mass, or 2 to 10 times by mass, relative to the raw ester compound.
- the boiling point of the organic solvent is preferably 10 to 500°C, more preferably 30 to 250°C, and even more preferably 50 to 150°C.
- the boiling point is the boiling point of each compound.
- the molecular weight of the organic solvent is preferably 200 or more, more preferably 200 to 50,000, even more preferably 200 to 25,000, particularly preferably 200 to 10,000, and most preferably 200 to 1,000.
- Mw weight average molecular weight
- Mw is measured in terms of polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
- GPC gel permeation chromatography
- THF tetrahydrofuran
- the viscosity of the organic solvent at 25°C is preferably 2,000 mPa ⁇ s or less overall, more preferably 1,000 mPa ⁇ s or less, and even more preferably 500 mPa ⁇ s or less.
- the viscosity of the organic solvent can be measured according to JIS Z8803:2011 using a rheometer (for example, device name RE-215L, Toki Sangyo Co., Ltd.).
- the vapor pressure of the organic solvent in the container is preferably 0.009 MPa or less, more preferably 0.007 MPa or less, even more preferably 0.006 MPa or less (49 mmHg), particularly preferably 0.005 MPa or less (38 mmHg), and extremely preferably 0.003 MPa or less (23 mmHg).
- a compound having a C-H bond is a compound in which hydrogen atoms are bonded to the carbon atoms of an organic compound.
- the number of hydrogen atoms in a compound having a C-H bond may be equal to or less than the maximum number of atoms that can theoretically be bonded to a carbon atom, and is preferably 1 to 10, more preferably 1 to 8, and even more preferably 1 to 6.
- the number of hydrogen atoms is equal to or more than the lower limit, the effect of improving the conversion rate can be exhibited well, and when the number is equal to or less than the upper limit, the reaction heat can be reduced and the decomposition reaction can be suppressed.
- the compound having a C-H bond is preferably a compound that, as a single compound, has high solubility in the raw material ester compound, and is preferably a compound that can dissolve 1% by mass or more of the raw material ester compound at 25°C, and more preferably a compound that can dissolve 5% by mass or more.
- the carbon number of the compound having a C-H bond is preferably 4 or more, more preferably 4 to 100, even more preferably 4 to 50, particularly preferably 4 to 20, and extremely preferably 4 to 10.
- the compound having a C-H bond has a halogen atom, and more preferably a fluorine atom.
- the fluorine content of the compound having a C-H bond is preferably 5 to 99% by mass, more preferably 5% to less than 86% by mass, even more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass.
- Examples of compounds having a C--H bond include alkanes, ether compounds, ester compounds, ketone compounds, and compounds in which at least one hydrogen atom of these compounds has been substituted with a halogen atom.
- the alkane may be one having 4 to 100 carbon atoms, preferably 4 to 50 carbon atoms, more preferably 4 to 20 carbon atoms, and even more preferably 4 to 10 carbon atoms.
- the ether compound may be an ether compound having a carbon number of 4 to 100, preferably 4 to 50, more preferably 4 to 20, and even more preferably 4 to 10. The number of ether bonds in the ether compound may be one or more.
- the ester compound may be an ester compound having a carbon number of 4 to 100, preferably 4 to 50, more preferably 4 to 20, and even more preferably 4 to 10.
- the number of ester bonds in the ester compound may be one or more.
- the ketone compound may have a carbon number of 4 to 100, preferably 4 to 50, more preferably 4 to 20, and even more preferably 4 to 10.
- the number of carbonyl groups in the ketone compound may be one or more.
- Examples of the above-mentioned compounds in which at least one hydrogen atom has been substituted with a halogen atom include fluoroalkanes, fluoroether compounds, chlorofluorocarbons, and chlorofluoroether compounds.
- the compound having a C--H bond may be used alone or in combination of two or more kinds.
- the amount of the compound having a C-H bond is 0.1 times by mass or more of the raw ester compound, preferably 0.5 times by mass or more, and more preferably 1 times by mass or more.
- the amount of the compound having a C-H bond is preferably 100 times by mass or less of the raw ester compound, more preferably 50 times by mass or less, and even more preferably 10 times by mass or less.
- the amount of the compound having a C-H bond is equal to or more than the lower limit, the solubility of the raw ester compound becomes sufficient and the fluorination reaction proceeds smoothly.
- the amount of the compound having a C-H bond is equal to or less than the upper limit, the amount of solvent is not excessive, and raw material costs can be reduced.
- the amount of the compound having a C-H bond is preferably 0.1 to 100 times by mass of the raw ester compound, more preferably 0.5 to 50 times by mass, and even more preferably 1 to 10 times by mass.
- the compound having a C-H bond is preferably a compound that can be fluorinated and converted into the fluorine-containing compound having no C-H bond.
- the content of the compound having a C-H bond relative to the total amount of the compound having a C-H bond and its fluoride, a fluorine-containing compound having no C-H bond is preferably 0.01% by mass, more preferably 10% by mass or more, even more preferably 30% by mass or more, and particularly preferably 50% by mass or more.
- the content of the compound having a C-H bond relative to the total amount may be 90% by mass or less, 80% by mass or less, or 70% by mass or less. From this viewpoint, the content of the compound having a C-H bond relative to the total amount may be 0.01 to 90% by mass, 10 to 80% by mass, 30 to 70% by mass, or 50 to 70% by mass.
- the compound having no C-H bond is preferably a fluorine-containing compound having no C-H bond, for example, a perfluoroalkane or an organic solvent obtained by perfluorinating an organic solvent having at least one atom selected from the group consisting of a chlorine atom, a nitrogen atom, and an oxygen atom.
- the fluorine-containing compound that does not have a C-H bond is preferably a compound that, as a single compound, has high solubility for the raw material ester compound, and is preferably a compound that can dissolve 1% by mass or more of the raw material ester compound at 25°C, and more preferably a compound that can dissolve 5% by mass or more.
- the fluorine-containing compound having no C—H bond may be at least one selected from the group consisting of chlorine-containing solvents and fluorine-containing solvents other than chlorine-containing solvents.
- chlorine-containing solvents include CClF 2 CClFCF 2 OCF 2 CClF 2 (CFE-419), 1,2,3,4-tetrachloroperfluorobutane (R-113), CF 2 ClCFClCFClOCF 2 CF 2 Cl (CFE-418), and the like.
- fluorine-containing solvents other than chlorine-containing solvents include perfluoroalkanes (FC-72, etc.), perfluoroethers (FC-75, FC-77, etc.), perfluoropolyethers (trade names: Krytox, Fomblin, Galden, Demnum, etc.), inert fluids (trade name: Fluorinert), and perfluorocarboxylic acid fluorides.
- fluorine-containing compound having no C—H bond include the following acid fluorides.
- CF3CF2CF2OCF ( CF3 ) COF CF3CF2CF2OCF ( CF3 ) CF2OCF ( CF3 )COF CF3CF2CF2OCF ( CF3 ) CF2OCF( CF3 ) CF2OCF ( CF3 )COF
- the compound having no C--H bond may be used alone or in combination of two or more kinds.
- the organic solvent preferably contains a compound having a C-H bond and a fluorine-containing compound not having a C-H bond.
- the content of the compound having a C-H bond relative to the total amount of the compound having a C-H bond and the fluorine-containing compound not having a C-H bond is preferably 0.01% by mass, more preferably 10% by mass or more, even more preferably 30% by mass or more, and particularly preferably 50% by mass or more.
- the content of the compound having a C-H bond relative to the total amount may be 90% by mass or less, 80% by mass or less, or 70% by mass or less. From the above viewpoint, the content of the compound having a C-H bond relative to the total amount may be 0.01 to 90% by mass, 10 to 80% by mass, 30 to 70% by mass, or 50 to 70% by mass.
- the fluorine-containing ester compound produced by the present production method is a compound having fluorine atoms and ester bonds, which is obtained by liquid-phase fluorination of a raw material ester compound.
- a fluorine-containing ester compound having a structure corresponding to the carbon skeleton of the raw material ester compound is produced.
- a fluorine atom may be added to one or more of the unsaturated bonds to change the bonding state.
- the fluorine-containing ester compound is a compound having a higher fluorine content than the raw material ester compound, and the raw material ester compound is preferably a perfluorinated compound.
- the fluorine-containing ester compound is preferably a compound represented by the following formula (6):
- R AF1 , R BF1 , R AF2 , R BF2 , and R BF3 are groups corresponding to R A1 , R B1 , R A2 , R B2 , and R B3 , respectively; when R A1 , R B1 , R A2 , R B2 and R B3 are each independently a group not containing a hydrogen atom, R AF1 , R BF1 , R AF2 , R BF2 and R BF3 are the same group as R A1 , R B1 , R A2 , R B2 and R B3 ; When R A1 , R B1 , R A2 , R B2 , and R B3 are each independently a group containing a hydrogen atom, R AF1 , R BF1 , R AF2 , R BF2 , and R BF3 are groups in which all hydrogen atoms present in R A1 , R B1 , R B1 , R A2
- R AF1 is a group corresponding to R A1 .
- R AF1 is a group in which all hydrogen atoms present in R A1 are substituted with fluorine atoms.
- R AF1 is the same group as R A1 .
- R AF1 is preferably represented by the following formula (A3).
- A3 R14O- ( R15O ) m3 - R16- ... (A3)
- R 14 is a perfluoroalkyl group
- R 15 is each independently a perfluoroalkylene group having 1 to 6 carbon atoms
- R 16 is a perfluoroalkylene group having 1 to 6 carbon atoms
- m3 is an integer of 0 to 500.
- R 14 corresponds to R 11 in formula (A1).
- R 14 is a group in which all hydrogen atoms contained in R 11 are substituted with fluorine atoms.
- R 14 is the same as R 11 .
- -(R 15 O) m3 - corresponds to -(R 12 O) m1 - in formula (A1).
- R 15 is a group in which all hydrogen atoms contained in R 12 are substituted with fluorine atoms.
- R 15 is the same as R 12 .
- —(R 15 O) m3 — is preferably represented by the following formula (A4). -[(R ff1 O) k7 (R ff2 O) k8 (R ff3 O) k9 (R ff4 O) k10 (R ff5 O) k11 (R ff6 O) k12 ]- ...
- R ff1 is a perfluoroalkylene group having 1 carbon atom
- R ff2 is a perfluoroalkylene group having 2 carbon atoms
- R ff3 is a perfluoroalkylene group having 3 carbon atoms
- R ff4 is a perfluoroalkylene group having 4 carbon atoms
- R ff5 is a perfluoroalkylene group having 5 carbon atoms
- R ff6 is a perfluoroalkylene group having 6 carbon atoms.
- k7, k8, k9, k10, k11, and k12 each independently represent an integer of 0 or 1 or more, and k7+k8+k9+k10+k11+k12 is an integer of 0 to 500.
- R ff1 to R ff6 correspond to R f1 to R f6 in formula (A2).
- R ff1 is a group in which all hydrogen atoms contained in R f1 are substituted with fluorine atoms.
- R ff1 is the same as R f1 .
- R ff2 to R ff6 is the same as R ff2 .
- k7+k8+k9+k10+k11+k12 is preferably an integer from 1 to 500, more preferably an integer from 1 to 300, even more preferably an integer from 5 to 200, and particularly preferably an integer from 10 to 150.
- —(R 15 O) m3 — preferably contains at least one selected from the group consisting of structures represented by the following formulae (G1) to (G3), and more preferably contains a structure represented by formula (G2). -(R ff1 O) k7 -(R ff2 O) k8 - ... (G1) -(R ff2 O) k8 -(R ff4 O) k10 - ... (G2) -(R ff3 O) k9 - ... (G3)
- the symbols in formulas (G1) to (G3) are the same as those in formula (A4) above.
- the bonding order of ( Rff1O ) and ( Rff2O ), and ( Rff2O ) and ( Rff4O ) are each arbitrary.
- ( Rff1O ) and ( Rff2O ) may be arranged alternately, ( Rff1O ) and ( Rff2O ) may be arranged in blocks, or may be arranged randomly.
- k7 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- k8 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- k8 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- k10 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- k9 is preferably an integer of 1 to 30, and more preferably an integer of 1 to 20.
- R 16 corresponds to R 13 in formula (A1).
- R 16 is a group in which all hydrogen atoms contained in R 13 are substituted with fluorine atoms.
- R 16 is the same as R 13 .
- R 16 examples include the same as R ff1 to R ff6 above.
- R 16 is preferably a perfluoroalkylene group having 1 to 3 carbon atoms.
- m3 corresponds to m1 in formula (A1). m3 is the same as m1.
- R AF1 include the following structures, in which * represents a bonding site with --O--, n1 represents an integer of 0 to 60, and n2 represents an integer of 0 to 500. n1 is, for example, 13, and n2 is, for example, 7.
- R BF1 is a group corresponding to R B1 .
- R BF1 is a group in which all hydrogen atoms present in R B1 are substituted with fluorine atoms.
- R BF1 is the same group as R B1 .
- R BF1 is preferably represented by the following formula (B2).
- R 24 is a perfluoroalkyl group
- R 25 is each independently a perfluoroalkylene group having 1 to 6 carbon atoms
- R 26 is a perfluoroalkylene group having 1 to 6 carbon atoms
- m4 is an integer of 0 to 20.
- R 24 corresponds to R 21 in formula (B1).
- R 24 is a group in which all hydrogen atoms contained in R 21 are substituted with fluorine atoms.
- R 24 is the same as R 21 .
- -(R 25 O) m4 - corresponds to -(R 22 O) m2 - in formula (B1).
- R 25 is a group in which all of the hydrogen atoms contained in R 22 are substituted with fluorine atoms.
- R 25 is the same as R 22 .
- R 26 corresponds to R 23 in formula (B1).
- R 26 is a group in which all hydrogen atoms contained in R 23 are substituted with fluorine atoms.
- R 26 is the same as R 23 .
- m4 corresponds to m2 in formula (B1). m4 is the same as m2.
- R AF2 is a group corresponding to R A2 .
- R AF2 is a group in which all hydrogen atoms present in R A2 are substituted with fluorine atoms.
- R AF2 is the same group as R A2 .
- R AF2 is preferably represented by the following formula (A6): That is, R AF2 preferably further has an ether bond. -R34O- ( R35O ) m6 - R36- ... (A6)
- R 34 and R 36 are each independently a perfluoroalkylene group having 1 to 6 carbon atoms; R 35 are each independently a perfluoroalkylene group having 1 to 6 carbon atoms; and m6 is an integer of 0 to 500.
- R 34 and R 36 correspond to R 31 and R 33 in formula (A5), respectively.
- R 31 contains a hydrogen atom
- R 34 is a group in which all hydrogen atoms contained in R 31 are substituted with fluorine atoms.
- R 31 does not contain a hydrogen atom
- R 34 is the same as R 31.
- R 33 contains a hydrogen atom
- R 36 is a group in which all hydrogen atoms contained in R 33 are substituted with fluorine atoms.
- R 36 is the same as R 33 .
- -(R 35 O) m6 - corresponds to -(R 32 O) m5 - in formula (A5).
- R 35 is a group in which all hydrogen atoms contained in R 32 are substituted with fluorine atoms.
- R 35 is the same as R 32 .
- R 34 and R 36 each independently have the same meaning as R 31 and R 33 in formula (A5).
- examples of -(R 35 O) m6 - include the same as -(R 32 O) m5 - in formula (A5).
- R AF2 include the following structures: * represents a bonding site with --O--, and n2 represents an integer of 0 to 500.
- R 3 BF2 and R 3 BF3 are groups corresponding to R 3 B2 and R 3 B3 , respectively.
- R BF2 is a group in which all hydrogen atoms present in R B2 are substituted with fluorine atoms.
- R BF2 is the same group as R B2 .
- R BF3 is a group in which all hydrogen atoms present in R B3 are substituted with fluorine atoms.
- R BF3 is the same group as R B3 .
- Examples of the group represented by R 3 BF2 or R 3 BF3 include the same groups as the group represented by R 3 BF1 in formula (6).
- the number average molecular weight of the fluorine-containing ester compound is not particularly limited, but is preferably 100 to 100,000, more preferably 100 to 20,000, even more preferably 300 to 10,000, and particularly preferably 400 to 6,000.
- the fluorine-containing ester compound which is the reaction product of the liquid-phase fluorination, can be useful as it is or after being chemically converted into another compound.
- the fluorine-containing ester compound is a compound having an ester bond that can be decomposed, particularly when it is compound (6) or (7), it may be converted into another compound by carrying out a decomposition reaction of the ester bond.
- the reaction type of the fluorination reaction may be a batch system or a continuous system, and the continuous system is preferred.
- the fluorination method may be the fluorination methods 1 and 2 described below. From the viewpoint of excellent conversion, the fluorination method 2 described below is preferably carried out in a continuous system.
- Fluorination method 1 A reactor is charged with a raw material ester compound and a solvent, and stirring is started. The mixture is reacted at a given reaction temperature and pressure while continuously supplying fluorine gas.
- Fluorination method 2 A solvent is charged into a reactor and stirring is started. A raw material ester compound and fluorine gas are continuously and simultaneously fed at a predetermined molar ratio under a predetermined reaction temperature and reaction pressure.
- the raw ester compound When supplying the raw ester compound in fluorination method 2, the raw ester compound may be supplied as is without diluting it with a solvent.
- the amount of the solvent is preferably at least 1-fold by mass, and more preferably at least 2-fold by mass, relative to the raw ester compound.
- fluorine gas may be used as is, or a mixed gas in which fluorine gas is diluted with an inert gas may be used.
- inert gases include nitrogen gas, helium gas, neon gas, and argon gas. Nitrogen gas or helium gas is preferred, and nitrogen gas is more preferred.
- the concentration of fluorine gas in the mixed gas is preferably 10% by volume or more, more preferably 15% by volume or more, and even more preferably 20% by volume or more. From the viewpoint of suppressing excessive reactivity, it is preferably 60% by volume or less, more preferably 50% by volume or less, and even more preferably 40% by volume or less. From the above viewpoints, the concentration of fluorine gas in the mixed gas is preferably 10 to 60% by volume, more preferably 15 to 50% by volume, and even more preferably 20 to 40% by volume.
- the amount of fluorine used in the liquid-phase fluorination is preferably an amount that results in an excess equivalent of fluorine relative to the hydrogen atoms in the raw material ester compound, and more preferably an amount that results in 1.5 equivalents (i.e., 1.5 moles) or more. It is preferable that the amount of fluorine is such that an excess equivalent is maintained from the beginning to the end of the liquid-phase fluorination.
- the reaction temperature for the liquid phase fluorination is preferably ⁇ 60° C. or higher and not higher than the boiling point of the raw material ester compound, and from the viewpoints of reaction yield, selectivity, and ease of industrial implementation, it is more preferably ⁇ 50° C. to 100° C., and even more preferably ⁇ 20° C. to 50° C.
- the reaction pressure for the liquid phase fluorination is not particularly limited, but from the viewpoints of excellent conversion rate and ease of industrial implementation, it is preferably 0 to 2 MPa.
- the reaction time in liquid phase fluorination is preferably 200 hours or less, more preferably 190 hours or less, even more preferably 170 hours or less, particularly preferably 150 hours or less, and extremely preferably 100 hours or less.
- the reaction time is preferably 0.3 hours or more, more preferably 0.6 hours or more, and even more preferably 1 hour or more. If the reaction time is equal to or greater than the lower limit, the reaction is likely to be sufficient, and if it is equal to or less than the upper limit, the production time and cost are likely to be reduced. From the above viewpoint, the reaction time is preferably 0.3 to 200 hours, more preferably 0.6 to 190 hours, even more preferably 1 to 170 hours, particularly preferably 1 to 150 hours, and most preferably 1 to 100 hours.
- the content of the raw material ester compound in the liquid phase is preferably 10 to 70% by mass, and more preferably 20 to 50% by mass.
- the reaction system In order to efficiently proceed with the liquid phase fluorination and improve the yield, it is preferable to irradiate the reaction system with ultraviolet light. In a batch reaction, it is preferable to irradiate the reaction system with ultraviolet light in the later stages of the liquid phase fluorination.
- the ultraviolet light irradiation time is preferably 0.1 to 3 hours.
- a compound having a C-H bond or a compound having a carbon-carbon double bond may be added as an auxiliary.
- a compound having one specific type of C-H bond or a compound having a carbon-carbon double bond is used in an amount less than 0.1 times by mass relative to the raw material ester compound, the compound is classified as an auxiliary.
- the auxiliary compound having a C-H bond is preferably an aromatic hydrocarbon, more preferably benzene, toluene, etc.
- the amount of the compound having a C-H bond added is preferably 0.1 to 10 mol %, more preferably 0.1 to 5 mol %, based on the hydrogen atoms of the raw material ester compound.
- auxiliary compound having a carbon-carbon double bond examples include CF 3 CF ⁇ CF 2 and CF 2 ⁇ CF-CF ⁇ CF 2 .
- the amount of the compound having a carbon-carbon double bond added is preferably 0.1 to 10 mol %, more preferably 0.1 to 5 mol %, based on the hydrogen atoms in the raw material ester compound.
- an auxiliary may be added to the reaction system in the later stages of liquid phase fluorination.
- the auxiliary is preferably added in a state where fluorine is present in the reaction system.
- the pressure during pressurization is preferably 0.01 to 5 MPa.
- the present manufacturing method does not use an auxiliary compound having a C-H bond or a compound having a carbon-carbon double bond. According to the present manufacturing method, even without using an auxiliary, the compound having a C-H bond used as a solvent becomes a radical generating source, and the conversion rate can be improved. By not using an auxiliary, it is expected that the process of adding and removing the auxiliary can be simplified.
- HF is produced as a by-product.
- an HF scavenger present in the reaction system or to bring the HF scavenger into contact with the outlet gas at the reactor gas outlet.
- NaF is a preferred HF scavenger.
- the crude product containing the fluorinated ester compound obtained by liquid phase fluorination may be used as is in the next step, or may be purified to a high purity.
- purification methods include distilling the crude product directly under normal or reduced pressure.
- Example 1 is a comparative example, and Examples 2 to 5 are working examples.
- CFE - 419 CF2ClCFClCF2OCF2CF2Cl HCFE - 428a,b : CF2ClCFClCHFOCF2CF2Cl HCFE - 473 : CH2ClCHClCH2OCF2CHFCl
- Example 1 A fluorination reaction was carried out to replace most of the hydrogen atoms of compound (A) with fluorine atoms by the following method.
- An autoclave (made of nickel, internal volume 500 mL) was prepared, and a cooler maintained at 0° C., a NaF pellet packed layer, and a cooler maintained at ⁇ 10° C. were installed in series at the gas outlet of the autoclave.
- a liquid return line was installed to return the coagulated liquid from the cooler maintained at ⁇ 10° C. to the autoclave.
- 100 g of CFE-419 was charged into the autoclave and stirred while maintaining the temperature at 20° C. Nitrogen gas was blown into the autoclave at 25° C.
- H remaining ratio the hydrogen remaining ratio
- H remaining ratio average number of hydrogen atoms remaining in one molecule / average number of fluorine atoms in one molecule
- Example 2 A fluorination reaction was carried out in the same manner as in Example 1, except that the raw material solution was changed to a solution in which 100 g of compound (A) was dissolved in 200 g of HCFE-428a,b, and the residual H ratio was calculated.
- Example 3 A fluorination reaction was carried out in the same manner as in Example 1, except that the raw material solution was changed to a solution in which 100 g of compound (A) was dissolved in 200 g of HCFE-473, and the H remaining ratio was calculated.
- Example 4 A fluorination reaction was carried out in the same manner as in Example 1 except that the raw material solution was changed to a solution in which 100 g of compound (A) was dissolved in 200 g of a mixed solution of HCFE-473 and CFE-419 in a mass ratio of 1:1, and the H remaining ratio was calculated.
- Example 5 A fluorination reaction was carried out in the same manner as in Example 1 except that the raw material solution was changed to a solution in which 100 g of compound (A) was dissolved in 200 g of a mixed solution of HCFE-473 and CFE-419 in a mass ratio of 1:10, and the H remaining ratio was calculated.
- the analytical values of the residual hydrogen ratio of the fluorinated products obtained in Examples 1 to 5 are shown in Table 2.
- the number of hydrogen atoms in CFE-419 is 0, the number of hydrogen atoms in HCFE-428 is 1, and the number of hydrogen atoms in HCFE-473 is 6.
- the reaction solvent is the combined solvent initially charged in the autoclave and the solvent in the raw material solution, and the ratio of the solvent amounts is expressed by mass ratio.
- liquid-phase fluorination using a compound having a C-H bond as a solvent improves the fluorination conversion rate.
- the method for producing a fluorine-containing ester compound disclosed herein can produce a fluorine-containing ester compound with a high fluorination conversion rate.
- the obtained fluorine-containing ester compound can be derived into a fluorine-containing compound having various functional groups (e.g., a hydroxyl group, an ethylenically unsaturated group, an epoxy group, a carboxy group, etc.).
- the obtained fluorine-containing ester compound and fluorine-containing compound can be used as a surface treatment agent, an emulsifier, rubber, a surfactant, a solvent, a heat transfer medium, a pharmaceutical, an agricultural chemical, a lubricant, an intermediate thereof, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
含フッ素エステル化合物の製造方法は、フッ素ガスを導入した有機溶媒中で、フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物をフッ素化することを含み、前記有機溶媒は、C-H結合を有する化合物を含み、前記C-H結合を有する化合物の量が、前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物の0.1質量倍以上である。
Description
本開示は、含フッ素エステル化合物の製造方法に関する。
含フッ素エステル化合物には産業上有用な化合物が多く存在し、従来から様々な製造方法が開発されてきた。例えば、特許文献1には、エステル化合物等を液相中でフッ素化して含フッ素エステル化合物等の含フッ素化合物を製造する方法が記載されている。
液相中でのフッ素化を伴う含フッ素エステル化合物の合成において、化合物の特性を充分に発現する観点から、フッ素化の転化率が高いことが望ましい。一方、従来の技術では、転化率には改善の余地があった。かかる状況に鑑み、本開示はフッ素化の転化率の高い含フッ素エステル化合物の製造方法に関する。
本開示は以下の態様を含む。
<1> フッ素ガスを導入した有機溶媒中で、フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物をフッ素化することを含み、
前記有機溶媒は、C-H結合を有する化合物を含み、
前記C-H結合を有する化合物の量が、前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物の0.1質量倍以上である、
含フッ素エステル化合物の製造方法。
<2> 前記C-H結合を有する化合物が1~10個の水素原子を含む、<1>に記載の含フッ素エステル化合物の製造方法。
<3> 前記有機溶媒は、前記C-H結合を有する化合物と、C-H結合を有しない含フッ素化合物と、を含む、<1>又は<2>に記載の含フッ素エステル化合物の製造方法。<4> 前記有機溶媒における前記C-H結合を有する化合物の含有率が0.01質量%以上である、<1>~<3>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
<5> 前記C-H結合を有する化合物は、フッ素化されて前記C-H結合を有しない含フッ素化合物に変換可能な化合物である、<3>に記載の含フッ素エステル化合物の製造方法。
<6> 前記C-H結合を有する化合物のフッ素含量が5~99質量%である、<1>~<5>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
<7> 前記C-H結合を有する化合物がアルカン、エーテル化合物、エステル化合物、ケトン化合物又はこれらの化合物の水素原子の少なくとも1つがハロゲン原子で置換された化合物である、<1>~<6>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
<8> 前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物が、下記式(1)又は(2)で表される化合物である、<1>~<7>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
RA1-O-(C=O)-RB1 …(1)
RB2-(C=O)-O-RA2-O-(C=O)-RB3 …(2)
式(1)及び(2)中、
RA1、RB1、RB2、及びRB3はそれぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基であり、
RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。
<9> 前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物が、フッ素原子を含む、<1>~<8>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
<1> フッ素ガスを導入した有機溶媒中で、フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物をフッ素化することを含み、
前記有機溶媒は、C-H結合を有する化合物を含み、
前記C-H結合を有する化合物の量が、前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物の0.1質量倍以上である、
含フッ素エステル化合物の製造方法。
<2> 前記C-H結合を有する化合物が1~10個の水素原子を含む、<1>に記載の含フッ素エステル化合物の製造方法。
<3> 前記有機溶媒は、前記C-H結合を有する化合物と、C-H結合を有しない含フッ素化合物と、を含む、<1>又は<2>に記載の含フッ素エステル化合物の製造方法。<4> 前記有機溶媒における前記C-H結合を有する化合物の含有率が0.01質量%以上である、<1>~<3>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
<5> 前記C-H結合を有する化合物は、フッ素化されて前記C-H結合を有しない含フッ素化合物に変換可能な化合物である、<3>に記載の含フッ素エステル化合物の製造方法。
<6> 前記C-H結合を有する化合物のフッ素含量が5~99質量%である、<1>~<5>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
<7> 前記C-H結合を有する化合物がアルカン、エーテル化合物、エステル化合物、ケトン化合物又はこれらの化合物の水素原子の少なくとも1つがハロゲン原子で置換された化合物である、<1>~<6>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
<8> 前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物が、下記式(1)又は(2)で表される化合物である、<1>~<7>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
RA1-O-(C=O)-RB1 …(1)
RB2-(C=O)-O-RA2-O-(C=O)-RB3 …(2)
式(1)及び(2)中、
RA1、RB1、RB2、及びRB3はそれぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基であり、
RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。
<9> 前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物が、フッ素原子を含む、<1>~<8>のいずれか1項に記載の含フッ素エステル化合物の製造方法。
本開示によれば、フッ素化の転化率の高い含フッ素エステル化合物の製造方法が提供される。
以下、本開示の実施形態を実施するための形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。
本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において、「有機基」とは、炭素原子を必須とする基をいう。
本開示において、「炭化水素基」は、直鎖状、分岐状、及び環状のいずれでもよく、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、及び芳香族炭化水素基のいずれでもよい。
本開示において、「部分ハロゲン化」とは、化合物のハロゲン化可能な部位のうち一部のみがハロゲン化していることを意味する。「部分フルオロ」とは、化合物のフッ素化可能な部位のうち一部のみがフッ素化していることを意味する。
本開示において、化合物が特定の式(X)で表される場合、当該式(X)で表される化合物を化合物(X)と記すことがある。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において、「有機基」とは、炭素原子を必須とする基をいう。
本開示において、「炭化水素基」は、直鎖状、分岐状、及び環状のいずれでもよく、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、及び芳香族炭化水素基のいずれでもよい。
本開示において、「部分ハロゲン化」とは、化合物のハロゲン化可能な部位のうち一部のみがハロゲン化していることを意味する。「部分フルオロ」とは、化合物のフッ素化可能な部位のうち一部のみがフッ素化していることを意味する。
本開示において、化合物が特定の式(X)で表される場合、当該式(X)で表される化合物を化合物(X)と記すことがある。
[含フッ素エステル化合物の製造方法]
本開示の含フッ素エステル化合物の製造方法(以下、「本製造方法」とも記す。)は、フッ素ガスを導入した有機溶媒中で、フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物(以下、「原料エステル化合物」とも記す。)をフッ素化することを含み、前記有機溶媒は、C-H結合を有する化合物を含み、前記C-H結合を有する化合物の量が前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物の0.1質量倍以上である。
本開示の含フッ素エステル化合物の製造方法(以下、「本製造方法」とも記す。)は、フッ素ガスを導入した有機溶媒中で、フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物(以下、「原料エステル化合物」とも記す。)をフッ素化することを含み、前記有機溶媒は、C-H結合を有する化合物を含み、前記C-H結合を有する化合物の量が前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物の0.1質量倍以上である。
本製造方法は液相中でのフッ素化工程(以下、「液相フッ素化」とも記す。)を含む。一般的に、液相フッ素化は、分子内にC-H結合を有しない完全フッ素化化合物を溶媒に用いる。これは、溶媒のフッ素化により副反応が起こったり、フッ素化の効率が低下したりすることを抑制するためである。一方、本発明者らは、C-H結合を有する化合物である有機溶媒中で液相フッ素化を行うと、逆にフッ素化の転化率が向上することを見出した。この理由は必ずしも明らかではないが、以下のように推測される。第1に、分子内にC-H結合を有する化合物を溶媒として用いると、原料エステル化合物の溶媒への溶解性が上昇し、液相フッ素化において気液混合が促進され、フッ素化転化率が上昇すると考えられる。第2に、液相フッ素化において溶媒として用いるC-H結合を有する化合物がフッ素化され、フッ素ラジカルが発生する。このフッ素ラジカルが原料エステル化合物のフッ素化を促進させ、転化率を向上させると考えられる。
(原料エステル化合物)
原料エステル化合物は、フッ素化可能な原子又は結合を少なくとも1つ有し、エステル結合を少なくとも1つ有する化合物であれば特に制限されない。
フッ素化可能な原子としては、炭素原子に結合する水素原子、炭素原子に結合する塩素原子、炭素原子に結合する臭素原子、及び炭素原子に結合するヨウ素原子が挙げられる。
フッ素化可能な結合としては、炭素-炭素不飽和二重結合及び炭素-炭素不飽和三重結合が挙げられる。
原料エステル化合物中のフッ素化可能な原子又は結合の個数は1個以上であればよい。溶解性に優れる観点からは、フッ素化可能な原子の個数は1~1,000個が好ましく、1~500個がより好ましい。フッ素化体の純度を高くできる観点からは、フッ素化可能な結合の個数は1~30個が好ましく、1~10個がより好ましい。
原料エステル化合物は、エステル結合を1つのみ有してもよく、2つ以上有してもよい。入手しやすさの観点から、原料エステル化合物に含まれるエステル結合の数は、1つまたは2つが好ましく、1つがより好ましい。すなわち、原料エステル化合物は、モノエステル化合物又はジエステル化合物が好ましく、モノエステルがより好ましい。
原料エステル化合物は、フッ素化可能な原子又は結合を少なくとも1つ有し、エステル結合を少なくとも1つ有する化合物であれば特に制限されない。
フッ素化可能な原子としては、炭素原子に結合する水素原子、炭素原子に結合する塩素原子、炭素原子に結合する臭素原子、及び炭素原子に結合するヨウ素原子が挙げられる。
フッ素化可能な結合としては、炭素-炭素不飽和二重結合及び炭素-炭素不飽和三重結合が挙げられる。
原料エステル化合物中のフッ素化可能な原子又は結合の個数は1個以上であればよい。溶解性に優れる観点からは、フッ素化可能な原子の個数は1~1,000個が好ましく、1~500個がより好ましい。フッ素化体の純度を高くできる観点からは、フッ素化可能な結合の個数は1~30個が好ましく、1~10個がより好ましい。
原料エステル化合物は、エステル結合を1つのみ有してもよく、2つ以上有してもよい。入手しやすさの観点から、原料エステル化合物に含まれるエステル結合の数は、1つまたは2つが好ましく、1つがより好ましい。すなわち、原料エステル化合物は、モノエステル化合物又はジエステル化合物が好ましく、モノエステルがより好ましい。
原料エステル化合物としては、例えば、下記式(1)で表される化合物、下記式(2)で表される化合物等が挙げられる。
RA1-O-(C=O)-RB1 …(1)
RB2-(C=O)-O-RA2-O-(C=O)-RB3 …(2)
RA1-O-(C=O)-RB1 …(1)
RB2-(C=O)-O-RA2-O-(C=O)-RB3 …(2)
式(1)及び(2)中、
RA1、RB1、RB2、及びRB3はそれぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基であり、
RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。
RA1、RB1、RB2、及びRB3はそれぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基であり、
RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。
本開示において、「1価飽和炭化水素基」は、直鎖状アルキル基、分岐鎖状アルキル基、及びシクロアルキル基のいずれであってもよい。「2価飽和炭化水素基」は、直鎖状アルキレン基、分岐鎖状アルキレン基、及びシクロアルキレン基のいずれであってもよい。直鎖状アルキル基、分岐鎖状アルキル基、直鎖状アルキレン基、及び分岐鎖状アルキレン基には、脂環構造が含まれていてもよい。
本開示において、「ハロゲノ」とは、フッ素原子、塩素原子、臭素原子、及びヨウ素原子から選ばれる少なくとも1種のハロゲン原子により、基中に存在する水素原子の1個以上が置換されたことを意味する。基中には、水素原子が存在していてもよく、存在しなくてもよい。
本開示において、「ハロゲノ1価飽和炭化水素基」とは、ハロゲン原子により、1価飽和炭化水素基中に存在する水素原子の1個以上が置換された基を意味する。「ハロゲノ2価飽和炭化水素基」とは、ハロゲン原子により、2価飽和炭化水素基中に存在する水素原子の1個以上が置換された基を意味する。
本開示において、「ヘテロ原子」とは、炭素原子及び水素原子以外の原子を意味し、例えば、窒素原子、酸素原子、及び硫黄原子が挙げられる。
本開示において、「ヘテロ原子含有1価飽和炭化水素基」とは、1価飽和炭化水素基中に、2価のヘテロ原子、又はヘテロ原子を含む2価の基が含まれている基を意味する。「ヘテロ原子含有2価飽和炭化水素基」とは、2価飽和炭化水素基中に、2価のヘテロ原子、又はヘテロ原子を含む2価の基が含まれている基を意味する。2価のヘテロ原子としては、例えば、-O-及び-S-が挙げられる。また、ヘテロ原子を含む2価の基としては、例えば、-NH-、-C(=O)-、及び-SO2-が挙げられる。
本開示において、「ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基」とは、上記ヘテロ原子含有1価飽和炭化水素基中の水素原子の1個以上がハロゲン原子に置換された基を意味する。「ハロゲノ(ヘテロ原子含有2価飽和炭化水素)基」とは、上記ヘテロ原子含有2価飽和炭化水素基中の水素原子の1個以上がハロゲン原子に置換された基を意味する。
式(1)において、RA1及びRB1の少なくとも一方が水素原子を含むことが好ましい。また、式(2)において、RA2、RB2、及びRB3からなる群より選択される少なくとも一つが水素原子を含むことが好ましい。
〔RA1〕
式(1)中、RA1は、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
式(1)中、RA1は、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
RA1で表される1価飽和炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、及びシクロヘキシル基が挙げられる。
RA1で表されるハロゲノ1価飽和炭化水素基としては、ハロゲノアルキル基が好ましい。ハロゲノ1価飽和炭化水素基に含まれるハロゲン原子は、フッ素原子、塩素原子、又は臭素原子が好ましく、フッ素原子がより好ましい。
RA1で表されるヘテロ原子含有1価飽和炭化水素基は、エーテル性酸素原子(すなわち、-O-)を含む1価飽和炭化水素基が好ましく、エーテル性酸素原子を含むアルキル基がより好ましい。
RA1で表されるハロゲノ(ヘテロ原子含有1価飽和炭化水素)基としては、ハロゲノ(ヘテロ原子含有アルキル基)が好ましい。ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基に含まれるハロゲン原子は、フッ素原子、塩素原子、又は臭素原子が好ましい。ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基は、エーテル性酸素原子を含むハロゲノ1価飽和炭化水素基が好ましく、エーテル性酸素原子を含むハロゲノアルキル基がより好ましい。
RA1の炭素数は、溶媒への溶解性に優れる点から、1~500が好ましく、1~200がより好ましく、3~100がさらに好ましい。
中でも、溶媒中への溶解性に優れる観点から、RA1は、下記式(A1)で表されることが好ましい。つまり、RA1は、エーテル結合をさらに有することが好ましく、ポリエーテル鎖及びフルオロポリエーテル鎖からなる群より選択される少なくとも一つを含むことがより好ましい。
R11O-(R12O)m1-R13- …(A1)
R11O-(R12O)m1-R13- …(A1)
式(A1)中、R11は、フッ素原子を有していてもよいアルキル基であり、R12はそれぞれ独立に、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、R13は、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、m1は0~500の整数である。
式(A1)中、R11としては、例えば、アルキル基及びフルオロアルキル基が挙げられる。
R11の炭素数は、溶媒への溶解性に優れる点から、1~100が好ましく、1~50がより好ましく、1~10がさらに好ましく、1~6が特に好ましい。
R11で表されるアルキル基は、直鎖状アルキル基であってもよく、分岐鎖状アルキル基であってもよく、環構造を有するアルキル基であってもよい。
R11で表されるフルオロアルキル基は、直鎖状フルオロアルキル基であってもよく、分岐鎖状フルオロアルキル基であってもよく、環構造を有するフルオロアルキル基であってもよい。
中でも、R11は、アルキル基であることが好ましく、直鎖状アルキル基であることがより好ましく、炭素数1~6の直鎖状アルキル基であることがさらに好ましい。
式(A1)中、-(R12O)m1-は、下記式(A2)で表されることが好ましい。
-[(Rf1O)k1(Rf2O)k2(Rf3O)k3(Rf4O)k4(Rf5O)k5(Rf6O)k6]- …(A2)
ただし、
Rf1は、炭素数1のフルオロアルキレン基であり、
Rf2は、炭素数2のフルオロアルキレン基であり、
Rf3は、炭素数3のフルオロアルキレン基であり、
Rf4は、炭素数4のフルオロアルキレン基であり、
Rf5は、炭素数5のフルオロアルキレン基であり、
Rf6は、炭素数6のフルオロアルキレン基である。
k1、k2、k3、k4、k5、及びk6は、それぞれ独立に0又は1以上の整数を表し、k1+k2+k3+k4+k5+k6は0~500の整数である。
-[(Rf1O)k1(Rf2O)k2(Rf3O)k3(Rf4O)k4(Rf5O)k5(Rf6O)k6]- …(A2)
ただし、
Rf1は、炭素数1のフルオロアルキレン基であり、
Rf2は、炭素数2のフルオロアルキレン基であり、
Rf3は、炭素数3のフルオロアルキレン基であり、
Rf4は、炭素数4のフルオロアルキレン基であり、
Rf5は、炭素数5のフルオロアルキレン基であり、
Rf6は、炭素数6のフルオロアルキレン基である。
k1、k2、k3、k4、k5、及びk6は、それぞれ独立に0又は1以上の整数を表し、k1+k2+k3+k4+k5+k6は0~500の整数である。
溶媒中への溶解性に優れる観点から、k1+k2+k3+k4+k5+k6は、1~500の整数が好ましく、1~300の整数がより好ましく、5~200の整数がさらに好ましく、10~150の整数が特に好ましい。
なお、式(A2)における(Rf1O)~(Rf6O)の結合順序は任意である。式(A2)のk1~k6は、それぞれ、(Rf1O)~(Rf6O)の個数を表すものであり、配置を表すものではない。例えば、(Rf5O)k5は、(Rf5O)の数がk5個であることを表し、(Rf5O)k5のブロック配置構造を表すものではない。同様に、(Rf1O)~(Rf6O)の記載順は、それぞれの単位の結合順序を表すものではない。
Rf3~Rf6において、フルオロアルキレン基は、直鎖状フルオロアルキレン基であってもよく、分岐鎖状フルオロアルキレン基であってもよく、環構造を有するフルオロアルキレン基であってもよい。
Rf1の具体例としては、-CF2-及び-CHF-が挙げられる。
Rf2の具体例としては、-CF2CF2-、-CF2CHF-、-CHFCF2-、-CHFCHF-、-CH2CF2-、及び-CH2CHF-が挙げられる。
Rf3の具体例としては、-CF2CF2CF2-、-CF2CHFCF2-、-CF2CH2CF2-、-CHFCF2CF2-、-CHFCHFCF2-、-CHFCHFCHF-、-CHFCH2CF2-、-CH2CF2CF2-、-CH2CHFCF2-、-CH2CH2CF2-、-CH2CF2CHF-、-CH2CHFCHF-、-CH2CH2CHF-、-CF(CF3)-CF2-、-CF(CHF2)-CF2-、-CF(CH2F)-CF2-、-CF(CH3)-CF2-、-CF(CF3)-CHF-、-CF(CHF2)-CHF-、-CF(CH2F)-CHF-、-CF(CH3)-CHF-、-CF(CF3)-CH2-、-CF(CHF2)-CH2-、-CF(CH2F)-CH2-、-CF(CH3)-CH2-、-CH(CF3)-CF2-、-CH(CHF2)-CF2-、-CH(CH2F)-CF2-、-CH(CH3)-CF2-、-CH(CF3)-CHF-、-CH(CHF2)-CHF-、-CH(CH2F)-CHF-、-CH(CH3)-CHF-、-CH(CF3)-CH2-、-CH(CHF2)-CH2-、及び-CH(CH2F)-CH2-が挙げられる。
Rf4の具体例としては、-CF2CF2CF2CF2-、-CF2CF2CF2CHF-、-CF2CF2CF2CH2-、-CF2CHFCF2CF2-、-CHFCHFCF2CF2-、-CH2CHFCF2CF2-、-CF2CH2CF2CF2-、-CHFCH2CF2CF2-、-CH2CH2CF2CF2-、-CHFCF2CHFCF2-、-CH2CF2CHFCF2-、-CF2CHFCHFCF2-、-CHFCHFCHFCF2-、-CH2CHFCHFCF2-、-CF2CH2CHFCF2-、-CHFCH2CHFCF2-、-CH2CH2CHFCF2-、-CF2CH2CH2CF2-、-CHFCH2CH2CF2-、-CH2CH2CH2CF2-、-CHFCH2CH2CHF-、-CH2CH2CH2CHF-、及び-cycloC4F6-が挙げられる。
Rf5の具体例としては、-CF2CF2CF2CF2CF2-、-CHFCF2CF2CF2CF2-、-CH2CHFCF2CF2CF2-、-CF2CHFCF2CF2CF2-、-CHFCHFCF2CF2CF2-、-CF2CH2CF2CF2CF2-、-CHFCH2CF2CF2CF2-、-CH2CH2CF2CF2CF2-、-CF2CF2CHFCF2CF2-、-CHFCF2CHFCF2CF2-、-CH2CF2CHFCF2CF2-、-CH2CF2CF2CF2CH2-、及び-cycloC5F8-が挙げられる。
Rf6の具体例としては、-CF2CF2CF2CF2CF2CF2-、-CF2CF2CHFCHFCF2CF2-、-CHFCF2CF2CF2CF2CF2-、-CHFCHFCHFCHFCHFCHF-、-CHFCF2CF2CF2CF2CH2-、-CH2CF2CF2CF2CF2CH2-、及び-cycloC6F10-が挙げられる。
ここで、-cycloC4F6-は、ペルフルオロシクロブタンジイル基を意味し、その具体例としては、ペルフルオロシクロブタン-1,2-ジイル基が挙げられる。-cycloC5F8-は、ペルフルオロシクロペンタンジイル基を意味し、その具体例としては、ペルフルオロシクロペンタン-1,3-ジイル基が挙げられる。-cycloC6F10-は、ペルフルオロシクロヘキサンジイル基を意味し、その具体例としては、ペルフルオロシクロヘキサン-1,4-ジイル基が挙げられる。
ここで、-cycloC4F6-は、ペルフルオロシクロブタンジイル基を意味し、その具体例としては、ペルフルオロシクロブタン-1,2-ジイル基が挙げられる。-cycloC5F8-は、ペルフルオロシクロペンタンジイル基を意味し、その具体例としては、ペルフルオロシクロペンタン-1,3-ジイル基が挙げられる。-cycloC6F10-は、ペルフルオロシクロヘキサンジイル基を意味し、その具体例としては、ペルフルオロシクロヘキサン-1,4-ジイル基が挙げられる。
中でも、-(R12O)m1-は、下記式(F1)~(F3)で表される構造からなる群より選択される少なくとも1つを含むことが好ましく、式(F2)で表される構造を含むことがより好ましい。
-(Rf1O)k1-(Rf2O)k2- …(F1)
-(Rf2O)k2-(Rf4O)k4- …(F2)
-(Rf3O)k3- …(F3)
ただし、式(F1)~式(F3)の各符号は、上記式(A2)と同様である。
-(Rf1O)k1-(Rf2O)k2- …(F1)
-(Rf2O)k2-(Rf4O)k4- …(F2)
-(Rf3O)k3- …(F3)
ただし、式(F1)~式(F3)の各符号は、上記式(A2)と同様である。
式(F1)及び式(F2)において、(Rf1O)と(Rf2O)、(Rf2O)と(Rf4O)の結合順序は各々任意である。例えば(Rf1O)と(Rf2O)が交互に配置されてもよく、(Rf1O)と(Rf2O)が各々ブロックに配置されてもよく、またランダムであってもよい。式(F2)においても同様である。
式(F1)において、k1は1~30が好ましく、1~20がより好ましい。またk2は1~30が好ましく、1~20がより好ましい。
式(F2)において、k2は1~30が好ましく、1~20がより好ましい。またk4は1~30が好ましく、1~20がより好ましい。
式(F3)において、k3は1~30が好ましく、1~20がより好ましい。
式(F1)において、k1は1~30が好ましく、1~20がより好ましい。またk2は1~30が好ましく、1~20がより好ましい。
式(F2)において、k2は1~30が好ましく、1~20がより好ましい。またk4は1~30が好ましく、1~20がより好ましい。
式(F3)において、k3は1~30が好ましく、1~20がより好ましい。
式(A1)中、R13としては、上記、Rf1~Rf6と同様のものが挙げられる。
中でも、R13は、炭素数1~4のフルオロアルキレン基が好ましい。
RA1の具体例として、例えば、以下の構造が挙げられる。*は、-O-との結合部位を表し、n1は0~60の整数、n2は0~500の整数を表す。n1としては例えば13が挙げられ、n2としては例えば7が挙げられる。
〔RB1〕
式(1)中、RB1は、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
式(1)中、RB1は、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
RB1で表される1価飽和炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、及びシクロヘキシル基が挙げられる。
RB1で表されるハロゲノ1価飽和炭化水素基としては、ハロゲノアルキル基が好ましい。ハロゲノ1価飽和炭化水素基に含まれるハロゲン原子は、フッ素原子、塩素原子、又は臭素原子が好ましい。
RB1で表されるヘテロ原子含有1価飽和炭化水素基は、エーテル性酸素原子(すなわち、-O-)を含む1価飽和炭化水素基が好ましく、エーテル性酸素原子を含むアルキル基がより好ましい。つまり、RB1は、エーテル結合をさらに有することが好ましい。
RB1で表されるハロゲノ(ヘテロ原子含有1価飽和炭化水素)基としては、ハロゲノ(ヘテロ原子含有アルキル基)が好ましい。ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基に含まれるハロゲン原子は、フッ素原子、塩素原子、又は臭素原子が好ましい。ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基は、エーテル性酸素原子を含むハロゲノ1価飽和炭化水素基が好ましく、エーテル性酸素原子を含むハロゲノアルキル基がより好ましい。
RB1の炭素数は、溶媒への溶解性に優れる点から、1~100が好ましく、2~50がより好ましく、3~20がさらに好ましい。
RB1は、溶媒への溶解性に優れる点から、少なくとも1つのフッ素原子を含むことが好ましく、水素原子を含まないことが好ましい。
中でも、溶媒への溶解性に優れる観点から、RB1は、下記式(B1)で表されることが好ましい。
R21O-(R22O)m2-R23- …(B1)
R21O-(R22O)m2-R23- …(B1)
式(B1)中、R21は、フッ素原子を有していてもよいアルキル基であり、R22はそれぞれ独立に、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、R23は、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、m2は0~20の整数である。
式(B1)中、R21としては、例えば、アルキル基及びフルオロアルキル基が挙げられる。
R21の炭素数は、溶媒への溶解性に優れる点から、1~50が好ましく、1~10がより好ましく、1~6がさらに好ましい。
R21で表されるアルキル基は、直鎖状アルキル基であってもよく、分岐鎖状アルキル基であってもよく、環構造を有するアルキル基であってもよい。
R21で表されるフルオロアルキル基は、直鎖状フルオロアルキル基であってもよく、分岐鎖状フルオロアルキル基であってもよく、環構造を有するフルオロアルキル基であってもよい。
R21で表されるフルオロアルキル基は、直鎖状フルオロアルキル基であってもよく、分岐鎖状フルオロアルキル基であってもよく、環構造を有するフルオロアルキル基であってもよい。
中でも、R21は、フルオロアルキル基が好ましく、直鎖状フルオロアルキル基がより好ましく、炭素数1~6の直鎖状フルオロアルキル基がさらに好ましく、炭素数1~6の直鎖状ペルフルオロアルキル基が特に好ましい。
式(B1)中、-(R22O)m2-は、上記式(A2)で表されることが好ましい。
式(B1)中、m2は0~15が好ましく、0~10がより好ましく、0~4がさらに好ましく、0~2が特に好ましい。
式(B1)中、R23としては、上記、Rf1~Rf6と同様のものが挙げられる。
中でも、R23は、炭素数1~3のフルオロアルキレン基が好ましく、炭素数1~3のペルフルオロアルキレン基がより好ましい。
RB1の具体例として、例えば、以下の構造が挙げられる。*は、-O-(C=O)-との結合部位を表す。
〔RA2〕
式(2)中、RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。
式(2)中、RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。
RA2で表される2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基としては、式(1)中のRA1で表される1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基から水素原子又はハロゲン原子を1つ除いた基が挙げられる。
RA2の炭素数は、溶媒への溶解性に優れる点から、1~200が好ましく、3~100がより好ましい。
中でも、溶媒への溶解性に優れる観点から、RA2は、下記式(A5)で表されることが好ましい。つまり、RA2は、エーテル結合をさらに有することが好ましく、ポリエーテル鎖及びフルオロポリエーテル鎖からなる群より選択される少なくとも一つを含むことがより好ましい。
-R31O-(R32O)m5-R33- …(A5)
-R31O-(R32O)m5-R33- …(A5)
式(A5)中、R31及びR33は、それぞれ独立に、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、R32はそれぞれ独立に、炭素数1~6のフッ素原子を有していてもよいアルキレン基であり、m5は0~500の整数である。
式(A5)中、R31及びR33としては、それぞれ独立に、式(A1)中のR13と同様のものが挙げられる。
式(A5)中、-(R32O)m5-としては、式(A1)中の-(R12O)m1-と同様のものが挙げられる。
式(A5)中、-(R32O)m5-としては、式(A1)中の-(R12O)m1-と同様のものが挙げられる。
RA2の具体例として、例えば、以下の構造が挙げられる。*は、-O-との結合部位を表し、n2は0~500の整数を表す。
〔RB2及びRB3〕
式(2)中、RB2及びRB3は、それぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
式(2)中、RB2及びRB3は、それぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基である。
RB2又はRB3で表される1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基としては、式(1)中のRB1で表される1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基と同様の基が挙げられる。
原料エステル化合物の例としては、下記化合物(T1)等も挙げられる。
さらなる原料エステル化合物の例としては、CH3-O(CF2CFHO-CF2CF2CF2CH2O)n1-C(=O)-CF(CF3)OCF2CF2CF3も挙げられる。ここで、n1は1以上の数を表し、1~50が好ましく、1~40がより好ましく、1~30がさらに好ましい。
含フッ素化合物の収率を向上させる観点から、原料エステル化合物の沸点は、30℃以上が好ましく、50℃以上がより好ましく、100℃以上がより好ましい。同様の観点から、原料エステル化合物の沸点は、500℃以下が好ましく、400℃以下がより好ましく、300℃以下がさらに好ましい。前記観点からは、原料エステル化合物の沸点は、30~500℃が好ましく、50~400℃がより好ましく、100~300℃がさらに好ましい。本開示において、「沸点」は、常圧(760mmHg)における沸点である。
原料エステル化合物の数平均分子量(Mn)は、100~100,000が好ましく、100~20,000がより好ましく、300~10,000がさらに好ましく、400~6,000が特に好ましい。Mnが前記下限値以上であると、液相フッ素化において気相中での分解反応が抑制されやすい。Mnが前記上限値以下であると、含フッ素化合物の精製が行いやすい。Mnは1H-NMR及び19F-NMRによって特定された分子構造から算出される各分子の分子量の数平均値である。
一態様において、原料エステル化合物はフッ素原子を含むことが好ましい。原料エステル化合物中のフッ素含量(すなわち、分子中のフッ素原子の割合)は、反応溶媒への溶解性に優れる観点から、10~86質量%が好ましく、10~76質量%がより好ましく、30~76質量%がさらに好ましい。
原料エステル化合物は市販品でもよく、合成された化合物でもよい。
一態様において、原料エステル化合物は、水酸基を有する化合物とアシルフルオリド基(FC(O)-)を有する化合物とのエステルであってもよい。なお、前記エステルは、水酸基を有する化合物とアシルフルオリド基を有する化合物とをエステル化反応させたときに生成する化合物の構造を有していれば、その入手方法は特に制限されない。例えば、原料エステル化合物は、水酸基を有する化合物と、ClC(O)-基、BrC(O)-基、及びカルボキシ基からなる群より選択される1つ以上の基を有する化合物と、をエステル化反応させた化合物であってもよい。また、原料エステル化合物は、エステル化反応後に、エステル結合以外の部分に他の化学変換を加えて得られた化合物であってもよい。前記化学変換としては、炭素-炭素二重結合(C=C)に塩素を付加させてVic一ジクロロ構造(CCl-CCl)にする反応が挙げられる。
一態様において、原料エステル化合物は、水酸基を有する化合物とアシルフルオリド基を有する化合物とのエステル化反応により製造した化合物であることが好ましい。水酸基を有する化合物は、1個以上の水酸基を有する化合物であればよい。アシルフルオリド基を有する化合物は、1個以上のアシルフルオリド基を有する化合物であればよい。原料エステル化合物としては、水酸基を1個有する化合物とアシルフルオリド基を1個有する化合物とのエステルが好ましい。
一態様において、原料エステル化合物は、水酸基を有する化合物とアシルフルオリド基(FC(O)-)を有する化合物とのエステルであってもよい。なお、前記エステルは、水酸基を有する化合物とアシルフルオリド基を有する化合物とをエステル化反応させたときに生成する化合物の構造を有していれば、その入手方法は特に制限されない。例えば、原料エステル化合物は、水酸基を有する化合物と、ClC(O)-基、BrC(O)-基、及びカルボキシ基からなる群より選択される1つ以上の基を有する化合物と、をエステル化反応させた化合物であってもよい。また、原料エステル化合物は、エステル化反応後に、エステル結合以外の部分に他の化学変換を加えて得られた化合物であってもよい。前記化学変換としては、炭素-炭素二重結合(C=C)に塩素を付加させてVic一ジクロロ構造(CCl-CCl)にする反応が挙げられる。
一態様において、原料エステル化合物は、水酸基を有する化合物とアシルフルオリド基を有する化合物とのエステル化反応により製造した化合物であることが好ましい。水酸基を有する化合物は、1個以上の水酸基を有する化合物であればよい。アシルフルオリド基を有する化合物は、1個以上のアシルフルオリド基を有する化合物であればよい。原料エステル化合物としては、水酸基を1個有する化合物とアシルフルオリド基を1個有する化合物とのエステルが好ましい。
(有機溶媒)
液相フッ素化では液相における溶媒として有機溶媒を用いる。有機溶媒は、C-H結合を有する化合物を含む。有機溶媒はC-H結合を有する化合物に加えてC-H結合を有しない化合物を含んでもよく、C-H結合を有しない化合物を含まなくてもよい。液相フッ素化における転化率の向上の観点からは、有機溶媒全量に対するC-H結合を有する化合物の含有率は、0.01質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上でもよく、70質量%以上でもよい。コスト、入手容易性等の観点からC-H結合を含む化合物の使用量を抑えることが望ましい場合には、有機溶媒全量に対するC-H結合を有する化合物の含有率は、90質量%以下でもよく、80質量%以下でもよい。前記観点からは、有機溶媒全量に対するC-H結合を有する化合物の含有率は、0.01~90質量%でもよく、30~80質量%でもよく、50~80質量%でもよく、70~80質量%でもよい。
液相フッ素化では液相における溶媒として有機溶媒を用いる。有機溶媒は、C-H結合を有する化合物を含む。有機溶媒はC-H結合を有する化合物に加えてC-H結合を有しない化合物を含んでもよく、C-H結合を有しない化合物を含まなくてもよい。液相フッ素化における転化率の向上の観点からは、有機溶媒全量に対するC-H結合を有する化合物の含有率は、0.01質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上でもよく、70質量%以上でもよい。コスト、入手容易性等の観点からC-H結合を含む化合物の使用量を抑えることが望ましい場合には、有機溶媒全量に対するC-H結合を有する化合物の含有率は、90質量%以下でもよく、80質量%以下でもよい。前記観点からは、有機溶媒全量に対するC-H結合を有する化合物の含有率は、0.01~90質量%でもよく、30~80質量%でもよく、50~80質量%でもよく、70~80質量%でもよい。
有機溶媒は、原料エステル化合物の溶解度が高い化合物であることが好ましく、25℃において原料エステル化合物を1質量%以上溶解可能な化合物が好ましく、5質量%以上溶解可能な化合物がより好ましい。
有機溶媒の量は、原料エステル化合物に対して、1質量倍以上が好ましく、2質量倍以上がより好ましい。有機溶媒の量は、原料エステル化合物に対して100質量倍以下でもよく、50質量倍以下でもよく、10質量倍以下でもよい。有機溶媒の量は、原料エステル化合物に対して、1~100質量倍でもよく、2~50質量倍でもよく、2~10質量倍でもよい。
含フッ素エステル化合物の収率を向上させる観点から、有機溶媒の沸点は、10~500℃が好ましく、30~250℃がより好ましく、50~150℃がさらに好ましい。有機溶媒が複数種の化合物を含む場合には、前記沸点は各化合物の沸点とする。
含フッ素エステル化合物の収率を向上させる観点から、有機溶媒の分子量は、200以上が好ましく、200~50,000がより好ましく、200~25,000がさらに好ましく、200~10,000が特に好ましく、200~1,000が最も好ましい。
分子量に分布がある場合、分子量は、質量平均分子量(Mw)を表す。Mwはテトラヒドロフラン(THF)を溶離液として用いるゲル浸透クロマトグラフィ(GPC)測定により、ポリスチレン換算として測定される。有機溶媒が複数種の化合物を含む場合には、前記分子量は各化合物の分子量とする。
分子量に分布がある場合、分子量は、質量平均分子量(Mw)を表す。Mwはテトラヒドロフラン(THF)を溶離液として用いるゲル浸透クロマトグラフィ(GPC)測定により、ポリスチレン換算として測定される。有機溶媒が複数種の化合物を含む場合には、前記分子量は各化合物の分子量とする。
含フッ素エステル化合物の収率を向上させる観点から、有機溶媒の25℃における粘度は、全体として、2,000mPa・s以下が好ましく、1,000mPa・s以下がより好ましく、500mPa・s以下がさらに好ましい。粘度は低いほど好ましいが、粘度の下限値は、0.5mPa・sでもよく、1mPa・sでもよい。有機溶媒の粘度は、JISZ8803:2011に従い、レオメータ(例えば、装置名RE-215L、東機産業社)により測定できる。
含フッ素エステル化合物の収率を向上させる観点から、容器内での有機溶媒の蒸気圧は、0.009MPa以下が好ましく、0.007MPa以下がより好ましく、0.006MPa以下(49mmHg)がさらに好ましく、0.005MPa以下(38mmHg)が特に好ましく、0.003MPa以下(23mmHg)が極めて好ましい。
-C-H結合を有する化合物-
C-H結合を有する化合物は有機化合物の炭素原子に水素原子が結合した化合物である。C-H結合を有する化合物における水素原子の数は、炭素原子に対して理論的に結合可能な最大原子数以下であればよく、1~10個が好ましく、1~8個がより好ましく、1~6個がさらに好ましい。水素原子の数が前記下限値以上であると、転化率の向上効果が良好に発揮でき、前記上限値以下であると、反応熱を下げ、分解反応を抑制できる。
C-H結合を有する化合物は有機化合物の炭素原子に水素原子が結合した化合物である。C-H結合を有する化合物における水素原子の数は、炭素原子に対して理論的に結合可能な最大原子数以下であればよく、1~10個が好ましく、1~8個がより好ましく、1~6個がさらに好ましい。水素原子の数が前記下限値以上であると、転化率の向上効果が良好に発揮でき、前記上限値以下であると、反応熱を下げ、分解反応を抑制できる。
C-H結合を有する化合物は、単独の化合物として、原料エステル化合物の溶解度が高い化合物であることが好ましく、25℃において原料エステル化合物を1質量%以上溶解可能な化合物が好ましく、5質量%以上溶解可能な化合物がより好ましい。
転化率を向上させる観点からは、C-H結合を有する化合物の炭素数は、4以上が好ましく、4~100がより好ましく、4~50がさらに好ましく、4~20が特に好ましく、4~10が極めて好ましい。
原料エステル化合物の溶解性及び転化率を向上させる等の観点からは、C-H結合を有する化合物はハロゲン原子を有することが好ましく、フッ素原子を有することがより好ましい。C-H結合を有する化合物のフッ素含量は、5~99質量%が好ましく、5質量%以上86質量%未満がより好ましく、10~80質量%がさらに好ましく、20~70質量%が特に好ましい。
C-H結合を有する化合物としては、アルカン、エーテル化合物、エステル化合物、ケトン化合物、これらの化合物の水素原子の少なくとも1つがハロゲン原子で置換された化合物等が挙げられる。
アルカンとしては、炭素数4~100、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10のアルカンが挙げられる。
エーテル化合物としては、炭素数4~100、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10のエーテル化合物が挙げられる。エーテル化合物中のエーテル結合の数は1つでも複数でもよい。
エステル化合物としては、炭素数4~100、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10のエステル化合物が挙げられる。エステル化合物中のエステル結合の数は1つでも複数でもよい。
ケトン化合物としては、炭素数4~100、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10のケトン化合物が挙げられる。ケトン化合物中のカルボニル基の数は1つでも複数でもよい。
前記これらの化合物の水素原子の少なくとも1つがハロゲン原子で置換された化合物としては、フルオロアルカン、フルオロエーテル化合物、クロロフルオロカーボン、クロロフルオロエーテル化合物等が挙げられる。
C-H結合を有する化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
アルカンとしては、炭素数4~100、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10のアルカンが挙げられる。
エーテル化合物としては、炭素数4~100、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10のエーテル化合物が挙げられる。エーテル化合物中のエーテル結合の数は1つでも複数でもよい。
エステル化合物としては、炭素数4~100、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10のエステル化合物が挙げられる。エステル化合物中のエステル結合の数は1つでも複数でもよい。
ケトン化合物としては、炭素数4~100、好ましくは4~50、より好ましくは4~20、さらに好ましくは4~10のケトン化合物が挙げられる。ケトン化合物中のカルボニル基の数は1つでも複数でもよい。
前記これらの化合物の水素原子の少なくとも1つがハロゲン原子で置換された化合物としては、フルオロアルカン、フルオロエーテル化合物、クロロフルオロカーボン、クロロフルオロエーテル化合物等が挙げられる。
C-H結合を有する化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
C-H結合を有する化合物の具体例を略称と共に下表に示す。
液相フッ素化において、C-H結合を有する化合物の量は原料エステル化合物の0.1質量倍以上であり、0.5質量倍以上が好ましく、1質量倍以上がより好ましい。C-H結合を有する化合物の量は原料エステル化合物の100質量倍以下が好ましく、50質量倍以下がより好ましく、10質量倍以下がさらに好ましい。C-H結合を有する化合物の量が前記下限値以上であると、原料エステル化合物の溶解性が充分となりフッ素化反応が好適に進行する。C-H結合を有する化合物の量が前記上限値以下であると、溶媒量が過剰とならず原料コストを低減できる。前記観点からは、C-H結合を有する化合物の量は原料エステル化合物の0.1~100質量倍が好ましく、0.5~50質量倍がより好ましく、1~10質量倍がさらに好ましい。
一態様において、C-H結合を有する化合物は、フッ素化されて前記C-H結合を有しない含フッ素化合物に変換可能な化合物であることが好ましい。一態様において、C-H結合を有する化合物と、そのフッ化物であるC-H結合を有しない含フッ素化合物と、を混合溶媒として用いると、前記フッ素化物を再利用することで有効に活用できる観点から好ましい。C-H結合を有する化合物とそのフッ化物であるC-H結合を有しない含フッ素化合物との合計量に対するC-H結合を有する化合物の含有率は、0.01質量%が好ましく、10質量%以上がより好ましく、30質量%以上がさらに好ましく、50質量%以上が特に好ましい。コスト、入手容易性等の観点からC-H結合を含む化合物の使用量を抑えることが望ましい場合には、前記合計量に対するC-H結合を有する化合物の含有率は、90質量%以下でもよく、80質量%以下でもよく、70質量%以下でもよい。前記観点からは、前記合計量に対するC-H結合を有する化合物の含有率は、0.01~90質量%でもよく、10~80質量%でもよく、30~70質量%でもよく、50~70質量%でもよい。
-C-H結合を有しない化合物-
C-H結合を有しない化合物としては、C-H結合を有しない含フッ素化合物が好ましい。例えば、ペルフルオロアルカン、並びに、塩素原子、窒素原子、及び酸素原子からなる群より選択される少なくとも1種の原子を有する有機溶媒をペルフルオロ化した有機溶媒が挙げられる。
C-H結合を有しない化合物としては、C-H結合を有しない含フッ素化合物が好ましい。例えば、ペルフルオロアルカン、並びに、塩素原子、窒素原子、及び酸素原子からなる群より選択される少なくとも1種の原子を有する有機溶媒をペルフルオロ化した有機溶媒が挙げられる。
C-H結合を有しない含フッ素化合物は、単独の化合物として、原料エステル化合物の溶解度が高い化合物であることが好ましく、25℃において原料エステル化合物を1質量%以上溶解可能な化合物が好ましく、5質量%以上溶解可能な化合物がより好ましい。
C-H結合を有しない含フッ素化合物としては、含塩素溶媒及び含塩素溶媒以外の含フッ素溶媒からなる群より選択される少なくとも一方が挙げられる。
含塩素溶媒としては、例えば、CClF2CClFCF2OCF2CClF2(CFE-419)、1,2,3,4-テトラクロロパーフルオロブタン(R-113)、CF2ClCFClCFClOCF2CF2Cl(CFE-418)等が挙げられる。
含塩素溶媒以外の含フッ素溶媒としては、ペルフルオロアルカン類(FC-72等)、ペルフルオロエーテル類(FC-75、FC-77等)、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等)、不活性流体(商品名:フロリナート)、ペルフルオロカルボン酸フッ化物等が挙げられる。
また、C-H結合を有しない含フッ素化合物としては、以下の酸フッ化物も挙げられる。
CF3CF2CF2OCF(CF3)COF
CF3CF2CF2OCF(CF3)CF2OCF(CF3)COF
CF3CF2CF2OCF(CF3)CF2OCF(CF3)CF2OCF(CF3)COF
C-H結合を有しない化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
含塩素溶媒としては、例えば、CClF2CClFCF2OCF2CClF2(CFE-419)、1,2,3,4-テトラクロロパーフルオロブタン(R-113)、CF2ClCFClCFClOCF2CF2Cl(CFE-418)等が挙げられる。
含塩素溶媒以外の含フッ素溶媒としては、ペルフルオロアルカン類(FC-72等)、ペルフルオロエーテル類(FC-75、FC-77等)、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等)、不活性流体(商品名:フロリナート)、ペルフルオロカルボン酸フッ化物等が挙げられる。
また、C-H結合を有しない含フッ素化合物としては、以下の酸フッ化物も挙げられる。
CF3CF2CF2OCF(CF3)COF
CF3CF2CF2OCF(CF3)CF2OCF(CF3)COF
CF3CF2CF2OCF(CF3)CF2OCF(CF3)CF2OCF(CF3)COF
C-H結合を有しない化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
一態様において、有機溶媒は、C-H結合を有する化合物と、C-H結合を有しない含フッ素化合物と、を含むことが好ましい。有機溶媒がC-H結合を有する化合物とC-H結合を有しない含フッ素化合物とを含む場合、C-H結合を有する化合物とC-H結合を有しない含フッ素化合物の合計量に対するC-H結合を有する化合物の含有率は、0.01質量%が好ましく、10質量%以上がより好ましく、30質量%以上がさらに好ましく、50質量%以上が特に好ましい。コスト、入手容易性等の観点からC-H結合を含む化合物の使用量を抑えることが望ましい場合には、前記合計量に対するC-H結合を有する化合物の含有率は、90質量%以下でもよく、80質量%以下でもよく、70質量%以下でもよい。前記観点からは、前記合計量に対するC-H結合を有する化合物の含有率は、0.01~90質量%でもよく、10~80質量%でもよく、30~70質量%でもよく、50~70質量%でもよい。
(含フッ素エステル化合物)
本製造方法により製造される含フッ素エステル化合物は、原料エステル化合物の液相フッ素化により得られる、フッ素原子及びエステル結合を有する化合物である。液相フッ素化では、原料エステル化合物の炭素骨格に対応する構造を有する含フッ素エステル化合物が生成する。ただし、原料エステル化合物中に炭素-炭素不飽和結合がある場合には、当該不飽和結合の1個以上にフッ素原子が付加して結合状態が変化していてもよい。
含フッ素エステル化合物は、原料エステル化合物よりフッ素含量が多い化合物であり、原料エステル化合物がペルフルオロ化された化合物であることが好ましい。
本製造方法により製造される含フッ素エステル化合物は、原料エステル化合物の液相フッ素化により得られる、フッ素原子及びエステル結合を有する化合物である。液相フッ素化では、原料エステル化合物の炭素骨格に対応する構造を有する含フッ素エステル化合物が生成する。ただし、原料エステル化合物中に炭素-炭素不飽和結合がある場合には、当該不飽和結合の1個以上にフッ素原子が付加して結合状態が変化していてもよい。
含フッ素エステル化合物は、原料エステル化合物よりフッ素含量が多い化合物であり、原料エステル化合物がペルフルオロ化された化合物であることが好ましい。
原料エステル化合物が前記式(1)で表される化合物である場合、含フッ素エステル化合物は、下記式(6)で表される化合物が好ましい。また、原料エステル化合物が前記式(2)で表される化合物である場合、含フッ素エステル化合物は、下記式(7)で表される化合物が好ましい。
RAF1-O-(C=O)-RBF1 …(6)
RBF2-(C=O)-O-RAF2-O-(C=O)-RBF3 …(7)
式(6)及び(7)中、
RAF1、RBF1、RAF2、RBF2、及びRBF3は、それぞれ、RA1、RB1、RA2、RB2、及びRB3に対応する基であり、
RA1、RB1、RA2、RB2、及びRB3がそれぞれ独立に水素原子を含まない基である場合、RAF1、RBF1、RAF2、RBF2、及びRBF3は、RA1、RB1、RA2、RB2、及びRB3と同一の基であり、
RA1、RB1、RA2、RB2、及びRB3がそれぞれ独立に水素原子を含む基である場合、RAF1、RBF1、RAF2、RBF2、及びRBF3は、RA1、RB1、RA2、RB2、及びRB3に存在するすべての水素原子がフッ素原子に置換された基である。
RAF1-O-(C=O)-RBF1 …(6)
RBF2-(C=O)-O-RAF2-O-(C=O)-RBF3 …(7)
式(6)及び(7)中、
RAF1、RBF1、RAF2、RBF2、及びRBF3は、それぞれ、RA1、RB1、RA2、RB2、及びRB3に対応する基であり、
RA1、RB1、RA2、RB2、及びRB3がそれぞれ独立に水素原子を含まない基である場合、RAF1、RBF1、RAF2、RBF2、及びRBF3は、RA1、RB1、RA2、RB2、及びRB3と同一の基であり、
RA1、RB1、RA2、RB2、及びRB3がそれぞれ独立に水素原子を含む基である場合、RAF1、RBF1、RAF2、RBF2、及びRBF3は、RA1、RB1、RA2、RB2、及びRB3に存在するすべての水素原子がフッ素原子に置換された基である。
〔RAF1〕
式(6)中、RAF1はRA1に対応する基である。
RA1が水素原子を含む場合には、RAF1は、RA1に存在する全ての水素原子がフッ素原子に置換された基である。RA1が水素原子を含まない場合には、RAF1は、RA1と同一の基である。
溶媒への溶解性に優れる観点から、RAF1は、下記式(A3)で表されることが好ましい。
R14O-(R15O)m3-R16- …(A3)
式(6)中、RAF1はRA1に対応する基である。
RA1が水素原子を含む場合には、RAF1は、RA1に存在する全ての水素原子がフッ素原子に置換された基である。RA1が水素原子を含まない場合には、RAF1は、RA1と同一の基である。
溶媒への溶解性に優れる観点から、RAF1は、下記式(A3)で表されることが好ましい。
R14O-(R15O)m3-R16- …(A3)
式(A3)中、R14は、ペルフルオロアルキル基であり、R15はそれぞれ独立に、炭素数1~6のペルフルオロアルキレン基であり、R16は、炭素数1~6のペルフルオロアルキレン基であり、m3は0~500の整数である。
式(A3)中、R14は、式(A1)中のR11に対応する。R11が水素原子を含む場合、R14は、R11に含まれる全ての水素原子がフッ素原子に置換された基である。R11が水素原子を含まない場合、R14は、R11と同じである。
式(A3)中、-(R15O)m3-は、式(A1)中の-(R12O)m1-に対応する。R12が水素原子を含む場合、R15は、R12に含まれる全ての水素原子がフッ素原子に置換された基である。R12が水素原子を含まない場合、R15は、R12と同じである。
式(A3)中、-(R15O)m3-は、下記式(A4)で表されることが好ましい。
-[(Rff1O)k7(Rff2O)k8(Rff3O)k9(Rff4O)k10(Rff5O)k11(Rff6O)k12]- …(A4)
ただし、
Rff1は、炭素数1のペルフルオロアルキレン基であり、
Rff2は、炭素数2のペルフルオロアルキレン基であり、
Rff3は、炭素数3のペルフルオロアルキレン基であり、
Rff4は、炭素数4のペルフルオロアルキレン基であり、
Rff5は、炭素数5のペルフルオロアルキレン基であり、
Rff6は、炭素数6のペルフルオロアルキレン基である。
k7、k8、k9、k10、k11、及びk12は、それぞれ独立に0又は1以上の整数を表し、k7+k8+k9+k10+k11+k12は0~500の整数である。
-[(Rff1O)k7(Rff2O)k8(Rff3O)k9(Rff4O)k10(Rff5O)k11(Rff6O)k12]- …(A4)
ただし、
Rff1は、炭素数1のペルフルオロアルキレン基であり、
Rff2は、炭素数2のペルフルオロアルキレン基であり、
Rff3は、炭素数3のペルフルオロアルキレン基であり、
Rff4は、炭素数4のペルフルオロアルキレン基であり、
Rff5は、炭素数5のペルフルオロアルキレン基であり、
Rff6は、炭素数6のペルフルオロアルキレン基である。
k7、k8、k9、k10、k11、及びk12は、それぞれ独立に0又は1以上の整数を表し、k7+k8+k9+k10+k11+k12は0~500の整数である。
式(A4)中、Rff1~Rff6は、式(A2)中のRf1~Rf6に対応する。例えば、Rf1が水素原子を含む場合、Rff1は、Rf1に含まれる全ての水素原子がフッ素原子に置換された基である。Rf1が水素原子を含まない場合、Rff1は、Rf1と同じである。Rff2~Rff6に関しても、Rff1と同様である。
溶媒への溶解性に優れる観点から、k7+k8+k9+k10+k11+k12は、1~500の整数が好ましく、1~300の整数がより好ましく、5~200の整数がさらに好ましく、10~150の整数が特に好ましい。
中でも、-(R15O)m3-は、下記式(G1)~(G3)で表される構造からなる群より選択される少なくとも1つを含むことが好ましく、式(G2)で表される構造を含むことがより好ましい。
-(Rff1O)k7-(Rff2O)k8- …(G1)
-(Rff2O)k8-(Rff4O)k10- …(G2)
-(Rff3O)k9- …(G3)
ただし、式(G1)~式(G3)の各符号は、上記式(A4)と同様である。
-(Rff1O)k7-(Rff2O)k8- …(G1)
-(Rff2O)k8-(Rff4O)k10- …(G2)
-(Rff3O)k9- …(G3)
ただし、式(G1)~式(G3)の各符号は、上記式(A4)と同様である。
式(G1)及び式(G2)において、(Rff1O)と(Rff2O)、(Rff2O)と(Rff4O)の結合順序は各々任意である。例えば(Rff1O)と(Rff2O)が交互に配置されてもよく、(Rff1O)と(Rff2O)が各々ブロックに配置されてもよく、またランダムであってもよい。式(G2)においても同様である。
式(G1)において、k7は1~30が好ましく、1~20がより好ましい。またk8は1~30が好ましく、1~20がより好ましい。
式(G2)において、k8は1~30が好ましく、1~20がより好ましい。またk10は1~30が好ましく、1~20がより好ましい。
式(G3)において、k9は1~30が好ましく、1~20がより好ましい。
式(G1)において、k7は1~30が好ましく、1~20がより好ましい。またk8は1~30が好ましく、1~20がより好ましい。
式(G2)において、k8は1~30が好ましく、1~20がより好ましい。またk10は1~30が好ましく、1~20がより好ましい。
式(G3)において、k9は1~30が好ましく、1~20がより好ましい。
式(A3)中、R16は、式(A1)中のR13に対応する。R13が水素原子を含む場合、R16は、R13に含まれる全ての水素原子がフッ素原子に置換された基である。R13が水素原子を含まない場合、R16は、R13と同じである。
R16としては、上記、Rff1~Rff6と同様のものが挙げられる。
中でも、R16は、炭素数1~3のペルフルオロアルキレン基が好ましい。
式(A3)中、m3は、式(A1)中のm1に対応する。m3はm1と同じである。
RAF1の具体例として、例えば、以下の構造が挙げられる。*は、-O-との結合部位を表し、n1は0~60の整数、n2は0~500の整数を表す。n1としては例えば13が挙げられ、n2としては例えば7が挙げられる。
〔RBF1〕
式(6)中、RBF1はRB1に対応する基である。
RB1が水素原子を含む場合には、RBF1は、RB1に存在する全ての水素原子がフッ素原子に置換された基である。RB1が水素原子を含まない場合には、RBF1は、RB1と同一の基である。
溶媒への溶解性に優れる観点から、RBF1は、下記式(B2)で表されることが好ましい。
R24O-(R25O)m4-R26- …(B2)
式(6)中、RBF1はRB1に対応する基である。
RB1が水素原子を含む場合には、RBF1は、RB1に存在する全ての水素原子がフッ素原子に置換された基である。RB1が水素原子を含まない場合には、RBF1は、RB1と同一の基である。
溶媒への溶解性に優れる観点から、RBF1は、下記式(B2)で表されることが好ましい。
R24O-(R25O)m4-R26- …(B2)
式(B2)中、R24は、ペルフルオロアルキル基であり、R25はそれぞれ独立に、炭素数1~6のペルフルオロアルキレン基であり、R26は炭素数1~6のペルフルオロアルキレン基であり、m4は0~20の整数である。
式(B2)中、R24は、式(B1)中のR21に対応する。R21が水素原子を含む場合、R24は、R21に含まれる全ての水素原子がフッ素原子に置換された基である。R21が水素原子を含まない場合、R24は、R21と同じである。
式(B2)中、-(R25O)m4-は、式(B1)中の-(R22O)m2-に対応する。R22が水素原子を含む場合、R25は、R22に含まれる全ての水素原子がフッ素原子に置換された基である。R22が水素原子を含まない場合、R25は、R22と同じである。
式(B2)中、-(R25O)m4-は、上記式(A4)で表されることが好ましい。
式(B2)中、R26は、式(B1)中のR23に対応する。R23が水素原子を含む場合、R26は、R23に含まれる全ての水素原子がフッ素原子に置換された基である。R23が水素原子を含まない場合、R26は、R23と同じである。
式(B2)中、m4は、式(B1)中のm2に対応する。m4はm2と同じである。
RBF1の具体例として、例えば、以下の構造が挙げられる。*は、-O-(C=O)-との結合部位を表す。
〔RAF2〕
式(7)中、RAF2はRA2に対応する基である。
RA2が水素原子を含む場合には、RAF2は、RA2に存在する全ての水素原子がフッ素原子に置換された基である。RA2が水素原子を含まない場合には、RAF2は、RA2と同一の基である。
式(7)中、RAF2はRA2に対応する基である。
RA2が水素原子を含む場合には、RAF2は、RA2に存在する全ての水素原子がフッ素原子に置換された基である。RA2が水素原子を含まない場合には、RAF2は、RA2と同一の基である。
溶媒への溶解性に優れる観点から、RAF2は、下記式(A6)で表されることが好ましい。つまり、RAF2は、エーテル結合をさらに有することが好ましい。
-R34O-(R35O)m6-R36- …(A6)
-R34O-(R35O)m6-R36- …(A6)
式(A6)中、R34及びR36は、それぞれ独立に、炭素数1~6のペルフルオロアルキレン基であり、R35はそれぞれ独立に、炭素数1~6のペルフルオロアルキレン基であり、m6は0~500の整数である。
式(A6)中、R34及びR36は、それぞれ式(A5)中のR31及びR33に対応する。R31が水素原子を含む場合、R34はR31に含まれる全ての水素原子がフッ素原子に置換された基である。R31が水素原子を含まない場合、R34はR31と同じである。R33が水素原子を含む場合、R36はR33に含まれる全ての水素原子がフッ素原子に置換された基である。R33が水素原子を含まない場合、R36はR33と同じである。
式(A6)中、-(R35O)m6-は、式(A5)中の-(R32O)m5-に対応する。R32が水素原子を含む場合、R35は、R32に含まれる全ての水素原子がフッ素原子に置換された基である。R32が水素原子を含まない場合、R35は、R32と同じである。
式(A6)中、R34及びR36としては、それぞれ独立に、式(A5)中のR31及びR33と同様のものが挙げられる。
式(A6)中、-(R35O)m6-としては、式(A5)中の-(R32O)m5-と同様のものが挙げられる。
式(A6)中、-(R35O)m6-としては、式(A5)中の-(R32O)m5-と同様のものが挙げられる。
RAF2の具体例として、例えば、以下の構造が挙げられる。*は、-O-との結合部位を表し、n2は0~500の整数を表す。
〔RBF2及びRBF3〕
式(7)中、RBF2及びRBF3は、それぞれ、RB2及びRB3に対応する基である。
RB2が水素原子を含む場合には、RBF2は、RB2に存在する全ての水素原子がフッ素原子に置換された基である。RB2が水素原子を含まない場合には、RBF2は、RB2と同一の基である。
RB3が水素原子を含む場合には、RBF3は、RB3に存在する全ての水素原子がフッ素原子に置換された基である。RB3が水素原子を含まない場合には、RBF3は、RB3と同一の基である。
式(7)中、RBF2及びRBF3は、それぞれ、RB2及びRB3に対応する基である。
RB2が水素原子を含む場合には、RBF2は、RB2に存在する全ての水素原子がフッ素原子に置換された基である。RB2が水素原子を含まない場合には、RBF2は、RB2と同一の基である。
RB3が水素原子を含む場合には、RBF3は、RB3に存在する全ての水素原子がフッ素原子に置換された基である。RB3が水素原子を含まない場合には、RBF3は、RB3と同一の基である。
RBF2又はRBF3で表される基は、式(6)中のRBF1で表される基と同様の基が挙げられる。
含フッ素エステル化合物の数平均分子量は、特に限定されるものではなく、100~100,000が好ましく、100~20,000がより好ましく、300~10,000がさらに好ましく、400~6,000が特に好ましい。
液相フッ素化の反応生成物である含フッ素エステル化合物は、そのまま、又は他の化合物に化学変換されることにより有用に用いうる。含フッ素エステル化合物が、分解されうるエステル結合を有する化合物である場合、特に化合物(6)又は(7)である場合には、エステル結合の分解反応を行うことにより、他の化合物に導いてもよい。
〔液相フッ素化の工程〕
フッ素化反応の反応形式は、バッチ方式及び連続方式が挙げられ、連続方式が好ましい。フッ素化方法としては、以下に説明するフッ素化法1及び2が挙げられる。転化率が優れる観点からは、以下に説明するフッ素化法2を連続方式で実施することが好ましい。
フッ素化反応の反応形式は、バッチ方式及び連続方式が挙げられ、連続方式が好ましい。フッ素化方法としては、以下に説明するフッ素化法1及び2が挙げられる。転化率が優れる観点からは、以下に説明するフッ素化法2を連続方式で実施することが好ましい。
フッ素化法1:反応器に、原料エステル化合物と溶媒とを仕込み、攪拌を開始する。所定の反応温度と反応圧力下で、フッ素ガスを、連続的に供給しながら反応させる。
フッ素化法2:反応器に溶媒を仕込み、攪拌を開始する。所定の反応温度と反応圧力下で、原料エステル化合物とフッ素ガスとを所定のモル比で連続的かつ同時期に供給する。
フッ素化法2:反応器に溶媒を仕込み、攪拌を開始する。所定の反応温度と反応圧力下で、原料エステル化合物とフッ素ガスとを所定のモル比で連続的かつ同時期に供給する。
フッ素化法2において原料エステル化合物を供給する際には、原料エステル化合物を溶媒で希釈せずに、そのまま供給してもよい。原料エステル化合物を溶媒で希釈する場合には、原料エステル化合物に対する溶媒の量を1質量倍以上とすることが好ましく、2質量倍以上とすることがより好ましい。
液相フッ素化では、フッ素ガスをそのまま用いてもよく、フッ素ガスを不活性ガスで希釈した混合ガスを用いてもよい。不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス等が挙げられ、窒素ガス又はヘリウムガスが好ましく、窒素ガスがより好ましい。混合ガス中のフッ素ガスの濃度は、転化率が優れる観点からは、10体積%以上が好ましく、15体積%以上がより好ましく、20体積%以上がさらに好ましい。反応性が高くなりすぎることを抑制する観点からは、60体積%以下が好ましく、50体積%以下がより好ましく、40体積%以下がさらに好ましい。前記観点からは、混合ガス中のフッ素ガスの濃度は、10~60体積%が好ましく、15~50体積%がより好ましく、20~40体積%がさらに好ましい。
液相フッ素化に用いるフッ素の量は、転化率が優れる観点からは、原料エステル化合物中の水素原子に対して、フッ素の量が過剰当量となる量であることが好ましく、1.5倍当量(すなわち1.5倍モル)以上となる量であることがより好ましい。フッ素の量は、液相フッ素化の最初から最後まで過剰当量が保たれるようにすることが好ましい。
液相フッ素化の反応温度は、-60℃以上かつ原料エステル化合物の沸点以下が好ましく、反応収率、選択率、及び工業的実施のしやすさの観点からは、-50℃~100℃がより好ましく、-20℃~50℃がさらに好ましい。
液相フッ素化の反応圧力は特に限定されず、転化率に優れる観点、工業的な実施のしやすさの観点からは、0~2MPaが好ましい。
液相フッ素化の反応圧力は特に限定されず、転化率に優れる観点、工業的な実施のしやすさの観点からは、0~2MPaが好ましい。
液相フッ素化における反応時間(すなわち、原料エステル化合物の反応場通過時間)は、200時間以下が好ましく、190時間以下がより好ましく、170時間以下がさらに好ましく、150時間以下が特に好ましく、100時間以下が極めて好ましい。前記反応時間は、0.3時間以上が好ましく、0.6時間以上がより好ましく、1時間以上がさらに好ましい。反応時間が前記下限値以上であると反応が充分となりやすく、前記上限値以下であると製造時間及びコストを低減しやすい。前記観点からは、反応時間は、0.3~200時間が好ましく、0.6~190時間がより好ましく、1~170時間がさらに好ましく、1~150時間が特に好ましく、1~100時間が最も好ましい。
フッ素化工程では、液相中の原料エステル化合物の含有率は、10~70質量%が好ましく、20~50質量%がより好ましい。
液相フッ素化を効率的に進行させ、収率を向上させる観点から、反応系に紫外線照射を行うことが好ましい。バッチ方式反応においては、液相フッ素化後期に反応系に紫外線を照射することが好ましい。紫外線照射時間は、0.1~3時間が好ましい。
液相フッ素化を効率的に進行させるために、C-H結合を有する化合物、又は炭素-炭素二重結合を有する化合物を助剤として添加してもよい。なお、特定の1種類のC-H結合を有する化合物又は炭素-炭素二重結合を有する化合物が、原料エステル化合物に対して0.1質量倍未満用いられる場合には、当該化合物は助剤に分類するものとする。
助剤であるC-H結合を有する化合物としては、芳香族炭化水素が好ましく、ベンゼン、トルエン等がより好ましい。C-H結合を有する化合物の添加量は、原料エステル化合物の水素原子に対して0.1~10モル%が好ましく、0.1~5モル%がより好ましい。
助剤である炭素-炭素二重結合を有する化合物としては、CF3CF=CF2、CF2=CF-CF=CF2が挙げられる。
炭素-炭素二重結合を有する化合物の添加量は、原料エステル化合物中の水素原子に対して0.1~10モル%が好ましく、0.1~5モル%がより好ましい。
助剤であるC-H結合を有する化合物としては、芳香族炭化水素が好ましく、ベンゼン、トルエン等がより好ましい。C-H結合を有する化合物の添加量は、原料エステル化合物の水素原子に対して0.1~10モル%が好ましく、0.1~5モル%がより好ましい。
助剤である炭素-炭素二重結合を有する化合物としては、CF3CF=CF2、CF2=CF-CF=CF2が挙げられる。
炭素-炭素二重結合を有する化合物の添加量は、原料エステル化合物中の水素原子に対して0.1~10モル%が好ましく、0.1~5モル%がより好ましい。
例えば、バッチ方式反応においては、液相フッ素化後期に助剤を反応系中に添加してもよい。助剤は、反応系中にフッ素が存在する状態で添加することが好ましい。助剤を加えた場合には、反応系を加圧することが好ましい。加圧時の圧力としては、0.01~5MPaが好ましい。
一態様において、本製造方法は、助剤であるC-H結合を有する化合物、又は炭素-炭素二重結合を有する化合物を使用しないことが好ましい。本製造方法によれば、助剤を使用しなくても、溶媒として用いるC-H結合を有する化合物がラジカル発生源となり、転化率を向上させられる。助剤を使用しないことで、助剤の添加、除去等に係る工程の簡略化が見込まれる。
原料エステル化の液相フッ素化において、水素原子をフッ素原子に置換する反応がおきた場合には、HFが副生する。HFを捕捉するために、反応系中にHFの捕捉剤を共存させるか、反応器ガス出口でHF捕捉剤と出口ガスとを接触させることが好ましい。HF捕捉剤としては、例えばNaFが好ましい。
液相フッ素化で得た含フッ素エステル化合物を含む粗生成物は、そのまま次の工程に用いてもよく、精製して高純度のものにしてもよい。精製方法としては、粗生成物をそのまま常圧又は減圧下に蒸留する方法等が挙げられる。
次に本開示の実施形態を実施例により具体的に説明するが、本開示の実施形態はこれらの実施例に限定されるものではない。例1は比較例であり、例2~5は実施例である。
実施例で用いられる化合物の構造を以下に示す。
CFE-419:CF2ClCFClCF2OCF2CF2Cl
HCFE-428a,b:CF2ClCFClCHFOCF2CF2Cl
HCFE-473:CH2ClCHClCH2OCF2CHFCl
CFE-419:CF2ClCFClCF2OCF2CF2Cl
HCFE-428a,b:CF2ClCFClCHFOCF2CF2Cl
HCFE-473:CH2ClCHClCH2OCF2CHFCl
[合成例1:化合物(A)の合成]
国際公開第2013/121984号に記載の方法で下記化合物(A)を得た。
国際公開第2013/121984号に記載の方法で下記化合物(A)を得た。
[例1]
下記の方法によって化合物(A)の水素原子の大部分をフッ素原子で置き換えるフッ素化反応を実施した。
オートクレーブ(ニッケル製、内容積500mL)を用意し、オートクレーブのガス出口に、0℃に保持した冷却器、NaFペレット充填層、及び-10℃に保持した冷却器を直列に設置した。また-10℃に保持した冷却器から凝集した液をオートクレーブに戻す液体返送ラインを設置した。
オートクレーブにCFE-419の100gを投入し、20℃に保持しながら攪拌した。オートクレーブに窒素ガスを25℃で1時間吹き込んだ後、30体積%フッ素ガスを同じ流速で吹き込みながら、オートクレーブに、合成例1で得た化合物(A)の100gをCFE-419の200gに溶解した原料溶液を、24時間かけて注入した。
注入完了後、1時間攪拌を続けた。次いで、オートクレーブ内の圧力を大気圧にして、窒素ガスを1時間吹き込んだ。オートクレーブの内容物をエバポレーターで濃縮し、フッ素化されたサンプルの19F-NMRを分析することにより、下記で定義される水素残存率(以下、「H残比率」と記す。)を算出した。
下記の方法によって化合物(A)の水素原子の大部分をフッ素原子で置き換えるフッ素化反応を実施した。
オートクレーブ(ニッケル製、内容積500mL)を用意し、オートクレーブのガス出口に、0℃に保持した冷却器、NaFペレット充填層、及び-10℃に保持した冷却器を直列に設置した。また-10℃に保持した冷却器から凝集した液をオートクレーブに戻す液体返送ラインを設置した。
オートクレーブにCFE-419の100gを投入し、20℃に保持しながら攪拌した。オートクレーブに窒素ガスを25℃で1時間吹き込んだ後、30体積%フッ素ガスを同じ流速で吹き込みながら、オートクレーブに、合成例1で得た化合物(A)の100gをCFE-419の200gに溶解した原料溶液を、24時間かけて注入した。
注入完了後、1時間攪拌を続けた。次いで、オートクレーブ内の圧力を大気圧にして、窒素ガスを1時間吹き込んだ。オートクレーブの内容物をエバポレーターで濃縮し、フッ素化されたサンプルの19F-NMRを分析することにより、下記で定義される水素残存率(以下、「H残比率」と記す。)を算出した。
H残比率=1分子中に残る水素原子数の平均値/1分子中のフッ素原子数の平均値
19F-NMR(282.7MHz,溶媒:重クロロホルム、基準:1,4-ビストリフルオロメチルベンゼン)
σ(ppm):-55~-56、-75~-95、-115~-135、-144~-145、-129~-130.
σ(ppm):-55~-56、-75~-95、-115~-135、-144~-145、-129~-130.
H残比率は以下のように算出した。
19F-NMRにおける(-144~-145の積分値)/(-55~-145の積分値)
19F-NMRにおける(-144~-145の積分値)/(-55~-145の積分値)
[例2]
原料溶液を、化合物(A)の100gをHCFE-428a,bの200gに溶解した溶液に変更したこと以外は例1と同様にフッ素化反応を実施し、H残比率を算出した。
原料溶液を、化合物(A)の100gをHCFE-428a,bの200gに溶解した溶液に変更したこと以外は例1と同様にフッ素化反応を実施し、H残比率を算出した。
[例3]
原料溶液を、化合物(A)の100gをHCFE-473の200gに溶解した溶液に変更したこと以外は例1と同様にフッ素化反応を実施し、H残比率を算出した。
原料溶液を、化合物(A)の100gをHCFE-473の200gに溶解した溶液に変更したこと以外は例1と同様にフッ素化反応を実施し、H残比率を算出した。
[例4]
原料溶液を、化合物(A)の100gをHCFE-473とCFE-419の質量比率1:1の混合溶液200gに溶解した溶液に変更したこと以外は例1と同様にフッ素化反応を実施し、H残比率を算出した。
原料溶液を、化合物(A)の100gをHCFE-473とCFE-419の質量比率1:1の混合溶液200gに溶解した溶液に変更したこと以外は例1と同様にフッ素化反応を実施し、H残比率を算出した。
[例5]
原料溶液を、化合物(A)の100gをHCFE-473とCFE-419の質量比率1:10の混合溶液200gに溶解した溶液に変更したこと以外は例1と同様にフッ素化反応を実施し、H残比率を算出した。
原料溶液を、化合物(A)の100gをHCFE-473とCFE-419の質量比率1:10の混合溶液200gに溶解した溶液に変更したこと以外は例1と同様にフッ素化反応を実施し、H残比率を算出した。
例1~5で得られたフッ素化体のH残比率の分析値を表2に示す。CFE-419中の水素原子数は0、HCFE-428中の水素原子数は1、HCFE-473中の水素原子数は6である。表中、反応溶媒は、オートクレーブに初期投入した溶媒と原料溶液中の溶媒とを合わせたものであり、溶媒量の割合は質量比を表す。
表2に示される通り、C-H結合を有する化合物を溶媒として用いる液相フッ素化により、フッ素化の転化率が向上する。
本開示の含フッ素エステル化合物の製造方法は、高いフッ素化の転化率で含フッ素エステル化合物を製造できる。得られた含フッ素エステル化合物は、種々の官能基(例えば、水酸基、エチレン性不飽和基、エポキシ基、カルボキシ基等)を有する含フッ素化合物に誘導できる。また、得られた含フッ素エステル化合物及び含フッ素化合物は、表面処理剤、乳化剤、ゴム、界面活性剤、溶媒、熱媒体、医薬品、農薬、潤滑油、これらの中間体等に利用可能である。
2022年11月21日に出願された日本国特許出願2022-185986号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (9)
- フッ素ガスを導入した有機溶媒中で、フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物をフッ素化することを含み、
前記有機溶媒は、C-H結合を有する化合物を含み、
前記C-H結合を有する化合物の量が、前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物の0.1質量倍以上である、
含フッ素エステル化合物の製造方法。 - 前記C-H結合を有する化合物が1~10個の水素原子を含む、請求項1に記載の含フッ素エステル化合物の製造方法。
- 前記有機溶媒は、前記C-H結合を有する化合物と、C-H結合を有しない含フッ素化合物と、を含む、請求項1又は2に記載の含フッ素エステル化合物の製造方法。
- 前記有機溶媒における前記C-H結合を有する化合物の含有率が0.01質量%以上である、請求項1又は2に記載の含フッ素エステル化合物の製造方法。
- 前記C-H結合を有する化合物は、フッ素化されて前記C-H結合を有しない含フッ素化合物に変換可能な化合物である、請求項3に記載の含フッ素エステル化合物の製造方法。
- 前記C-H結合を有する化合物のフッ素含量が5~99質量%である、請求項1又は2に記載の含フッ素エステル化合物の製造方法。
- 前記C-H結合を有する化合物がアルカン、エーテル化合物、エステル化合物、ケトン化合物又はこれらの化合物の水素原子の少なくとも1つがハロゲン原子で置換された化合物である、請求項1又は2に記載の含フッ素エステル化合物の製造方法。
- 前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物が、下記式(1)又は(2)で表される化合物である、請求項1又は2に記載の含フッ素エステル化合物の製造方法。
RA1-O-(C=O)-RB1 …(1)
RB2-(C=O)-O-RA2-O-(C=O)-RB3 …(2)
式(1)及び(2)中、
RA1、RB1、RB2、及びRB3はそれぞれ独立に、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有1価飽和炭化水素)基であり、
RA2は、2価飽和炭化水素基、ハロゲノ2価飽和炭化水素基、ヘテロ原子含有2価飽和炭化水素基、又はハロゲノ(ヘテロ原子含有2価飽和炭化水素)基である。 - 前記フッ素化可能な原子又は結合を少なくとも1つ有するエステル化合物が、フッ素原子を含む、請求項1又は2に記載の含フッ素エステル化合物の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-185986 | 2022-11-21 | ||
JP2022185986 | 2022-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024111485A1 true WO2024111485A1 (ja) | 2024-05-30 |
Family
ID=91195580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/041150 WO2024111485A1 (ja) | 2022-11-21 | 2023-11-15 | 含フッ素エステル化合物の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024111485A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04500520A (ja) * | 1988-09-28 | 1992-01-30 | エクスフルアー・リサーチ・コーポレーシヨン | 液相フツ素置換 |
WO2013003495A2 (en) * | 2011-06-27 | 2013-01-03 | Relypsa, Inc. | Fluorination of acrylate esters and derivatives |
-
2023
- 2023-11-15 WO PCT/JP2023/041150 patent/WO2024111485A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04500520A (ja) * | 1988-09-28 | 1992-01-30 | エクスフルアー・リサーチ・コーポレーシヨン | 液相フツ素置換 |
WO2013003495A2 (en) * | 2011-06-27 | 2013-01-03 | Relypsa, Inc. | Fluorination of acrylate esters and derivatives |
Non-Patent Citations (6)
Title |
---|
"Encyclopedia of Reagents for Organic Synthesis", 1 January 2001, JOHN WILEY & SONS, LTD, article KOTUN STEFAN P: "Fluorine", pages: 1 - 4, XP093174628, DOI: 10.1002/047084289X.rf003 * |
CHIBA JUN, SUGIHARA TAKUMICHI, KANEKO CHIKARA: "α-Fluorination of Sulfoxides Bearing α-Hydrogens by Molecular Fluorine. A Novel Method for the Synthesis of α-Fluorosulfones", CHEMISTRY LETTERS, CHEMICAL SOCIETY OF JAPAN, vol. 24, no. 7, 1 July 1995 (1995-07-01), pages 581 - 582, XP009554916, ISSN: 0366-7022, DOI: 10.1246/cl.1995.581 * |
GATENYO, J. ; ROZEN, S.: "Direct addition of fluorine to arylacetylenes", JOURNAL OF FLUORINE CHEMISTRY, ELSEVIER, NL, vol. 130, no. 3, 1 March 2009 (2009-03-01), NL , pages 332 - 335, XP025991264, ISSN: 0022-1139, DOI: 10.1016/j.jfluchem.2008.12.009 * |
NAKANO TAKASHI: "Synthetic Technology of Fluorine-Containing Organic Compounds in Asahi Glass", NIHON NOYAKU GAKKAISHI = JAPANESE JOURNAL OF PESTICIDE SCIENCE, TOKIO, vol. 41, no. 1, 1 January 2016 (2016-01-01), Tokio , pages 52 - 63, XP093174633, ISSN: 2187-0365, DOI: 10.1584/jpestics.W15-39 * |
OKAZOE TAKASHI: "Development of the "PERFECT" direct fluorination method and its industrial applications", JOURNAL OF FLUORINE CHEMISTRY, ELSEVIER, NL, vol. 174, 1 June 2015 (2015-06-01), NL , pages 120 - 131, XP093174636, ISSN: 0022-1139, DOI: 10.1016/j.jfluchem.2014.09.020 * |
OKAZOE, T. WATANABE, K. ITOH, M. SHIRAKAWA, D. TATEMATSU, S.: "A new route to perfluorinated vinyl ether monomers: synthesis of perfluoro(alkoxyalkanoyl) fluorides from non-fluorinated compounds", JOURNAL OF FLUORINE CHEMISTRY, ELSEVIER, NL, vol. 112, no. 1, 28 November 2001 (2001-11-28), NL , pages 109 - 116, XP004322993, ISSN: 0022-1139, DOI: 10.1016/S0022-1139(01)00474-2 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3043400B2 (ja) | ペルオキシペルフルオロポリエーテルの製造方法 | |
USRE41184E1 (en) | Process for producing a fluorine atom-containing sulfonyl fluoride compound | |
EP2004722B1 (en) | A process for preparing high purity monocarboxylic perfluoropolyethers | |
JP3830175B2 (ja) | ペルフルオロポリエーテル類の製造法 | |
US9783483B2 (en) | Process for producing fluorinated compound | |
TWI296615B (en) | Process for preparation of fluorinated ketones | |
JP3862339B2 (ja) | 過酸化ペルフルオロポリオキシアルキレン類及びペルフルオロポリエーテル類の製造方法 | |
WO2024111485A1 (ja) | 含フッ素エステル化合物の製造方法 | |
JPH085958B2 (ja) | 中性官能末端基を有する分子量調節されたペルフルオロポリエ−テルの製造方法 | |
US7053238B2 (en) | Process for producing fluorinated polyvalent carbonyl compound | |
JP4526826B2 (ja) | フルオロハロゲンエーテルの製造方法 | |
WO2024111489A1 (ja) | 含フッ素化合物の製造方法 | |
JP4088773B2 (ja) | フッ素化されたポリオキシアルキレン化合物の製造方法 | |
JP2024074672A (ja) | 含フッ素化合物の製造方法 | |
EP1440994B1 (en) | Process for the preparation of (per)fluorinated mono-functional carbonyl compounds | |
JP2024074702A (ja) | 溶媒及び含フッ素化合物の製造方法 | |
JP3333253B2 (ja) | ペルフルオロポリオキシアルキレンの中和方法 | |
JP6037568B2 (ja) | パーフルオロ有機化合物の製造方法 | |
JP2024074671A (ja) | 含フッ素化合物の製造方法 | |
WO2024111488A1 (ja) | 含フッ素エステル化合物の製造方法及び組成物 | |
JP2011098250A (ja) | ポリフルオロアルキルホスホン酸塩乳化剤 | |
JP2024074703A (ja) | 溶媒及び含フッ素化合物の製造方法 | |
JP2024074701A (ja) | 含フッ素アルデヒド化合物の製造方法 | |
JPH05301953A (ja) | パーフルオロポリエーテルおよびその製造方法 | |
WO2024111491A1 (ja) | 含フッ素化合物の製造方法及び含フッ素化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23894494 Country of ref document: EP Kind code of ref document: A1 |